
POAD Book:
Chapter 4: Design Patterns as Components

Chapter 5: Visual Design Models

Instructor: Dr. Hany H. Ammar
Dept. of Computer Science and
Electrical Engineering, WVU

Outline

 Chapter 4: Design Patterns as Components
– Constructional Design Patterns
– Software Components
– Design Component Properties
– Patterns as Components
– Pattern Interfaces

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models

 Pattern Level
 Pattern Level with Interfaces
 Detailed Pattern Level with interfaces

– Characteristics of POAD

Structural vs Behavioral Pattern
Composition

 Pattern Oriented Analysis and Design, POAD.
Provides a structural approach for pattern
composition (Not a behavioral approach such as
role based or Aspect-Oriented
methods)
– Example of an aspect-oriented

is the trace pattern
applied to a class to trace
Functions entries and exits

<<Subject>>
TraceApplication

Trace

TraceEntry(String)

TraceExit(String)

Classi

fun()
Application_fun()

TraceApplication sequence diagram– fun()

:Classi
:Trace

fun() traceEntry(fun.name)

Application_fun()
traceExit(fun.name)

Role-Based Behavioral Pattern composition
(Not to be discussed in details)
 A role model is a collaboration of objects that the analyst

chooses to regard as a unit, separated from the rest of the
application during some period of consideration. A Synthesis
Role Model is obtained from different role models

AuthorizerTraveler trau
bo

BookKeeper PayMasterpm

Booking ClerkTraveler Book Keepertrsec
pm

bk
ta

Travel Agent PayMaster
cust

ven

X

X
X

Booking Clerk Book Keepertr

sec

pm
bk

ta

Travel Agent PayMaster
cust

ven

X

X
X

AuthorizerTraveler trau
bo

Airline Booking

Travel Expense

Synthesis Role Model

Outline

 Chapter 4: Design Patterns as Components
– Constructional Design Patterns
– Software Components
– Design Component Properties
– Patterns as Components
– Pattern Interfaces

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models

 Pattern Level
 Pattern Level with Interfaces
 Detailed Pattern Level with interfaces

– Characteristics of POAD

Constructional Design Patterns
(structural pattern composition)
 In POAD, the category of Patterns used is

called constructional design patterns.
 The term Constructional indicates that the

patterns:
– Are design components used in constructing

Application Design.
– Patterns become the core building blocks of the

design

What Constructional Design patterns
can Offer
 Encapsulation is a core concept of Object

Oriented Analysis and Design, OOAD.
 It provides a means to access an interface
 Constructional design patterns encapsulate

information
– They encapsulate solutions to a common design

problems
 They are analogous to classes in OOD

– Apps are built by gluing these patterns together

Outline

 Chapter 4: Design Patterns as Components
– Constructional Design Patterns
– Software Components
– Design Component Properties
– Patterns as Components
– Pattern Interfaces

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models

 Pattern Level
 Pattern Level with Interfaces
 Detailed Pattern Level with interfaces

– Characteristics of POAD

Software Components

 Component–Based software development is a corner
stone in software engineering (development processes
and tools support component-based development)

 Software components are:
– Self contained
– Fairly independent
– Require little or no customization (true only at the code

level)
– Provide well-defined services for the whole application

Software Components: JavaBeans

 JavaBeans are reusable software components for
Java that can be manipulated visually in a builder
tool. Practically, they are classes written in the
Java programming language conforming to a
particular convention.

 They are used to encapsulate many objects into a
single object (the bean), so that they can be passed
around as a single bean object instead of as
multiple individual objects.

Software Components: JavaBeans

 AWT, Swing, and SWT, the major Java GUI
toolkits, use JavaBeans conventions for their
components.

 This allows GUI editors like the Eclipse Visual
Editor or the NetBeans GUI Editor to maintain
a hierarchy of components and to provide
access to their properties via uniformly-named
accessors and mutators

Software Components: Enterprise
JavaBeans
 Enterprise JavaBeans (EJB) is a managed, server-side

component architecture for modular construction of enterprise
applications.

 EJB encapsulates
the business logic
of an application, with

Concurrency control,
Java Naming and directory
services (JNDI), Security (Java Cryptography Extension (JCE) and

JAAS), and Exposing business methods as Web Services
Events using Java Message Service, Remote procedure calls using

RMI-IIOP.

