
Introduction to OOAD and the

UML

Instructor: Dr. Hany H. Ammar

Dept. of Computer Science and

Electrical Engineering, WVU

OUTLINE

 The development process

 Reviewing Object Oriented Analysis and

Design

 Visual modeling and the Unified Modeling

Language UML

OUTLINE

 The development process

– Phases of system development

– The Unified Process

 Object Oriented Analysis and Design

 Visual Modeling and the Unified Modeling

Language UML

The Development Process

Requirements: Develop the Requirements Model

Analysis: Develop the Logical Model

Design: Develop the Architecture

Model

Implementation

Testing

Phases of System Development

Requirements

Engineering

Engineering

Design

The IEEE 12207 Development Process

Sys Arch
Design

System
Reqts

Analysis

System
Qual
Test

System
Integra-

tion

Software
Installation

Software
Acceptance
Support

Hardware items

Software Item 1:

Software Item 2:

Process Implementation Activity

Software
Qual
Test

Software
Integra-

tion
Software

Code
 & TestSoftware

Detailed
Design

Software
Arch.

Design
Software

Reqts.
Analysis

Supporting Processes: Documentation, CM, QA, Verification, Validation, Joint Review, Audit, Problem resolution

Software
Qual
Test

Software
Integra-

tion
Software

Code
 & TestSoftware

Detailed
Design

Software
Arch.

Design
Software

Reqts.
Analysis

SRS

SARAD

SRD, UDD

SAD, SIDD, DBDD, T/VP

SRD, UDD

EOCR, SCR,T/VPr, T/VRR

SIP,T/VPr

T/VPr

T/VRR

T/VRR

SCR

T/VRR

SCR

SCR, T/VRR

DPP, SDSD

 Organizational Processes: Management, Infrastructure, Improvement, Training

One example of applying 12207 to the Waterfall development strategy

SCMP, SCMR, SCIR, SQAP, SQAR, SVRR, PR/PRR
7

The Unified Process
(The Rational Unified Process (RUP), adopted

by IBM for system development)

 Supports System Development Using the Unified

Model Language (UML)

 Evolutionary process where the system is built

iteratively and incrementally in several builds

starting from the requirements phase

 Architecture-centric

The Unified Process

Inception: Define the scope of the system (identify all external

entities with which the system will interact and define the

nature of the interactions)

Elaboration: Specify features and develop the architecture

Construction: Build the system

Transition: Transition Product to its users

The Unified Process

The Unified Process

The UP develops the architecture iteratively in successive

Refinements during the Elaboration phase

OUTLINE

 The development process

 Reviewing Object Oriented Analysis and

Design

– Object-Oriented Analysis OOA

– Object-Oriented Design OOD

 Visual Modeling and the Unified Modeling

Language UML

Object Oriented Analysis and

Design (OOAD)

Review of OOAD Basic

Concepts
 Develops a system model using a set of

interacting objects

 A Class:

– A class is a description used to instantiate

objects

 An Object:

– Is an instance of a class, it has a name,

attributes and their values, and methods

– An object models an idea found in reality,

(tangible or abstract)

Basic Concepts (cont’d)

 Attributes of a class

 Methods of a class (Services, Actions,

Messages)

 Information hiding and Encapsulation: A

technique in which an object reveals as little

as possible about its inner workings (Private

and Public methods or attributes).

 Inheritance defines a class hierarchy based on

abstraction

OUTLINE

 The development process

 Reviewing Object Oriented Analysis and

Design

– Object-Oriented Analysis OOA

– Object-Oriented Design OOD

 Visual Modeling and the Unified Modeling

Language UML

Object Oriented Analysis

OOA
OOA Develops a Logical Model of the system as a set of

interacting domain objects

• The model consists of two views

• The static view: defines the classes

and their dependencies

•The dynamic view: models the scenarios of

interactions between objects

Class A
Class B

Requires

Service

From

Class B

Obj s:
Class A

Obj y:
Class B

3: Set_Alarm(message)

Example:

The Static

Analysis Model

Class diagram

The dynamic

Model:

A Scenario

Of

Interactions

OOA (cont.)

