

Driving Architectures with UML 2.0
The TAU Generation2 Approach to

Model Driven Architecture

A Telelogic White Paper

Authors: Cris Kobryn and Eric Samuelsson

Published: August 1, 2003

Abstract

As the world’s demand for software inexorably increases, we need to increase the quantity
and improve the quality of the software that we produce. There are two major technology
trends that aim to address our insatiable appetite for software: automation and outsourcing.
This white paper describes a technical approach based on proven engineering principles that
primarily addresses the trend towards software automation, but can also be applied towards
software outsourcing. This model driven approach to software development described here,
which is based on architectural blueprint languages such as UML 2.0, and automated by
power tools such as TAU® Generation2 , can substantially improve software productivity
and quality. The approach is compatible with the Object Management Group’s Model Driven
Architecture® (MDA®) initiative, and takes advantage of its second-generation MDA
standards, such as UML 2.0 and the UML 2.0 Profile for Testing. The paper concludes with
speculation about the future of MDA as it evolves from a conceptual to a technical
architecture.

The information contained in this White Paper represents the current view of Telelogic on the issues discussed
as of the date of publication. Because Telelogic must respond to changing market conditions, it should not be
interpreted to be a commitment on the part of Telelogic, and Telelogic cannot guarantee the accuracy of any
information presented after the date of publication.
This White Paper is for informational purposes only. Telelogic makes no warranties, express or implied, as to the
information in this document.
The example companies, organizations, products, people and events depicted herein are fictitious. No
association with any real company, organization, product, person or event is intended or should be inferred.

 2003 Telelogic AB and Cris Kobryn. All rights reserved.
TAU, TAU Generation2, TAU G2, TAU/Developer, TAU/Architect, TAU/Tester, TAU SDL Suite, DOORS,
Synergy and DocExpress are either registered trademarks or trademarks of Telelogic.
Unified Modeling Language, UML, Model Driven Architecture, MDA, Meta Object Facility, MOF, Common
Warehouse Model, and CWM are either registered trademarks or trademarks of Object Management Group.
Systems Modeling Language and SysML are trademarks of the SysML Partners.
All other product and service names mentioned are the trademarks of their respective companies.

Driving Architectures with UML 2.0 1

CONTENTS

INTRODUCTION...2

THE MODEL-DRIVEN ADVANTAGE...3

MODEL DRIVEN ARCHITECTURE ...5
MDA as a Conceptual Architecture 5
MDA as a Technical Architecture 6

LANGUAGE AND TOOLS: UML 2.0 AND TAU G2..8
Architectural Blueprint Language: UML 2.0 8
Power Tools: TAU Generation2 9

MDA EXAMPLE: SATELLITE CONTROL SYSTEM ...11

CONCLUSIONS AND FUTURES...21

REFERENCES...22
Publications and Presentations 22
Web Resources 22

ABOUT THE AUTHORS ...23

A Telelogic White Paper 2

INTRODUCTION

As we transition from the Industrial Age to the Information Age, software is preeminent.
We rely on enterprise software applications to run our businesses, embedded software
applications to operate our machines, and multimedia software to entertain us. All of
these software applications are built on a complex software infrastructure that consists
of operating systems, middleware, and networking software.

While this sprawl of software still requires hardware for storage and execution, there is a
growing trend for hardware functions to be replaced by software functions. For example,
it is now common practice to apply software in the manufacture of cars to improve their
fuel economy and safety. Similarly, it is a frequent routine to apply software in the
manufacture of stereo and video equipment to improve their fidelity and reduce their
footprints.

As we transition from the forty hour work week associated the Industrial Age to the flex
hours and increased leisure time associated with the Information Age, we find that
software also pervades our entertainment. For example, we commonly listen to music
and watch videos that are digitally produced and stored with software.

As the world’s appetite for software inexorably increases, we need to improve both the
quantity and quality of software that we produce. There are two trends to address this
insatiable demand: automation and outsourcing. Software automation refers to the
process of transferring the work of developing software from wetware (humans) to other
software and hardware. Software outsourcing refers to the general trend to procure
human services for developing software from external companies or organizations,
especially those in foreign countries with a high education-to-compensation ratio. In the
latter case, the outsourcing is commonly referred to as offshore outsourcing.

This white paper describes a technical approach based on proven engineering principles
that primarily addresses the trend towards software automation, but can also be applied
towards software outsourcing. The model driven approach to software development
explained here, which is based on architectural blueprint languages such as UML™ 2.0
and power tools such as TAU Generation2™, can substantially improve software
productivity and quality.

