
Software Design Refinement
Using Design Patterns Part II

The FSM and the StateChart Patterns

Instructor: Dr. Hany H. Ammar
Dept. of Computer Science and
Electrical Engineering, WVU

Outline

 Review
– The Requirements, Analysis, Design, and Design

Refinement Models
– Design refinement and Design Patterns
– Examples of Design Patterns: The State Pattern

 Finite State Machine Pattern Language
Basic FSM, State-Driven Transitions
Interface Organization, Layered Organization

 A Pattern Language for StateCharts
Basic StateCharts, Hierarchical Statechart
Orthogonal Behavior

The Requirements, Analysis, Design, and
Design Refinement Models

Static Analysis
Dynamic Analysis

Functional/
Nonfunctional
Requirements

Use Case Diagrams/
Sequence Diagrams
(the system level)

- Analysis Class Diagrams
- State Diagrams/
Refined Sequence
Diagrams (The object
level)

Requirements
Elicitation
Process

The Analysis
Process

Static Architectural
Design

Dynamic Design

The Design
Process:
• Initial Design
•Design
Refinement

• Design Class Diagrams
• Design Sequence Diagrams

Design Refinement • Refined Design Class
Diagrams

Design Refinement

 It is difficult to obtain a quality design from the
initial design

 The initial design is refined to enhance design
quality using the software design criteria of
modularity, information hiding, complexity,
testability, and reusability.

 New components (or new classes) are defined and
existing components (or classes) structures are
refined to enhance design quality

 The design refinement step is an essential step
before implementation and testing.

Class Diagram Refinement
Using Design Patterns
 Design Class Diagrams are further refined to enhance

design quality (i.e., reduce coupling, increase
cohesion, and reduce component complexity) using
design patterns

 A design pattern is a documented good design
solution of a design problem

 Repositories of design patterns were developed for
many application domains (communication software,
agent-based systems, web applications)

 Many generic design patterns were defined and can
be used to enhance the design of systems in different
application domains

What is a Design Pattern

 What is a Design Pattern?
A design pattern describes a design problem

which repeatedly occurred in previous designs,
and then describes the core of the solution to that
problem

 Solutions are expressed in terms of classes of
objects and interfaces (object-oriented design
patterns)

 A design pattern names, abstracts, and identifies
the key aspects of a high quality design structure
that make it useful for creating reusable object-
oriented designs

Recall Examples of Design Patterns
The State Pattern
(Examples of State and Strategy Patterns)

The State Pattern: is a solution to the problem of how to make
the behavior of an object depend on its state.

Examples of Design Patterns
The State Pattern
 The State Pattern can be used for example to encapsulate the

states of a controller as objects

MultiStateOb

+CreateInitState()
Setstate()

<<interface>>
Statestate

ConcreteState 1 concreteState n

Handel(), Oprn()
Handle()
Opr1(),Opr2()

1
..
N

……………..
N concrete state
classes

Abstract State
Class

Lets a mutli state class divide its
responsibilities (Opr1(),Opr2(),
and Oprn() on multiple state
classes.

The
Context
Class

For more Info, see
http://home.earthlink.net/
~huston2/dp/state.html

Current State
Handle(),

Context class

Example: Turn style coin machine
The machine starts in a locked state (Locked). When a coin is detected (Coin),
the machine changes to the unlocked state (UnLocked) and open the turnstyle
gate for the person to pass. When the machine detects that a person has passed
(Pass) it turns back to the locked state.

Fixed/Inorder

Failed/OutofOrder & Locked

Broken Locked

Unlocked

Failed/OutofOrder

Coin[Amount>=CorrectAmount]/Unlock

Coin/ThankYou

Coin[Amount< CorrectAmount]

Pass/Lock

Illustrating Example: Turn style coin
machine
 If a person attempts to pass while the machine is locked, an

alarm is generated.
 If a coin is inserted while the machine is unlocked, a

Thankyou message is displayed.
 When the machine fails to open or close the gate, a failure

event (Failed) is generated and the machine enters the
broken state (Broken).

 When the repair person fixes the machine, the fixed event
(Fixed) is generated and the machine returns to the locked
state.