OOA (cont.)

OOA starts by identifying domain objects

from the requirements model (Use-Case Models)

1. Discovering Objects

– The Data Perspective

 In the problem space or external systems

 Physical devices (sensors, actuators)

 Events that need to be recorded (ex. Measurements)

 Physical or geographical locations

OOA (cont’d)

– The Functional Perspective

What responsibilities does the object have? Ex. An

event handler, a controller, monitors, sensors, etc.

– The Behavioral Perspective

Who does the object interact with? How?

Use a State Transition Diagrams to describe the

object behavior

OOA (cont’d): Identifying Domain

Objects from the requirements model

In the statements of the requirements:

– An object may appear as a noun (ex. Measurement)

or disguised in a verb (to measure)

– A method might appear as a verb (ex. Investigate)

or disguised in a noun (investigation)

– Attributes describe some kind of characteristics for

the object (adjectives). Attributes can be simple or

complex. Complex attributes may lead to forming

new objects. Attributes can also be nouns.

OOA (cont’d): Object Types

– External Entities and their interfaces: Sensors,

actuators, control panel, devices, operators, pilots

– Information Items : Displays, Commands,

Requests, etc.

– Entities which establishes the context of the

problem : Controller, monitors, schedulers

OOA (cont’d)

2. Define Class Hierarchies

– Generalization

 Display Login Display

– Specialization (IS_A)

 Temperature_Sensor -> Sensor

Sensor

Brake Sensor Engine Sensor

OOA (cont’d)

3. Class Relationships

– Types

Association

– General form of dependency

Aggregation

– An object may consist of other objects

 Inheritance

– Cardinality (Multiplicity)

 (Binary, Many, ..)

OOA (cont’d)

Example of identifying Class diagrams with Relationships, Multiplicities,

Attributes, and operations (E-Commerce)

OOA (cont’d)

4. Object Attributes

– Discovering attributes of classes

– Attribute types

Naming : Ex. SensorID, Account

Descriptive Ex. Card expiration date

Referential Ex. Referring to other objects

OOA (cont’d)

5. The Dynamic View: Object Behavior

– Discovering states, transitions between states, and

conditions and actions

– Building the state diagrams of objects

OOA (cont’d)

6. Object Services

– Implicit Services (create, modify, search,

delete , etc.) ex. constructors

– Services associated with messages

– Services associated with object

relationships

– Services associated with attributes

(accessor methods ex. get, set . ..)

OUTLINE

 The development process

 Reviewing Object Oriented Analysis and

Design

– Object-Oriented Analysis OOA

– Object-Oriented Design OOD

 Visual Modeling and the Unified Modeling

Language UML

Object Oriented Design OOD

1. Architecture Design

– The static view: structural description (defining the

components and subsystems)

– The Dynamic view (defining the interactions between

components and subsystems)

2. Detailed Design: Define detailed Class and object

description

– Visibility (Private, protected, ..)

– Containment (ex. Packages or Components)

– Concurrency

OOD: Architecture Design

• Define the subsystems/components and their dependencies

• Interactions between components are defined in design sequence diagrams

OOD: Detailed Design

Define the detailed design of each subsystem/component

OOD: The Dynamic View

Define design sequence diagrams for scenarios defined in the requirements

model

3. Design Refinement: Enhance Design Goodness Criteria
(e.g., using design patterns)

– Coupling:

 The manner and degree of interdependence between
classes (objects)

– Cohesion:

 The degree and manner to which the services or tasks
performed by a component or an object are related to
each other.

– Modularity

 Understandability

 Decomposability

– Clarity
 Simple classes, messages, methods

OOD (Cont’d)

Summary of the Object-Oriented Analysis

and Design (OOA) Methodology

 Based on describing the logical model of the
system and the environment as a set of interacting
objects

 Defines the external objects (actors) interacting
with the system as well as the internal objects that
the system must contain

 Defines the static architecture of objects and the
dynamic behavioral interactions between them

 Defines the internal dynamic behavior of objects

OUTLINE

 The development process

 Reviewing Object Oriented Analysis and

Design

 Introducing visual modeling and the Unified

Modeling Language UML

Visual Modeling and the

Unified Modeling Language UML

 What is the UML?