The first part of the paper introduces the concept of model driven development as it
applies to software. It next discusses the Object Management Group’s Model Driven
Architecture™ initiative, which provides a conceptual architecture and key standards,
such as UML 2.0, that enable model driven development.

The second part of the paper shows how the powerful concepts described in the first part
can be applied to automate the software lifecycle, starting with business requirements
and culminating in testing. In particular, it shows how TAU Generation2 can automate
the transformation of a Platform Independent Model of requirements into a Platform
Specific Models that can generate production quality code and test scripts. The paper
concludes with some speculation about the future of MDA as it evolves from a
conceptual to a technical architecture.

Driving Architectures with UML 2.0 3

THE MODEL-DRIVEN ADVANTAGE

The basic ideas behind model driven development can be traced to the ancient
Egyptians, who over 4000 years ago applied both scale models and mathematical
models to architect and build their pyramids. The Egyptians architects discovered that
by combining scale and mathematical models with incremental prototyping techniques,
they could scale their pyramid building technology to the point where they produced the
third largest building on the planet: the Great Pyramid of Giza.1 This insight about the
power of modeling, whether passed on or learned independently, has allowed our
species to construct progressively larger and more complex buildings, vehicles,
machines and electronics.

We are now in the process of applying this insight about modeling to software
development, where it is becoming common to refer to model-based development. As it
pertains to software, model driven development can be defined as follows:

model driven development: An iterative, incremental software development
process where the model of a system is iteratively refined into an executable system
via a series of systematic mapping transformations. These mapping transformations
are typically either partially or fully automated. [Kobryn 2003a]

Model Driven development can be sharply contrasted with conventional software
development. Whereas traditional software development tends to be code-centric and
human intensive, model driven development is inclined to be model-centric and favors
automation.

The differences between round-trip engineering and model driven development are more
subtle but nevertheless important. Whereas model driven development emphasizes the
forward engineering of source code from models via a series of systematic mapping
transformations, round-trip engineering is equally inclined to accommodate the reverse
engineering of models from source code. While the ability to choose and change either
the model or the code is theoretically attractive to most developers, in practice it
produces mixed results. The underlying reason for this is that, while models commonly
support multiple, progressively refined abstraction levels (e.g., requirements models,
analysis models, design models), programming code represents a single, primitive
abstraction level – the implementation. Consequently, when a developer changes
programming code to address implementation details, such as optimizing execution time
or physical storage, the reverse propagation of the changes to the models is frequently
problematic. Problems range from poor mapping transformations, where implementation
details intrude upon the higher level models, to cases where the mapping
transformations are either lacking or incorrect.

The advantages of a model driven development approach are summarized in Table 1
[Kobryn 2003a].

1 Only the Great Wall of China (c. 215 B.C.E.), which is visible from outer space, and the Grand
Coulee Dam (1975), are larger than the Great Pyramid of Giza (c. 2680 B.C.E).

A Telelogic White Paper 4

Table 1: Advantages of Model Driven Development

TECHNOLOGY
DRIVERS

TECHNOLOGY ADVANTAGES BUSINESS ADVANTAGES

model =
requirements

Ensure requirements are an
integral part of model.

Ensure right system is being
built.

analysis and design
models

Support a wide variety of software
methods and processes.

Ensure system is being built
the right way.

model simulation Automate software validation and
verification.

Reduce errors and costs
early in the lifecycle.

model = code Automate generation of production
quality code.

Accelerate time to market.

model = test Automate testing. Ensure system is correct
and reliable.

An explanation of the technology drivers in Table 1 follows:

• model = requirements: In a model driven approach, the models must be driven by
requirements, which are ideally expressed using a requirements model that can be
traced through all related model views (e.g., analysis model, design model,
implementation model, test model).

• analysis and design models: Analysis models refine requirements models into high-
level, logical constructs that are meaningful to business, software and systems
analysts. Design models in turn refine the analysis models into lower-level, physical
constructs that can implemented.

• model simulation: One of the most important advantages of a model-based approach
is that models can simulate the system they are representing. These simulations
provide a cost-effective means to automate system validation and verification (V&V).

• model = code: Another key advantage of a model-based approach is that executable
models with full action languages can be used to generate complete production
quality code, that contains procedural logic as well as code skeletons.

• model = test: Not only are models useful at the beginning of the development
process, they are also helpful at the end to facilitate both black-box and white-box
testing of units and systems.