Outline

 Review
– The Requirements, Analysis, Design, and Design

Refinement Models
– Design refinement and Design Patterns
– Examples of Design Patterns: The State Pattern

 Finite State Machine Pattern Language
Basic FSM, State-Driven Transitions
Interface Organization, Layered Organization

 A Pattern Language for StateCharts
Basic StateCharts, Hierarchical Statechart
Orthogonal Behavior

FSM Pattern Language (FSM Pattern:
Yacoub PhD Dissertation, Ch. 10, WVU, 1999)
Finite State Machine Patterns; European Pattern Languages of
Programming conference, EuroPLoP (1998)

 FSM pattern language addresses several recurring
design problems in implementing a finite state
machine specification in an object-oriented design.

 The pattern language includes a basic design
pattern for FSMs whose design evolves from the
GOF State pattern.

 The basic pattern is extended to support solutions
for other design problems that commonly
challenge system designers.

 These design decisions include state-transition
mechanisms, design structure

Pattern Language of Finite State
Machines (FSM Pattern:

FSM Pattern Language
Pattern Name Problem Solution

State Object
(GoF State

Pattern)

How can you get different behavior from an
entity if it differs according to the entity's
state?

Create states classes for the entity, describe its
behavior in each state, attach a state to the entity,
and delegate the action from the entity to its
current state.

Events Basic FSM Your entity's state changes according to events
in the system. The state transitions are
determined from the entity specification.
How can you implement the entity
behavior in your design?

Use the State Object pattern and add state transition
mechanisms in response to state transition
events.

FSM pattern = State Object pattern + State Transition
Mechanism

State-
Transitio

n

State-Driven
Transitions

How would you implement the state transition
logic but yet keep the entity class simple?

Have the states of the entity initiate the transition from
self to the new state in response to the state-
transition event.

Owner-Driven
Transitions

You want your states to be simple and shareable
with other entities, and you want the entity
to have control on its current state. How
can you achieve this?

Make the entity respond to the events causing the state
transitions and encapsulate the transition logic in
the entity

Structure Layered
Organiza-
tion

You are using an FSM pattern, how can you
make your design maintainable, easily
readable, and eligible for reuse?

Organize your design in a layered structure that
decouples the logic of state transition from the
entity's behavior, which is defined by actions and
events

Interface
Organiza-
tion

How can other application entities communicate
and interface to an entity whose behavior
is described by an FSM?

Encapsulate the states classes and state transition logic
inside the machine and provide a simple
interface to other application entities that receive
events and dispatch them to the current state.

FSM Pattern Language (cont.)
Machine Type

Actions or
outputs

Meally How do you activate the FSM outputs if they
should be produced at specific events
while the entity is in a particular state?

Make the concrete event method of each state call
the required (output) action method in
response to the event.

Moore How do you activate the FSM outputs if they
are produced only at the state and each
state has a specific set of outputs?

Implement an output method in each state that calls
the required actions. Make the state transition
mechanism call the output method of the next
upcoming state.

Hybrid What do you do if some FSM outputs are
activated on events and some other
outputs are activated as the result of
being in a particular state only?

Make the event method of each state produce the
event-dependent outputs, and make the state
transition mechanism call an output method of
the upcoming state to produce the state-
dependent output.

Exposure Exposed State You want to allow other external entities in
your application to know of your entity's
state and have access to call some of the
state's methods.

Provide a method that exposes the state of the entity
and allows access to the current state.

Encapsulated
State

Your FSM should follow a sequence of state
changes that should not be changed by
other application entities. How can you
ensure that no state changes are enforced
to your entity?

Encapsulate the current state inside the entity itself
and keep the state reference as a private
attribute. Only the entity itself can change its
state by handling the events causing the state
change but still delegate the behavior
implementation to the current state.

State
Instantiatio

n

Static State
Instantiatio
n

Your application is small and it has few states.
Speed is a critical issue in state
transitions. How do you instantiate your
entity's states?

Create instances of all possible states on the entity
instantiation. Switch from current to next state
by altering the reference to the next state

Dynamic State
Instantiatio
n

Your application is large and you have too
many states. How do you instantiate the
states in your application?

