
POAD Book:

Chapter 7
POAD: The Process

Instructor: Dr. Hany H. Ammar
Dept. of Computer Science and
Electrical Engineering, WVU

Goals

 Pattern Integration: Present two different
ways for gluing patterns

 To introduce the process aspects of POAD
 to outline the POAD approach and to

illustrate how patterns can be utilized as
design building blocks

 We will later see how POAD evolve from
their integration

outline

• Pattern Integration: Stringing vs Overlapping

• POAD Process Outline (Nutshell)
• Analysis
• Design
• Design Refinement

Pattern Integration: Stringing vs
Overlapping
 Both techniques (stringing patterns, and

overlapping them together) were originally
used for Civil engineering purposes, but
they do apply to building software systems.

 Stringing -patterns are glued together
– glue could be UML relationships
– design is a loose assembly of patterns
– You end up with too many classes with trivial

responsibilities

Pattern Integration: Stringing vs
Overlapping
 Overlapping

– A class as a participant in one pattern could be
at the same time a participant of another pattern
in the same application design

– One class can play two different roles, in two
different patterns

 The Advantage of overlapping is that you
have fewer classes

 The disadvantage is that pattern boundary is
lost and patterns are hard to trace

Example
 Consider the Reactor and Composite Patterns

Reactor

Dispatch()

EventHandler

HandleEvent()
CloseHandle()
GetHandle()

nn

ConcreteEventHandler1 ConcreteventHandler2

Example

Leaf

Operation()

Composite

Operation()
AddComponent(Component)
RemoveComponent(Component)

Component

Operation()
AddComponent(Component)
RemoveComponent(Component)

nn

Example

 Now, you have two patterns to glue, the
Reactor and the Composite patterns

 Stringing the 2 patterns together gives us
the following

Example: Stringing

Leaf

Operation()

Composite

Operation()
AddComponent(Component)
RemoveComponent(Compon

Component

Operation()
AddComponent(Component)
RemoveComponent(Component)

nn

Reactor

Dispatch()

EventHandler

HandleEvent()
CloseHandle()
GetHandle()

nn

ConcreteEventHandler1 Concretevent
Handler2

Example: Overlapping

Reactor

Dispatch()

EventHandlerComponent

HandleEvent()
CloseHandle()
GetHandle()
AddComponent(EventHandlerComponent)
RemoveComponent(EventHandlerComponent)

nn

LeafEventHandler

HandleEvent()
CloseHandle()
GetHandle()

CompositeEventHandler

HandleEvent()
CloseHandle()
GetHandle()
AddComponent(EventHandlerComponent)
RemoveComponent(EventHandlerComponent)

nn

What does POAD uses

 Although Stringing is the easier of the 2
approaches, it is often avoided
– It provides good traceability

 POAD uses both
– It uses the simplicity and traceability of the

stringing-patterns approach
– the density and profoundness of the

overlapping-patterns approach
 POAD integrates both methods in one

process

Hierarchical Integration
Techniques
 POAD starts by assembling patterns at a

higher level of abstraction using the
stringing approach

 It then allows the designer to integrate the
lower level classes to produce dense and
profound designs

outline

• Pattern Integration: Stringing vs Overlapping

• POAD Process Outline (Nutshell)
• Analysis
• Design
• Design Refinement

POAD Process Outline (Nutshell)

 We will use the purpose/process/product
template to explain the various steps within
a development phases
– Purpose - explains why a designer would

conduct this step
– Process - describes the activity that the designer

conducts in this step
– Product - describes expected output of this step

Three phases of POAD

 analysis
– A set of patterns are selected from a domain

specific library
 high-level design phase where

– patterns are glued together using pattern
composition models to produce an initial class
diagram

 design refinement phase
– initial class diagram is processed to produce a

more dense and profound class diagram

POAD Process

 The following figure shows the symbols we
use for POAD Process description

Product

A process uses a product

A process uses another
process

Legend

A process produces a
product

Process

Acquaintan
ce Pattern

Library

Candidate
Patterns

Selection

Selected
Patterns

Application
Requirements

Requirem
ent

Analysis

Required
Conceptual

Components

Retrieval

Pattern-Level
Diagrams

Constructing
Pattern-Level

models

Create
Pattern

Instances

Define
Pattern

Relationships

Construct
Pattern-Level

Diagrams

Constructing models for
Pattern-Level with

Interfaces

Pattern-Level with
Interfaces
Diagrams

Declare
Pattern

Interfaces

Identify
Relationships

between Pattern
Interfaces

Constructing models for
Detailed Pattern-Level

Detailed Pattern-
Level Diagrams

Selected
Patterns

(c) Design

Instantiating Pattern
Internals

Domain Specific Detailed
Pattern-Level Diagrams

Specializatio
n

Concretizatio
n

Develop Class
Diagrams

Initial UML class diagram

Design
Optimization

Reductio
n

Merging &
Grouping

Optimized class diagram

Detailed Pattern-
Level Diagrams(d) Design Refinement

Analysis

Design

Design
Refinement

(b) Analysis

(a) Overall POAD

The POAD process
a) overall phases, b) analysis, c) design, and d) design refinement

outline

• Pattern Integration: Stringing vs Overlapping

• POAD Process Outline (Nutshell)
• Analysis
• Design
• Design Refinement

Analysis phase
 Purpose

– Analyze the application requirements and decide
what patterns that will be used