Driving Architectures with UML 2.0 5

MODEL DRIVEN ARCHITECTURE

The Object Management Group, the world’s largest software consortium, is promoting
model driven development through its Model Driven Architecture (MDA) initiative. The
OMG defines MDA as follows [MDA 2003]:

Model Driven Architecture (MDA): An approach to IT system specification that
separates the specification of functionality from the specification of the
implementation of that functionality on a specific technology platform.

In order to enforce the separation of concerns between specifications and their
implementations, the MDA defines two kinds of models, Platform Independent Models
(PIMs) and Platform Specific Models (PSMs), which it defines as follows:

Platform Independent Model (PIM): A model of a subsystem that contains no
information specific to the platform, or the technology that is used to realize it.

Platform Specific Model (PSM): A model of a subsystem that includes information
about the specific technology that is used in the realization of it on a specific
platform, and hence possibly contains elements that are specific to the platform.

MDA as a Conceptual Architecture

In the same way that the OMG’s Object Management Architecture™ (OMA™) was a
conceptual architecture for CORBA™ and its distributed services, the MDA serves as a
conceptual architecture for the OMG’s primary modeling standards: Unified Modeling
Language™ (UML™), Meta Object Facility™ (MOF™) and Common Warehouse Model™
(CWM™)-. Of these three modeling standards, UML is the most essential, since it is the
industry standard for software modeling, and all of the other MDA modeling standards,
including MOF and CWM, are defined in terms of UML. Stated otherwise, UML is the
lingua franca for the MDA initiative.

Figure 1 shows the relationship between a generic Platform Independent Model and
Platform Specific Models for several platforms (J2EE, .NET and BREW2) using UML
notation [Kobryn 2003a]. In this figure, the J2EE, .NET and BREW Platform Specific
Models are shown to be derived from a Platform Independent Model. Similarly, the JAR,
DLL and BREW file artifacts are shown to be derived from the J2EE, .NET and BREW
PSMs.

2 Binary Runtime Environment for Wireless (BREW) is a platform for developing and deploying applications on wireless
devices. See http://www.qualcomm.com/brew/.

A Telelogic White Paper 6

Figure 1: MDA Conceptual Architecture

MDA as a Technical Architecture

The MDA conceptual architecture and first generation MDA modeling standards (e.g.,
UML 1.x, MOF 1.y, CWM 1.z) provide a bold vision and a standards roadmap for realizing
the benefits of model driven development. However, in order to realize the full benefits
of the MDA approach a robust technical architecture with mature modeling standards is
required. Fortunately, the OMG is in the process of finalizing its second generation
modeling standards (e.g., UML 2.0, MOF 2.0), and tool vendors are implementing them
in their products.

Figure 2 shows the TAU Generation2 technical architecture for implementing MDA using
UML 2.0. The figure includes five different PIM views: a Requirements model, an
Analysis model, a Design model, a Test model, and a U2 model. The U2 model is

 Platform
Independent Model

 J2EE
Platform

Specific Model

 BREW
Platform

Specific Model

 .NET
Platform

Specific Model

<<JAR>>
Java ARchive File

<<DLL>>
Dynamic Link
Library File

<<BREW>>
BREW File

Driving Architectures with UML 2.0 7

actually a proprietary textual language that maps to the UML 2.0 semantics, including its
Action Semantics.

Figure 2: TAU G2 Technical Architecture for MDA

 <<PIM>>
Analysis

 <<PIM>>
Design

 <<PIM>>
U2

 <<PIM>>
Requirements

DOORS used for
requirements
managment.

e.g., Class
Diagrams, Use
Case Diagrams,
Sequence Diagrams

e.g., Architecture
Diagrams, State
Machine Diagrams

Proprietary textual
language supports
UML2 semantics,
including its Action
Semantics.

 <<PSM>>
C/C++

 <<PSM>>
Java

 <<PSM>>
CORBA IDL

Not yet available.

<<artifact>>
CORBA IDL

<<artifact>>
C/C++

<<artifact>>
Java

 <<PIM>>
Test

May also be PSMs
for testing code
generation artifacts.

A Telelogic White Paper 8

LANGUAGE AND TOOLS: UML 2.0 AND TAU G2

In order to successfully implement model driven solutions, both modeling language
standards and tools that implement them are required. In this section we explore the
recently adopted UML 2.0 standard, and the first commercial tool that has implemented
it, TAU Generation2.

Architectural Blueprint Language: UML 2.0

In order to successfully implement a complete, correct and robust MDA solution, the
system architects and designers require an architectural specification language that is
precise and concise.

The major improvements to UML 2.0 include, but are not limited to, the following
[Kobryn 2003b]:

• Support for component-based development via composite structures. Structured
classifiers (both Classes and Components) can be hierarchically decomposed and
assembled (“wired”) via Parts, Ports, and Connectors.