Don’t initially create all states; make each state
knowledgeable of the next upcoming states.
Create instances of upcoming states on state
entry and delete them on state exit.

Pattern Language of Finite State
Machines (FSM Pattern:

The Basic FSM Pattern Structure
 Context: Your application contains an entity whose behavior depends on its state. The

entity's state changes according to events in the system, and the state transitions are
determined from the entity specification.

 Problem; How can you implement the behavior of the entity in your design?
 Solution: Implement Event methods in each state class

The coin machine design using the
Basic FSM pattern

()

Pattern Language of Finite State
Machines (FSM Pattern:

The State-Driven Transitions Pattern
(extends Basic FSM)

 Problem: How would you implement the state
transition logic but yet keep the entity class
simple?

 Solution:
– Delegates the state transition logic to the state classes,

make each state knowledgeable of the next upcoming
state, and have the concrete states of the entity initiate
the transition from self to the new state.

– Use the pointer to self NextStates in the abstract class
AState to provide generic pointers to upcoming states.

The structure of the State-Driven
Transitions pattern (extends Basic FSM)

 Context
You are using the Basic FSM. You need to specify a state transition mechanism to
complete the entity's behavior implementation of the Basic FSM.

 Problem
How would you implement the state transition logic but yet keep the entity class simple?

The coin machine design using
State-Driven Transitions pattern

Pattern Language of Finite State
Machines (FSM Pattern:

The Interface Organization pattern

 Context: You are using the Basic FSM to implement the
behavior of an entity

 Problem: How can other application entities communicate
and interface to your entity?

 Solution:
– Encapsulate the transition logic in the states and hide it

from the entity interface i.e., use a state-driven
transition mechanism.

– Design the FSM to distinguish the interface that
receives events and the states that handle events, invoke
actions, and maintain the correct current state of the
entity.

The structure of the Interface
Organization pattern
 Context

You are using the Basic FSM to implement the behavior of an entity
 Problem

How can other application entities communicate and interface to your entity?

The coin machine design using the
Interface Organization pattern

Pattern Language of Finite State
Machines (FSM Pattern:

The Layered Organization Pattern

 Context: You are using the Basic FSM to
implement the behavior of an entity

 Problem: How can you make your design
maintainable, easily readable, and eligible for
reuse?

 Solution Organize your design in a layered
structure that decouples the logic of state
transitions from the entity's behavior as it is
defined by actions and events.

The structure of the Layered
Organization Pattern

The coin machine design using the
Layered Organization Pattern

Outline

 Review
– The Requirements, Analysis, Design, and Design

Refinement Models
– Design refinement and Design Patterns
– Examples of Design Patterns: The State Pattern

 Finite State Machine Pattern Language
Basic FSM, State-Driven Transitions
Interface Organization, Layered Organization

 A Pattern Language for StateCharts
Basic StateCharts, Hierarchical Statechart
Orthogonal Behavior

A Pattern Language for StateCharts
Yacoub-Ammar paper, In Pattern Languages of Programs (PLOP 1998)
Yacoub PhD Dissertation, Ch. 11, WVU, 1999)

State

State Transition Mechanism

Finite State Machines

Basic Statechart

Hierarchical Statechart

Orthogonal Behavior

Broadcasting

History State

Basic Statechart Specification

Using Hierarchical States

Superstates with history propertyExercise independent behavior
at the same time

Broadcast events to orthogonal states

StateChart
Patterns
Roadmap

A Pattern Language for StateCharts
Pattern Name Problem Solution

Basic Statechart Your application contains an entity whose
behavior depends on its state. You have
decided to use statechart's specifications
to specify the entity's behavior. How do
you implement the statechart
specification into design?

Use an object oriented design that encapsulates the state of the
entity into separate classes that correspond to the states
defined in the specification. Distinguish the events,
conditions, actions, entry and exit activities in each state
class as methods and attributes of the state classes.

Hierarchical
Statechart

You are using the Basic Statechart. The
application is large and your states seem
to have a hierarchical nature. How do you
implement the states hierarchy in your
design?