The Bigger Picture: Java 2 Enterprise
Edition (J2EE) :
 J2EE Architecture

Software Components: Container Service
Application Programming Interfaces (APIs)

 Example: create audio component, publish its
name in a naming service (JNDI) available to
your application. This provides a simple method
to access the service APIs

Software Components: Component Object
Model (COM) Technologies
 Microsoft COM technology in the Microsoft

Windows-family of Operating Systems enables
software components to communicate.

 COM is used by developers to create re-usable
software components, link components together to
build applications, and take advantage of Windows
services.

 The family of COM technologies includes COM+,
Distributed COM (DCOM) and ActiveX Controls.

 Microsoft recommends that developers use the .NET
Framework rather than COM for new development.

Software Components: .NET

 The Microsoft .NET Framework is a managed code
programming model for building applications on
Windows clients, servers, and mobile or embedded
devices.

 Developers use .NET to build applications of many
types: Web applications, server applications, smart
client applications, console applications, or database
applications

 Windows Communication Foundation is a set of .NET
technologies for building and running connected
systems. It is a new breed of communications
infrastructure built around the Web services
architecture.

Outline

 Chapter 4: Design Patterns as Components
– Constructional Design Patterns
– Software Components
– Design Component Properties
– Patterns as Components
– Pattern Interfaces

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models

 Pattern Level
 Pattern Level with Interfaces
 Detailed Pattern Level with interfaces

– Characteristics of POAD

Design Components

 Characteristics of design components
– Defines a software design fragment
– Represented using design notation and

delivered as a design model
– It is deployable at design time
– White box component (well defined design

structure and behavior)
– Well defined Interface, to glue and integrate

with other design components.

Design Component Properties

 Composable
– The Internals are defined in terms of the internal

structure and behavior models.
– The interfaces by which it is glued together with other

design components
 Customizable: Can be customized to allow

selection between tradeoffs at lower design levels
 Persistent: Internals are preserved after

instantiation and are traceable

Outline

 Chapter 4: Design Patterns as Components
– Constructional Design Patterns
– Software Components
– Design Component Properties
– Patterns as Components
– Pattern Interfaces

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models

 Pattern Level
 Pattern Level with Interfaces
 Detailed Pattern Level with interfaces

– Characteristics of POAD

Specifying Patterns as Components

 A pattern can be described and specified in a
variety of forms

 We classify techniques to describe a pattern into
three categories

1. Recipe – an informal description of the pattern that
helps application designers to understand the pattern

– Essential elements are
– Context in which problem is incurred
– The problem solved by the pattern
– Forces influencing the selection of the pattern
– Solution to be used for problem at hand
– Consequences of applying the pattern

– When it comes to composition with other patterns, the
recipe is not sufficient to guide the integration process

Patterns as Components
2. Formal Specification (use notation based on

scripting design languages or design scripts)
 Helps designers compare and contrast several

solution issues
 Improves understandability of patterns
 Patterns encapsulate mental reasoning decisions

beside their technical solutions that are difficult to
capture using formal techniques.

3. Interface Specification
– It is necessary to see how the patterns (thr’ interfaces)

glue together and to other design artifacts

Component Interfaces

 Examples of Interface Specifications
– Module Interconnection Languages (MILSs)
– Interface Definition Language (IDL) (found in CORBA, now an

ISO standard, see http://www.omg.org/gettingstarted/omg_idl.htm)

– Web Services Description Language (WSDL)
(found in SOA, see http://www.w3.org/TR/2007/REC-wsdl20-

20070626/#component_model)

– Interfaces for OO Components
(see http://portal.acm.org/citation.cfm?id=566171.566212)

One approach uses the idea of contracts to define interfaces of
objects

Component Interfaces: APIs
http://www.opengroup.org/architecture/togaf8-doc/arch/chap19.html

 Application/Platform Interfaces (APIs) support
portability

Component Interfaces

 Interface Properties
– Type

Referential – (Class reference or Pattern reference)
– A a client or a requestor component has a reference to the

provider component with no details about the usage
relationship

– Useful for building the design structural views

 Functional – (Services and Actions)
– Specify the services provided by the design component

and the services required from other components.
– Useful for building the design behavioral views

Component Interfaces
 Interface Properties (cont.)