• Hierarchical decomposition of structure and behavior. In addition to Classes and
Components, which are structural constructs, UML2 supports the hierarchical
decomposition of the major behavioral constructs, such as Interactions, State
Machines, and Activities.

• Cross integration of structure and behavior. The decomposed structures
described above can be flexibly integrated with each other. For example, the
same Parts that are used in a composite structure diagram of a Class to show its
internal structure, can also be used in a sequence diagram to show how the
internal structures communicate with each other.

• Integration of action semantics with behavioral constructs. UML actions are now
defined in as much detail as a programming languages’s actions (or statements),
so that you can define executable models for simulations and code generation.

• Layered architecture to facilitate incremental implementation and compliance
testing. UML 1.x was a large language, and UML 2.0 is larger still. Taking a lesson
from other large languages (e.g., SQL), UML 2.0 packages are organized into
three layers (Basic, Intermediate, and Complete) in order to make it easier for
vendors to implement and more efficient for standards organizations to test
compliance.

Cumulatively these improvements mark a significant evolution of the UML, increasing its
precision and expressiveness so that it can be effectively used to model large, complex
architectures. Examples that show how UML 2.0 accomplishes this can be found in
Architecting Systems with UML 2.0 [Björkander 2003].

Driving Architectures with UML 2.0 9

Power Tool: TAU Generation2

Although a precise and concise architectural blueprint language is required for a
successful model driven development approach, it alone is insufficient. The language
must be accompanied by a power tool that faithfully and efficiently implements the
language, so that it can automate the mapping transformations across the various
models.

TAU Generation2™ (TAU G2™) is a family of model-centric and role-based tools that are
among the first to implement the recently adopted UML 2.0 standard. The tool family
consists of TAU®/Developer™ for Software Engineers, TAU®/Architect™ for Systems
Engineers, and TAU®/Tester™ for Test Engineers. TAU G2 builds on the model driven
compilation technology perfected in TAU SDL Suite™ (a.k.a. TAU G1). TAU G1 proved
that real-time software development can be automated using mature specifications
languages such as Specification and Description Language (SDL) and Message Sequence
Chart (MSC). Given that many of the advanced language features offered by SDL and
MSC were adapted and incorporated into UML 2.0, there were compelling technical and
market reasons to combine TAU G1’s model driven compilation technology with UML 2.0
to produce TAU G2.

TAU G2 provides the following features:

• Precise and unambiguous system specification – Engineers can visually specify
systems using the precise, standardized and non-proprietary language of UML 2.0.
This results in easy-to-understand, clear and unambiguous specifications.

• Specification of behavior – Whereas most system modeling tools allow only the
specification of the system’s architecture or structure, TAU G2 also allows engineers
to visually specify the dynamic aspects of the system's behavior.

• Automatic application generation - TAU/Developer is the only tool that supports
executable UML 2.0 models with behavioral specifications. Developers have access to
pre-defined, verifiable code patterns that ensure high quality standards. With these
capabilities, developers can automatically generate complete applications.

• Dynamic model verification - With fully controllable model simulation, engineers can
verify their work in the analysis, design, and implementation phases. As a result,
they can quickly locate and remove errors early when corrections are relatively easy
and inexpensive.

• Scalability - Large scale systems can be specified and models can be mapped to how
teams want to work, rather than having restrictions imposed by the tool. System
architecture and behavior also can be modeled and viewed at the appropriate level of
abstraction for the user.

A Telelogic White Paper 10

• Integrated requirements management via Telelogic DOORS - TAU G2 is integrated
with Telelogic DOORS, the market leading requirements management solution.

• Automated documentation via Telelogic DocExpress - TAU G2 is integrated with
DocExpress, which provides automatic extraction and formatting of system or
software application documentation.

• Change and configuration management via Telelogic SYNERGY - SYNERGY provides
change and configuration management for TAU G2 and related products.

Driving Architectures with UML 2.0 11

MDA EXAMPLE: SATELLITE CONTROL SYSTEM

In this section we show an example of how UML 2.0 and TAU G2 can be used together to
drive an architecture for a Satellite Control System (SCS). The Satellite Control System
controls the physical behavior of a satellite, such as the physical orientation of its axes
relative to a reference line or plane (e.g., the horizon).

Figure 3: SCS requirements expressed as DOORS structured text

Figure 3 shows a DOORS window that specifies the text-based requirements for the
Satellite Control System (SCS). For example, requirement SCS8 specifies that “The
Spacecraft shall compare the Required Position with the Current Position once every
minute.”