Use superstates classes that are inherited from the abstract
state class. Use the Composite pattern [Gamma+95] to
allow the superstate to contain other states. Keep the
superstate knowledgeable of the current active state and
dispatch events to it.

Orthogonal
Behavior

You are using the Hierarchical Statechart.
Your entity has several independent
behaviors that it exercises at the same
time. How do you deploy the entity's
orthogonal behaviors in your design?

Identify the superstates that run independently in your
specification, then define a "Virtual superstate" as a
collection of superstates that process the same events,
dispatch the events to each state.

Broadcasting You are using the Orthogonal Behavior. How
can you broadcast a stimulated event
produced from another event occurring in
an orthogonal state?

When a new event is stimulated, make the broadcasting state
inject the event directly to the entity interface which
dispatches it to the virtual superstate. Eventually, the
virtual supertate dispatches the event to all of its
orthogonal states.

History State If one of the superstates has a history property,
how do you keep its history in your
design?

Initialize the current active state class pointer of the superstate
object once on creation, use it throughout the entity's
lifetime, and do not reinitialize it on the superstate entry
method.

A Pattern Language for StateCharts:
Basic StateCharts Pattern
 Context Your application contains an entity

whose behavior depends on its state. You are
using a statechart to specify the entity's behavior

 Problem How do you implement the statechart
specification into design?

 Solution: define a state class for each entity's state
defined in the specification. Distinguish the
events, conditions, actions, entry and exit
procedures in each state class using FSM pattern
language.

The structure of the Basic Statechart
pattern

Actions
Events

State1
Conditions

entry ()
exit ()
Condition_Evaluation

State2
Conditions

entry ()
exit ()
Condition_Evaluation

Entity_State
Entity_Interface

Entity_State : AState*

Event_Dispatcher (Event)
UpdateState(New_State : AState*)

AState
$ Entity_Ref : Entity_Interface *
Num_States : int
NextStates : AState**
$ Conditions

set_entity_state (New_State : AState*)
exit()
entry ()

**

Entity_Ref
NextStates

Event1()
Action1()

Event1()Event2()

Event2()

The turn style coin machine
specification extended

Fixed/Inorder

Failed/OutofOrder & Locked

Broken Locked

Unlocked

Failed/OutofOrder

Coin[Amount>=CorrectAmount]/Unlock

Coin/ThankYou

Coin[Amount< CorrectAmount]

Pass/Lock

Locked

Entry :
Massage:InsertCoin
On Coin : Accumulate
Exit : Amount=0

The turn style coin machine
specification extended
 Implement the entry and exit specification as methods in

each state class.
 For example, the coin machine should keep track of the

amount of coins inserted. So, in the Locked state the
machine keeps counting the amount inserted using
Accumulate() method.

 On entering the Locked state the machine displays a
message telling the user to insert coins to pass, thus on
the entry() method the message is displayed.

 Each time the machine leaves the lock state it should
clear the amount of accumulated amount to zero, thus
the exit() method clears the amount.

The coin machine design using the
Basic Statechart Pattern

Actions

Lock ()
Unlock ()
Alarm ()
Thankyou ()
Outoforder ()
Inorder ()

Events

Pass ()
Coin ()
Failed ()
Fixed ()

Broken

Fixed ()

entry ()

Locked

Accumulate()

exit ()
entry ()
Pass ()

Unlocked

Pass()

Coin ()
entry ()

Entity_Ref

NextStates

*

Machine_StateCoinMachine_Interface
Machine_State : AState*

Event_Dispatcher (Event)
UpdateState (New_State :AState*)

AState
$ Entity_Ref : CoinMachine_Interface*
Num_States : int
NextStates : AState**

set_entity_state (New_State :AState*)
entry() *
exit()

A Pattern Language for StateCharts
StateChart Patterns Roadmap

State

State Transition Mechanism

Finite State Machines

Basic Statechart

Hierarchical Statechart

Orthogonal Behavior

Broadcasting

History State

Basic Statechart Specification

Using Hierarchical States

Superstates with history propertyExercise independent behavior
at the same time

Broadcast events to orthogonal states

The Hierarchical Statechart Pattern

 Context: You are using the Basic
Statechart. The application is large and the
states seem to have a hierarchical nature.