 Process
– UML use case diagrams and sequence diagrams are

used to identify required patterns
– Main concern is determining whether or not the

pattern can be used and why it is better
– analyst searches pattern catalogues for candidate

patterns
– Analyst must be acquainted with the catalogue

Acquaintan
ce Pattern

Library

Candidate
Patterns

Selection

Selected
Patterns

Application
Requirements

Requirem
ent

Analysis
Required

Conceptual
Components

Retrieval

Analysis phase
– Retrieval how to select a pattern from a catalogue

 Product
– Patterns chosen by the application analyst
– For example: Recall the

 Feedback control example.
Observer and Strategy pattern
is selected for the
feedforward component,

And for the feedback component

Referenc
e Input

Measureme
nt

Feedbac
k Data

Error
(Actuatin
g) Signal

Feed
forward

Elements

Feedback
Elements

Plant.+

+
Controlled

Output

Acquaintan
ce Pattern

Library

Candidate
Patterns

Selection

Selected
Patterns

Application
Requirements

Requirem
ent

Analysis
Required

Conceptual
Components

Retrieval

outline

• Pattern Integration: Stringing vs Overlapping

• POAD Process Outline (Nutshell)
• Analysis
• Design
• Design Refinement

Design phase

 Purpose
– Develop the application design by composing the

patterns selected in the analysis phase
 Process

– Instantiating patterns, and identifying relationships
between instances

– Proceed from the Pattern-Level diagram to create a
Pattern-Level with Interface diagram

Pattern-Level
Diagrams

Constructing
Pattern-Level

models

Create Pattern
Instances

Define Pattern
Relationships

Construct
Pattern-Level

Diagrams
Constructing models for

Pattern-Level with Interfaces

Pattern-Level with
Interfaces Diagrams

Declare Pattern
Interfaces

Identify Relationships
between Pattern

Interfaces
Constructing models for
Detailed Pattern-Level

Detailed Pattern-Level
Diagrams

Selected Patterns

(c) Design

Design phase

 Process (Cont.)
 From Pattern-Level with Interface diagram, the

designer identifies details of the pattern and Detailed
Pattern-Level diagram is produced

 Product
– The product of this phase is Detailed Pattern-

Level diagrams

Pattern-Level
Diagrams

Constructing
Pattern-Level

models

Create Pattern
Instances

Define Pattern
Relationships

Construct
Pattern-Level

Diagrams
Constructing models for

Pattern-Level with Interfaces

Pattern-Level with
Interfaces Diagrams

Declare Pattern
Interfaces

Identify Relationships
between Pattern

Interfaces
Constructing models for
Detailed Pattern-Level

Detailed Pattern-Level
Diagrams

Selected Patterns

(c) Design

Example FeedforwardStrategy
<<Strategy>>

InputObserver
<<Observer>>

Context

Update Notify

Subject

Attach()
Detach()
Notify()

Observer
Update()

ConcreteObserver
observerState
Update()

ConcreteSubject
subjectState
getState()

nn

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

Context
ContextInterface()

Strategy
AlgorithmInterface()

outline

• Pattern Integration: Stringing vs Overlapping

• POAD Process Outline (Nutshell)
• Analysis
• Design
• Design Refinement

Design Refinement phase

 Purpose
– To develop the profound dense class diagram for

the application
 Process

– Starting with Detailed Pattern-Level diagram
– Designer instantiates each pattern in the context of

the application

Design Refinement phase

 Process (cont.)
– This produces our initial class diagram
– class diagram is obtained from gluing patterns

together at the high level design
 Product

– Optimized class diagram for the application

DataHolder

ErrorData MeasuredData FeedbackData

AbstractObserver

Update()

AbstractSubject

Attach()
Detach()
Notify()

ConcreteStrategyB

AlgorithmInterface()

ConcreteStrategyA

AlgorithmInterface()

FBConcreteStrategyB

AlgorithmInterface()

FBConcreteStrategyA

AlgorithmInterface()

ErrorObserver
observerState

Update()

Controller

ContextInterface()

Blackboard

setData()
getData() n

nn

n

MeasurementSubject
subjectState

GetState()

FeedbackSubjectObserver

AbstractController

AlgorithmInterface()

Example