A Telelogic White Paper 12

Figure 4: SCS requirements expressed as UML use cases

Figure 4 shows how some of the text based requirements previously shown in DOORS
can be expressed as UML Use Cases, such as ProcessMessage and MaintainPosition.

package DomainModelUseCase Diagram {1/2}package DomainModelUseCase Diagram {1/2}

SatelliteControlSystemSatelliteControlSystem

GroundStationGroundStation

UserEquipmentUserEquipment

ActuatorActuator

SensorSensor

ProcessMessage
<<usecase>>

ProcessMessage
<<usecase>>

MaintainPosition
<<usecase>>

MaintainPosition
<<usecase>>

VerifyChecksum
<<usecase>>

VerifyChecksum
<<usecase>>

VerifyOriginator
<<usecase>>

VerifyOriginator
<<usecase>>

<<include>><<include>>
<<include>><<include>>

ProcessCommsMessage
<<usecase>>

ProcessCommsMessage
<<usecase>>

ProcessPositionMessage
<<usecase>>

ProcessPositionMessage
<<usecase>>

<<extend>><<extend>>

<<extend>><<extend>>

Driving Architectures with UML 2.0 13

Figure 5: ProcessPositionMessage Use Case expressed as Sequence Diagram

Figure 5 shows the Process Position Message Use Case shown in Figure 4 can be
specified in detail using a Sequence Diagram. This diagram describes the
communications between a Ground Control actor and several Satellite Control System
parts: cc:CommunicationsController, db:DataBus and ac:AttitudeController.

sd Basic Course interaction ProcessPositionMessage {1/1}sd Basic Course interaction ProcessPositionMessage {1/1}

alt [!checkOk]alt [!checkOk]

'Ground Control'
<<actor>>

'Ground Control'
<<actor>>

cc : CommunicationsController

cc : CommunicationsController

ac : AttitudeController

ac : AttitudeController

db : DataBus

db : DataBus

checkOk = messageVerified(10324, AA);checkOk = messageVerified(10324, AA);

IdleIdle

IdleIdle

IdleIdle

IdleIdle

ac.storePosition(10, 21, 18);ac.storePosition(10, 21, 18);

WaitForSensorDataWaitForSensorData

ActuatingActuating

requiredPositionMessage(AA, DD, 10324, 10, 21, 18)requiredPositionMessage(AA, DD, 10324, 10, 21, 18)

requiredPositionToBus(10, 21, 18)requiredPositionToBus(10, 21, 18)

requiredPositionFromBus (10, 21, 18)requiredPositionFromBus (10, 21, 18)

[checkOk][checkOk]
ack ()ack ()

nak ()nak ()

A Telelogic White Paper 14

Figure 6: Composition relationship between SatelliteControlSystem Class and its parts

Figure 6 shows a composition (whole-part) relationship between the
SatelliteControlSystem class and its constituent parts: PowerController, DataBus,
AttitudeController and CommunicationsController. This “black diamond” notation for
expressing composition has been available since UML 1.x, and is also available in UML
2.0

active class SatelliteControlSystemSystemStructure {1/5}active class SatelliteControlSystemSystemStructure {1/5}

::ControlSystem::SatelliteControlSystem

::ControlSystem::SatelliteControlSystem

PowerController

PowerController

AttitudeController

AttitudeController

CommunicationsController

CommunicationsController

pc

pc

cc

cc

ac

ac

DataBus

DataBus

db

 db

Driving Architectures with UML 2.0 15

Figure 7: Internal structure of SatelliteControlSystem class

Figure 7 shows a white-box view of the internal structure of a SatelliteControlSystem
using a Composite Structure Diagram. Composite Structure Diagrams are a new feature
of UML 2.0.

active class SatelliteControlSystemCompositeStructure {3/5}active class SatelliteControlSystemCompositeStructure {3/5}

ActuatorPortActuatorPort

IActuatorIActuator

SensorPortSensorPort

ISensorISensor

GroundStationPortGroundStationPort

IReqPositionIReqPosition

IAlert, ICurrPositionIAlert, ICurrPosition

UserEquipmentPortUserEquipmentPort

ICommsInICommsIn

ICommsOutICommsOut

pc : PowerController

pc : PowerController
ActuatorPortActuatorPort BusPortBusPort

cc : CommunicationsController

cc : CommunicationsController

GroundStationPortGroundStationPort UserEquipmentPortUserEquipmentPort

BusPortBusPort

ac : AttitudeController

ac : AttitudeController
SensorPortSensorPort

BusPortBusPort

db : DataBus

db : DataBus

DataPortDataPort

DataPortDataPort

IDataToBus

IDataFromBus

IDataToBus

IDataFromBus

IDataToBus

IDataFromBus

IDataToBus

IDataFromBus

IDataToBus

IDataFromBus

IDataToBus

IDataFromBus

A Telelogic White Paper 16

Figure 8: Interfaces associated with SatelliteControlSystem parts

Figure 8 shows the interfaces associated with the part types of the
SatelliteControlSystem class. Later we will show how these interfaces are used by a
CORBA IDL Platform Specific Model to generate IDL (see Figures 11 and 12).