 Problem: How do you implement the states
hierarchy (Macro states) in your design?

The Hierarchical Statechart pattern

 Solution: To implement hierarchy in your design,
you have to distinguish different types of states:
– A SimpleState : a state that is not part of any superstate

and doesn't contain any child state. (no parent and no
children)

– A Leaf State: a state that is child of a superstate but
doesn't have any children (has a parent but has no
children).

– A Root SuperState: a state that encapsulates a group of
other states (children) but has no parent.

– An Intermediate SuperState: a state that encapsulates a
group of other states (children) and has a parent state.

The Hierarchical Statechart pattern
structure

Actions Events

Simple State

Entity_StateEntity_Interface

Entity_State : AState*

Event_Dispatcher (Event)
UpdateState(New_State : AState*)

Entity_Ref

*

CurrentState

RootSuperState

CurrentState : AState*

set_super_state (NewState : AState*)

IntermediateSuperState

MySuperState : AState*
CurrentState : AState*

set_super_state (NewState : AState*)

LeafState

MySuperState : AState*

AState

$ Entity_Ref : Entity_Interface *
Num_States : int
NextStates : AState**

set_entity_state (New_State : AState*)
set_super_state (New_State : AState*)
entry ()
exit ()

*

MySuperStateMySuperState

CurrentState

NextStates

The Hierarchical Statechart pattern
structure
 RootSuperState

– Keeps track of which of its children is the current state using
CurrentState

– Handles event addressed to the group and dispatches them to the
current state to respond accordingly.

– Produces common outputs for children states, and it can also
implement the common event handling methods on their behalf.

– Performs state-driven transitions from self to the next upcoming
states.

– Implements the entry and exit methods for the whole superstate.
 IntermediateSuperState

– Does the functionality of both the RootSuperState and the LeafState.
 LeafState

– Does the same functionality as a SimpleState and additionally uses a
MySuperState pointer to change the current active state of its parent
class.

A hierarchical statechart for the coin machine
example

Broken

Fixed

Failed

Locked

Unlocked

CoinPass

Coin

S_Functioning

Coin

The coin machine design using the
Hierarchical Statechart pattern

Actions

Lock ()
Unlock ()
Alarm ()
Thankyou ()
Outoforder ()
Inorder ()

Events

Pass ()
Coin ()
Failed ()
Fixed ()

Broken

Fixed ()
entry ()
exit ()

Locked
Amount : unsigned int

Accumulate ()
exit ()
entry ()
Pass ()
Coin ()

Unlocked

Pass ()
Coin ()
entry ()
exit ()

// Coin() //
CurrentState->Coin()
// Failed//
set_entity_state(Broken)

S_Functioning

Pass ()
Failed ()
Coin ()

MySuperState

Entity_State

CoinMachine_Interface
Machine_State : AState*

Event_Dispatcher (Event)
UpdateState (New_State : AState*)

Entity_Ref
*

LeafState
MySuperState : AState*

RootSuperState
CurrentState : AState*

set_super_state (NewState : AState*)

AState
$ Entity_Ref : CoinMachine_Interface *
Num_States : int
NextStates : AState**

set_entity_state (New_State : AState*)
set_super_state (New_State : AState*)
entry ()
exit ()

*

SimpleState

NextStates

Broken
Fixed

Failed

Locked

Unlocked
CoinPas

s
Coin

S_Functioning

Coin

A pattern Language for StateCharts
StateChart Patterns Roadmap

State

State Transition Mechanism

Finite State Machines

Basic Statechart

Hierarchical Statechart

Orthogonal Behavior

Broadcasting

History State

Basic Statechart Specification

Using Hierarchical States

Superstates with history propertyExercise independent behavior
at the same time

Broadcast events to orthogonal states

The Orthogonal Behavior pattern

 Context: You are using Hierarchical Statechart. Your
entity has several independent behaviors that it exercises at
the same time.