– Role: distinguishes the role that is played by a design
component
 Emphasizes the C/S relationship and explicitly defines provided

and required interfaces.
– Nature

 Abstract (most cases, e.g. abs classes, or Java Interfaces)
vs. concrete (provides default implementation for the

interface operations.)
– Dynamism

 Static (e.g. CORBA IDLs or Java interfaces)
vs. Dynamic Interfaces (multiple objects that wait for

multiple events))
– Dynamic interfaces are not specified for users at design-time

instead they are interrogated (inquired) by the calling component at
run-time (for example, CORBA Dynamic Method Invocation).

Component Interfaces

– Description
Description characterizes the interface
 Signature

– Names and parameters
Behavioral

– How the component reacts when it is called

– Multiplicity
A component can have multiple interfaces, all of

which are valid interfaces to the same component
According to the application context using the

component one of those interfaces will be used

Outline

 Chapter 4: Design Patterns as Components
– Constructional Design Patterns
– Software Components
– Design Component Properties
– Patterns as Components
– Pattern Interfaces

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models

 Pattern Level
 Pattern Level with Interfaces
 Detailed Pattern Level with interfaces

– Characteristics of POAD

Pattern Interfaces

 Pattern interfaces must conform with the
OO paradigm

 Interfaces are important for 3 reasons
– Hide details
– Distinguish parts crucial for integration
– Provide flexibility

 Pattern Interfaces are application interfaces

Constructional Design Patterns
(CDPs)
 Definition: A CDP has additional

constraints that allow for composition and
integration.

 CDPs are OO design patterns
 Have interfaces for composition and

integration
 Their structural solution is based on well-

defined class diagrams

A pattern template with emphasis
on interfaces

Required Interface

Provided Interface

Classes

Attributes

Methods

Informal
Description

(Pattern Template)

Interfaces

Internals
(Class Diag.)

A Pattern

Examples of CDPs

 All object behavioral patterns
Iterator (257)
Mediator (273)
Memento (283)
Flyweight (195)
Observer (293)
State (305)
Strategy (315)
Visitor (331)
Chain of Responsibility (223)
Command (233)

Outline

 Chapter 4: Design Patterns as Components
– Constructional Design Patterns
– Software Components
– Design Component Properties
– Patterns as Components
– Pattern Interfaces

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models

 Pattern Level
 Pattern Level with Interfaces
 Detailed Pattern Level with interfaces

– Characteristics of POAD

Chapter 5: Visual Design Models

Outline

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models
Pattern Level
Pattern Level with Interfaces
Detailed Pattern Level with interfaces

– Characteristics of POAD

Pattern Composition Models

 Pattern Visualization
– Models that are used to capture the internal

design
– UML based

 Pattern Composition Visualization
– Models used to capture integration and

composition of a set of patterns
– Some use UML others use other tools

 POAD is based on structural composition

Pattern Composition Models
 POAD requires models to have varying

granularity
– Course grained

Used for integrating patterns
– Fine grain => Class diagrams

Capture the internals of a Pattern

 POAD uses Hierarchical OOD
– Objects may contain other Objects in a

Hierarchical fashion
– Connectivity between interface objects and

internal objects

Guidelines in defining POAD
Models
1. Model elements must serve a purpose

• Close to mental building blocks
2. Models tend to be Hierarchical

• Capture the design at various levels of
abstraction

3. Exchangeable
• Should integrate with and use UML.

4. Models serve other models
• Models used in one phase should be used in

others

Outline

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models
Pattern Level
Pattern Level with Interfaces
Detailed Pattern Level with interfaces

– Characteristics of POAD

POAD’s design models

1. Pattern Level – pattern interfaces and
dependencies

2. Pattern Level with interfaces – Explicitly
defines relationships between interfaces

3. Detailed Pattern level – connectivity
between internals and interfaces is
defined.

Pattern Level

 Schematic- represents the patterns and the
relationships between them
– Pattern instance

 Type – Observer, Factory, Strategy etc.
Name –Application specific as given by designer

– Used to differentiate when there exist 2 instances of same
type.