active class SatelliteControlSystemClassesAndInterfaceUse {2/5}active class SatelliteControlSystemClassesAndInterfaceUse {2/5}

PowerController

calculateActuationTime(x:Integer,y:Integer,z:Integer):Actuation

PowerController

calculateActuationTime(x:Integer,y:Integer,z:Integer):Actuation

ActuatorPortActuatorPort

IActuatorIActuator

BusPortBusPort

IDataFromBusIDataFromBus

IDataToBusIDataToBus

AttitudeController
currentPosition:PositionType
requiredPosition:PositionType

calculateCurrentPosition(x:Integer,y:Integer,z:Integer)
calculateAttitudeCorrection():PositionType
storePosition (x: Integer, y: Integer, z: Integer)

AttitudeController
currentPosition:PositionType
requiredPosition:PositionType

calculateCurrentPosition(x:Integer,y:Integer,z:Integer)
calculateAttitudeCorrection():PositionType
storePosition (x: Integer, y: Integer, z: Integer)

SensorPortSensorPort

ISensorISensor

BusPortBusPort

IDataFromBusIDataFromBus IDataToBusIDataToBus

CommunicationsController

originatorVerified(originator:OriginatorType) : Boolean
checksumVerified(checksum:Integer):Boolean
messageVerified(checksum:Integer,originator:OriginatorType):Boo

CommunicationsController

originatorVerified(originator:OriginatorType) : Boolean
checksumVerified(checksum:Integer):Boolean
messageVerified(checksum:Integer,originator:OriginatorType):Boo

GroundStationPortGroundStationPort

IReqPositionIReqPosition

IAlert, ICurrPositionIAlert, ICurrPosition
UserEquipmentPortUserEquipmentPort

ICommsInICommsIn

ICommsOutICommsOut

BusPortBusPort

IDataFromBusIDataFromBus IDataToBusIDataToBus

DataBus

DataBus

DataPortDataPort

IDataToBusIDataToBus

IDataFromBusIDataFromBus

Driving Architectures with UML 2.0 17

Figure 9: State Machine associated with AttitudeController class

Figure 9 shows a State Machine Diagram for the AttitudeController class. This state
machine has four states: Initializing, WaitForSensorData, ProcessingData, and Actuating.

statemachine 'Attitude Controller'StatemachineDiagram {1/2}statemachine 'Attitude Controller'StatemachineDiagram {1/2}

InitializingInitializing

WaitForSensorDataWaitForSensorData

ActuatingActuating ProcessingDataProcessingData

currentAttitude(Ax,Ay,Az) /
calculateAttitudeCorrection();
currentAttitude(Ax,Ay,Az) /
calculateAttitudeCorrection();requiredPositionFromBus(Px, Py, Pz)/

storePosition(Px, Py, Pz);
requiredPositionFromBus(Px, Py, Pz)/
storePosition(Px, Py, Pz);

 [initialized] /
 currentPosition = new PositionType();
 set cpTimer() = now + 60;

 [initialized] /
 currentPosition = new PositionType();
 set cpTimer() = now + 60;

currentAttitude(Ax,Ay,Az) /
calculateAttitudeCorrection();
currentAttitude(Ax,Ay,Az) /
calculateAttitudeCorrection();

dataProcessed() /
 ̂correctAttitudeToBus(Px, Py, Pz);
dataProcessed() /
 ̂correctAttitudeToBus(Px, Py, Pz);

cpTimer() /
 currentPositionToBus(currentPosition);
set cpTimer() = now + 60;

cpTimer() /
 currentPositionToBus(currentPosition);
set cpTimer() = now + 60;

A Telelogic White Paper 18

Figure 10: U2 Action Language Example

statemachine initialize {

start {
nextstate Initializing;

}
state Idle;
state Initializing;
state SensorDataCollected;
state DataProcessed;
state Actuating;
for state Idle;

input currentAltitude() {
{
}
nextstate SensorDataCollected;

}
for state SensorDataCollected;

[dataProcessed] {
{
}
nextstate DataProcessed;

}
for state DataProcessed;

input x() {
{

^ correctAttitudeToBus();
}
nextstate Actuating;

}
…

Figure 10 shows the U2 Action Language for the state machine shown in Figure 9.