 Problem: How can you deploy the entity's orthogonal
behaviors in your design?

 Solution:
– identify those super states that run orthogonal (concurrently) and

dispatch the events to each of those states.
– Define a Virtual superstate as a collection of superstates that

process same events. Then group these states in a virtual superstate
whose event method will call all the event method of the attached
superstates.

A

B

C

B

i

C

g h

E

F
g

D

V

Example of a virtual superstate

The structure of the Orthogonal Behavior
Pattern Actions Events

Simple State

Entity_State
Entity_Interface

Entity_State : AState*

Event_Dispatcher (Event)
UpdateState(New_State : AState*)

Entity_Ref

*

CurrentState

RootSuperStat
eCurrentState : AState*

set_super_state (NewState : AState*)

1

IntermediateSuperState

MySuperState : AState*
CurrentState : AState*

set_super_state (NewState : AState*)

LeafState

MySuperState : AState*

1

VirtualState

IndependentStates : AState**

Add (State : AState*)

*

AState

$ Entity_Ref : Entity_Interface *
Num_States : int
NextStates : AState**
$ Conditions

set_entity_state (New_State : AState*)
set_super_state (New_State : AState*)
entry ()
exit ()
Add (state : AState*)

*

1

1

NextStates
*

An orthogonal statechart of the coin
machine

WarningOFF WarningON

Failed

Fixed

Broken

Fixed

Failed

Locked

Unlocked

CoinPass

Coin

S_FunctioningS_Operation

S_Warning

V_CoinMachine

Coin

Independent behavior describing the warning and
operation concurrent behavior

The coin machine design using the Orthogonal
Behavior pattern Actions Events

Simple State

Machine_State
CoinMachine_Interface

Machine_State : AState*

Event_Dispatcher (Event)
UpdateState(New_State : AState*)

Machine_Ref

*

CurrentState

RootSuperState
CurrentState : AState*

set_super_state (NewState:AState*)

1

IntermediateSuperState
MySuperState : AState*
CurrentState : AState*

set_super_state (NewState : AState*)

LeafState
MySuperState : AState*

1

VirtualState
IndependentStates : AState**

Add (State : AState*)

*

AState
$ Machine_Ref : CoinMachine_Interface *
Num_States : int
NextStates : AState**
$ Conditions

set_entity_state (New_State : AState*)
set_super_state (New_State : AState*)
entry ()
exit ()
Add (state : AState*)

*

1

1

*

V_CoinMachine

Failed ()
Fixed ()

S_Operation

Fixed ()
Failed ()

S_Warning

Fixed ()
Failed ()

NextStates

// Failed //
for all independent
states s in
V_CoinMachine
s->Failed()

Outline

 Review
– The Requirements, Analysis, Design, and Design

Refinement Models
– Design refinement and Design Patterns
– Examples of Design Patterns: The State Pattern

 Finite State Machine Pattern Language
Basic FSM, State-Driven Transitions
Interface Organization, Layered Organization

 A Pattern Language for StateCharts
Basic StateCharts, Hierarchical Statechart
Orthogonal Behavior

Conclusions

 Finite State Machine Pattern Language
- Presented an FSM pattern language that addresses

several recurring design problems in implementing a state
machine in an object-oriented design.

 A Pattern Language for StateCharts
- Extended the FSM language presented above to support

Statechart behavioral models.

Conclusions

These pattern
languages can
used to develop the
Design of
controller subsystems
From statechart
analysis models

The ATM Controller Statechart

The Cruise Controller
Statechart

Conclusions
This provides a way to go from Analysis directly to Design Refinement

Static Analysis
Dynamic Analysis

Functional/
Nonfunctional
Requirements

Use Case Diagrams/
Sequence Diagrams
(the system level)

- Analysis Class Diagrams
- State Diagrams/
Refined Sequence
Diagrams (The object
level)

Requirements
Elicitation
Process

The Analysis
Process

Static Architectural
Design

Dynamic Design

The Design
Process:
• Initial Design
•Design
Refinement

• Design Class Diagrams
• Design Sequence Diagrams

Design Refinement • Refined Design Class
Diagrams