PatternInstanceName2:
Type2

PatternInstanceName1:
Type1

PatternInstanceName3:
Type2

A schematic diagram for
the Pattern-Level model

Pattern Level

 Relationships –only one relationship exists
– Dependency –USES, further defined later and become associations

between interface classes

 Design Decisions
– Selecting the appropriate Patterns
– Defining Dependencies –How one pattern uses another

 UML Syntax
– Pattern level view resembles UML Package diagrams
– Packages represent constructional Patterns
– Name of Package is Instance Name

 Relationships are defined as dependency

Pattern-Level model using UML
Syntax

PatternInstanceName3
<<Type2>>

PatternInstanceName2
<<Type2>>

PatternInstanceName1
<<Type1>>

Outline

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models
Pattern Level
Pattern Level with Interfaces
Detailed Pattern Level with interfaces

– Characteristics of POAD

Pattern Level With Interfaces

 Schematic –shows interfaces and
relationships between them, 2 types of
interfaces
– Interface Classes –One of the internal classes
– Interface Operations –An Operation in one of

the interface classes. One internal class can
implement several operations.

A schematic diagram for the
Pattern-Level with Interfaces model

PatternInstance2:
Type2

ClassY::Op
4

Class1

Class2

PatternInstance1:
Type1

ClassX::Op2

ClassX::Op1

Class1

Pattern Level With Interfaces

 Relationships – uses between pattern
interfaces further defined
– Class/Class –Aggregation, association or

dependency
– Class/Operation –Interface class can Invoke an

operation in another pattern.
– Operation/Operation –Models interactions,

show the designer’s perceptions of lower level
design details

Pattern Level With Interfaces

 Design Decisions –Selecting which interface to
use for a given application.

 UML syntax –UML package and interface
notation is used.
– For interface classes and operations the UML syntax

for interface is used (circle associated with a package).
– A circle with only a class name underneath is a class

interface
– An operation interface is denoted by listing the

operation name underneath the class name

The Pattern-Level with Interfaces
model using UML

PatternInstance1
<<Type1>> PatternInstance2

<<Type2>>

Class1Class1

Class2
ClassX

Op1()

Class X

Op2()

ClassY

Op4()

Outline

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models
Pattern Level
Pattern Level with Interfaces
Detailed Pattern Level with interfaces

– Characteristics of POAD

Detailed Pattern Level Model

 Purpose –To explore the internal details of
each pattern and ID the internal classes that
implement the interface.

 Schematic –Represents Patterns and their
internal structure.
– Pattern Instances and type
– Interfaces
– Internal class diagram
– Relationship between interfaces and internals is

established

Schematic for The Detailed Pattern-
Level view

PatternInstance1: Type1

ClassX::Op
2

ClassX::Op
1

Class1

ClassX

Op1
Op2

Class1

PatternInstance2: Type2

Class1

Class2

Class1

ClassY::Op
4

Class2

ClassZ

Op5

ClassY

Op4

Detailed Pattern Level Model

 Relationships –Connectivity is used to show
which elements of internal are visible as
interfaces.

 Design Decisions –None, This is a
refinement stage

 UML syntax –The internal class diagram of
each pattern is shown.
– Interfaces from previous model are

incorporated into this class diagram for each
pattern

Detailed Pattern Level Model

PatternInstance1
<<Type1>> PatternInstance2

<<Type2>>

Class1

Class2
ClassX

Op1()

Class X

Op2()

ClassY

Op4()

Class1

Class X

Op1()
Op2()

Class1
Class1

ClassZ

Class2

ClassY

Op4()

Outline

 Chapter 5: Visual Design Models
– Pattern Composition Models in general
– POAD design models
Pattern Level
Pattern Level with Interfaces
Detailed Pattern Level with interfaces

– Characteristics of POAD

Characteristics of POAD

 Hierarchy –The three models demonstrate 3
levels of abstraction. This allows the
internals to be suppressed at one abstraction
and then expressed at another.

 Traceability –Must be able to trace from
high abstraction to lower.
– Pattern dependencies in pattern-level are

traceable to the relationships in pattern-level
with interfaces view.

Characteristics of POAD

 Traceability enables designer to navigate up
or down levels of abstraction

 Composability –enables model elements to
be plugged together. Artifacts in each view
are described as pluggable