Driving Architectures with UML 2.0 19

Figure 11: Interfaces for CORBA IDL Platform Specific Model

Figure 11 shows the SatelliteControlSystemIDL Artifact, which is part of the CORBA IDL
Platform Specific Model. The SatelliteControlSystemIDL Artifact manifests the
SatelliteControlSystem Interfaces by implementing their operations so that IDL code
skeletons can be generated (see Figure 12).

package 'IDL PSM'Main {1/1}package 'IDL PSM'Main {1/1}

<<artifact,build,'IDL Generator'>>

SatelliteControlSystemIDL

<<artifact,build,'IDL Generator'>>

SatelliteControlSystemIDL

<<manifest>><<manifest>>

<<interface>>

...::SatelliteControlSystem::ICommsOut
<<interface>>

...::SatelliteControlSystem::ICommsOut

<<interface>>

...::SatelliteControlSystem::IDataFromBus
<<interface>>

...::SatelliteControlSystem::IDataFromBus

<<manifest>><<manifest>>

<<interface>>

...::SatelliteControlSystem::IDataToBus
<<interface>>

...::SatelliteControlSystem::IDataToBus

<<manifest>><<manifest>>

<<interface>>

...::SatelliteControlSystem::ICommsIn
<<interface>>

...::SatelliteControlSystem::ICommsIn
<<manifest>><<manifest>>

<<interface>>

...::SatelliteControlSystem::ICurrPosition

<<interface>>

...::SatelliteControlSystem::ICurrPosition

<<manifest>><<manifest>>

<<interface>>

...::SatelliteControlSystem::IAlert
<<interface>>

...::SatelliteControlSystem::IAlert

<<manifest>><<manifest>>

<<interface>>

...::SatelliteControlSystem::IReqPosition
<<interface>>

...::SatelliteControlSystem::IReqPosition

<<manifest>><<manifest>>

<<interface>>

...::SatelliteControlSystem::ISensor
<<interface>>

...::SatelliteControlSystem::ISensor

<<manifest>><<manifest>>

<<profile>>

::IDLGen
<<profile>>

::IDLGen

::IDL PSM

::IDL PSM
<<import>><<import>>

A Telelogic White Paper 20

Figure 12: Automatically generated IDL interface definitions

module SatelliteControlSystemIDL {

interface ICommsOut {
oneway void ack();
oneway void nak();
oneway void voiceAndDataCommsOut(OriginatorType originator,

DestinationType destination, Integer checksum, Charstring
contents);

}
interface IDataFromBus {

oneway void correctAttitudeFromBus(Integer x, Integer y, Integer z);
oneway void currentPositionFromBus(PositionType position);
oneway void requiredPositionFromBus(Integer x, Integer y, Integer z);

}
interface IDataToBus {

oneway void currentPositionToBus(PositionType position);
oneway void requiredPositionToBus(Integer x, Integer y, Integer z);
oneway void correctAttitudeToBus(Integer x, Integer y, Integer z);

}
interface ICommsIn {

oneway void voiceAndDataCommsIn(OriginatorType originator,
DestinationType destination, Integer checksum, Charstring
contents);

}
interface ICurrPosition {

oneway void currentPositionToGS();
}
interface IAlert {

oneway void alert(OriginatorType originator);
}
interface IReqPosition {

oneway void requiredPositionMessage(OriginatorType originator,
DestinationType destination, Integer checksum, Integer x,
Integer y, Integer z);

}
interface ISensor {

oneway void currentAttitude(Integer x, Integer y, Integer z);
}

}

Figure 12 shows the CORBA IDL interface definitions automatically generated from the
interface model shown in Figure 11.

Driving Architectures with UML 2.0 21

CONCLUSIONS AND FUTURES

It’s inevitable that the software industry will eventually mature, and catch up with other
industries based on engineering and automation, such as the computer hardware
industry. At some point during this maturation process, it will become common practice
for software engineers to specify their products using an architectural blueprint
language, such as UML 2.0.

During this evolution it will also become common sensical for engineers to apply a model
driven development approach, such as MDA. This approach will need to be supported by
power tools, such as TAU G2, that faithfully and efficiently implement the blueprint
language, so that it can automate the mapping transformations across the models that
represent the various process phases.

