POAD Book: Chapter 7 POAD: The Process

Instructor: Dr. Hany H. Ammar Dept. of Computer Science and Electrical Engineering, WVU

Goals

- Pattern Integration: Present two different ways for gluing patterns
- To introduce the process aspects of POAD
- to outline the POAD approach and to illustrate how patterns can be utilized as design building blocks
- We will later see how POAD evolve from their integration

- Pattern Integration: Stringing vs Overlapping
- POAD Process Outline (Nutshell)
 - Analysis
 - Design
 - Design Refinement

Pattern Integration: Stringing vs Overlapping

- Both techniques (stringing patterns, and overlapping them together) were originally used for Civil engineering purposes, but they do apply to building software systems.
- Stringing -patterns are glued together
 - glue could be UML relationships
 - design is a loose assembly of patterns
 - You end up with too many classes with trivial responsibilities

Pattern Integration: Stringing vs Overlapping

- Overlapping
 - A class as a participant in one pattern could be
 at the same time a participant of another pattern
 in the same application design
 - One class can play two different roles, in two different patterns
- The Advantage of overlapping is that you have fewer classes
- The disadvantage is that pattern boundary is lost and patterns are hard to trace

Example

Consider the Reactor and Composite Patterns

Example

Example

Now, you have two patterns to glue, the *Reactor* and the *Composite* patterns

 Stringing the 2 patterns together gives us the following

Example: Stringing

Example: Overlapping

What does POAD uses

- Although Stringing is the easier of the 2 approaches, it is often avoided
 - It provides good traceability
- POAD uses both
 - It uses the simplicity and traceability of the stringing-patterns approach
 - the density and profoundness of the overlapping-patterns approach
- POAD integrates both methods in one process

Hierarchical Integration Techniques

- POAD starts by assembling patterns at a higher level of abstraction using the stringing approach
- It then allows the designer to integrate the lower level classes to produce dense and profound designs

- Pattern Integration: Stringing vs Overlapping
- POAD Process Outline (Nutshell)
 - Analysis
 - Design
 - Design Refinement

POAD Process Outline (Nutshell)

- We will use the purpose/process/product template to explain the various steps within a development phases
 - Purpose explains why a designer would conduct this step
 - Process describes the activity that the designer conducts in this step
 - Product describes expected output of this step

Three phases of POAD

analysis

A set of patterns are selected from a domain specific library

high-level design phase where

- patterns are glued together using pattern
 composition models to produce an initial class
 diagram
- design refinement phase
 - initial class diagram is processed to produce a more dense and profound class diagram

- Pattern Integration: Stringing vs Overlapping
- POAD Process Outline (Nutshell)
 - Analysis
 - Design
 - Design Refinement

Analysis phase Purpose

- Analyze the application requirements and decide what patterns that will be used

Process

- UML use case diagrams and sequence diagrams are used to identify required patterns
- Main concern is determining whether or not the pattern can be used and why it is better
- analyst searches pattern catalogues for candidate patterns
- Analyst must be *acquainted* with the catalogue

Analysis phase

- Retrieval how to select a pattern from a catalogue
- Product

- Patterns chosen by the application analyst
- For example: Recall the
- Feedback control example. Frror Observer and Strategy pattern Controlled Actuatin Feed Referenc Output Signat is selected for the forward e Input Elements feedforward component, Plant Feedbac Feedback k Data And for the *feedback* component Measureme Elements nt

- Pattern Integration: Stringing vs Overlapping
- POAD Process Outline (Nutshell)
 - Analysis
 - Design
 - Design Refinement

 Develop the application design by composing the patterns selected in the analysis phase

Process

- Instantiating patterns, and identifying relationships between instances
- Proceed from the *Pattern-Level* diagram to create a *Pattern-Level with Interface* diagram

Design phase

Process (Cont.)

From Pattern-Level with Interface diagram, the designer identifies details of the pattern and Detailed Pattern-Level diagram is produced

Product

- The product of this phase is *Detailed Pattern-Level* diagrams

- Pattern Integration: Stringing vs Overlapping
- POAD Process Outline (Nutshell)
 - Analysis
 - Design
 - Design Refinement

Design Refinement phase

Purpose

- To develop the profound dense class diagram for the application
- Process
 - Starting with *Detailed Pattern-Level* diagram
 - Designer instantiates each pattern in the context of the application

Design Refinement phase

Process (cont.)

- This produces our initial class diagram
- class diagram is obtained from gluing patterns
 together at the high level design

Product

– Optimized class diagram for the application