What should we expect from Model Driven Architectures during the next decade? We
should expect them to evolve from conceptual architectures into technical architectures
that solve complex business and technology problems.

What should we expect from MDA tools, such as TAU G2? In general, we should expect
progressively tighter integration with traditional Integrated Development Environments
(IDEs), and improved integration with requirements management and testing tools. In
the case of TAU G2, this means seamless integration with DOORS and TAU/Tester.
DOORS requirements can already be visualized as UML elements, and TAU/Tester test
scripts are being updated to align it with the recently adopted UML 2.0 Profile for
Testing.

These future model driven IDEs will allow developers to efficiently shift and downshift
through all the abstraction gears associated with a full application lifecycle. In these high
productivity development environments, programming code will likely devolve into a
machine readable artifact that is rarely viewed by humans. Released from the drudgery
of producing and maintaining low-level implementation code, software developers will be
able to pursue more creative activities that return greater business value, such as
architecture, analysis and design.

A Telelogic White Paper 22

REFERENCES

Publications and Presentations

[Björkander 2003] M. Björkander and C. Kobryn, “Architecting Systems with UML 2.0,”
IEEE Software, July/August 2003.

[Kobryn 2003a] C. Kobryn, “Model Driven Engineering with UML 2.0,” presentation,
2003.

[Kobryn 2003b] C. Kobryn, “UML 3.0 and the Future of Modeling,” article to be
published, 2003.

[MDA 2003] MDA Guide, version 1.0, version 2.0, OMG document omg/2003-05-01.
and ad/03-04-01, 2003. [Note: This is a guide, and not a normative
specification.]

[UML2 2003] U2 Partners, UML Infrastructure and Superstructure, version 2.0, OMG
documents ad/03-01-01 and ad/03-04-01, 2003. [Note: OMG Analysis &
Design Task Force has recommended both specifications for adoption.]

Web Resources

Information about the U2 Partners’ UML 2.0 submissions for Infrastructure and
Superstructure are available at the following Web site:

 http://www.U2-Partners.org

Information about Telelogic’s TAU Generation2 product is available at the following Web
site:

 http://www.TAUG2.com

Information about OMG’s Model Driven Architecture initiative is available at the following
Web site:

http://www.OMG.org/mda

http://www.u2-partners.org/
http://www.taug2.com/
http://www.omg.org/mda

Driving Architectures with UML 2.0 23

ABOUT THE AUTHORS
Cris Kobryn is the Chief Technologist for Telelogic, where he specializes in
advanced systems development tools and processes. Cris has applied advanced
technologies to solve a wide range of business and scientific problems, and is an
expert in distributed software architectures, component-based development
methods, and software and systems modeling. He has broad international
experience leading high-performance software development teams, and has
architected custom applications and commercial products.
 Cris is a former Chief Technologist for EDS, and has held senior technical
positions at MCI Systemhouse, Harlequin, and SAIC.
 As an Object Management Group representative, Cris has been a major

contributor to the Unified Modeling Language (UML) specification, which is the industry standard for
specifying software architectures. Cris chaired large international standardization teams to specify
UML 1.1 and UML 2.0, and serves as the co-chair of the OMG's Analysis and Design Task Force. In
recognition of Cris's many contributions to UML and the Analysis & Design Task Force, the OMG
presented him with its Distinguished Service Award for the year 2000. Cris is currently chairing a
large international standardization team to specify the Systems Modeling Language (SysML) for
systems engineering applications (www.sysml.org). He is a member of the IEEE, ACM, AAAI and
INCOSE. Contact him at cris.kobryn@telelogic.com.

Eric Samuelsson is a senior software engineer at Telelogic. He is actively participating in the
standardization of UML 2.0, and was a major contributor to the UML 2.0 Profile for Testing. Eric
specializes in the implementation and customization of model driven development tools. Contact him
at eric.samuelsson@telelogic.com.

http://www.sysml.org/
mailto:cris.kobryn@telelogic.com
mailto:eric.samuelsson@telelogic.com

	INTRODUCTION
	THE MODEL-DRIVEN ADVANTAGE
	MODEL DRIVEN ARCHITECTURE
	MDA as a Conceptual Architecture
	MDA as a Technical Architecture

	LANGUAGE AND TOOLS: UML 2.0 AND TAU G2
	Architectural Blueprint Language: UML 2.0
	Power Tool: TAU Generation2

	MDA EXAMPLE: SATELLITE CONTROL SYSTEM
	CONCLUSIONS AND FUTURES
	REFERENCES
	Publications and Presentations
	Web Resources

	ABOUT THE AUTHORS