 UML Concepts

 UML Development - Overview

The Unified Modeling Language

UML

What is the UML?

 UML stands for Unified Modeling Language

 The UML is the standard language for visualizing,

specifying, constructing, and documenting the

artifacts of a software-intensive system

 It can be used with all processes, throughout the

development life cycle, and across different

implementation technologies.

UML Concepts

The UML may be used to:

– Develop a Requirements Model

1. Use Case diagrams - Define the scope, and display the

boundary of a system & its major functions using use

cases and actors

2. System Sequence diagrams - Illustrate use case

realizations or scenarios of interactions between the

actors and the system

– Develop the Analysis model

1. Class diagrams - Represent a static structure of a system

2. State Charts - Model the behavior of objects

UML Concepts

– Develop the architecture design model

1. Class diagrams: Represent the static architecture
using packages or subsystems

2. Design Sequence diagrams – Represent the
dynamic interactions between the design objects

– Develop the physical architecture
implementation model

– component & deployment diagrams - Reveal the
physical implementation architecture

Visual Modeling and the

Unified Modeling Language UML

 What is the UML?

 UML Concepts

 UML Development - Overview

UML Development - Overview

PROGRAM

ACTORS

ANALYSIS
Specify Domain
Objects

Detailed DESIGN

IMPLEMENTATION

D

A

T

A

D

I

C

T

I

O

N

A

R

Y

TimeUSE CASES

ANALYSIS

CLASS DIAGRAM(S)

IMPLEMENTATION

Activity DIAGRAMS

System/Object

SEQUENCE

DIAGRAMS

OPERATION CONTRACTS

StateChart

DIAGRAMs

DEPLOYMENT DIAGRAM
SUBSYSTEM CLASS/

OR COMPONENT

DIAGRAMS

Architectural
Design
Include
Design Objects

Object
Design

SCENARIOS

REQUIREMENTS
ELICITATION

DESIGN DIAGRAMS

IMPLEMENTATION

CHOICES

DESIGN SEQUENCE DIAG.

Requirements

Engineering

A Model of embedded systems

development

Visual Modeling and the

Unified Modeling Language UML

 What is the UML?

 UML Concepts

 UML Development – Overview

 Requirements Engineering

 Requirements Elicitation

UML Development - Overview

PROGRAM

ACTORS

ANALYSIS
Specify Domain
Objects

Detailed DESIGN

IMPLEMENTATION

D

A

T

A

D

I

C

T

I

O

N

A

R

Y

TimeUSE CASES

ANALYSIS

CLASS DIAGRAM(S)

IMPLEMENTATION

Activity DIAGRAMS

System/Object

SEQUENCE

DIAGRAMS

OPERATION CONTRACTS

StateChart

DIAGRAMs

DEPLOYMENT DIAGRAM
SUBSYSTEM CLASS/

OR COMPONENT

DIAGRAMS

Architectural
Design
Include
Design Objects

Object
Design

SCENARIOS

REQUIREMENTS
ELICITATION

DESIGN DIAGRAMS

IMPLEMENTATION

CHOICES

DESIGN SEQUENCE DIAG.

Requirements

Engineering

UML Use Case Diagrams:

The Requirements Model

Defining Actors (External objects)
 An actor is an object that must interact with the system under

development

UML Use Case Diagrams:

The Requirements Model

Defining Use Cases

 A use case captures the user requirements, it is a pattern of

behavior the system exhibits

– Each use case is a sequence of related interactions

performed by an actor and the system in a dialogue

 Actors are examined to determine their needs

– Each actor must have association with at least one use

case

– Use cases can be related to each other

UML Use Case Diagrams:

The Requirements Model

Case

Study

UML Use Case Diagrams:

The Requirements Model

Documenting Use Cases

 A flow of events document is created for each use cases

– Written from an actor point of view

 Details what the system must provide to the actor when the
use cases is executed

 Typical contents

– How the use case starts and ends

– Normal flow of events

– Alternate flow of events

– Exceptional flow of events

UML Use Case Diagrams:

The Requirements Model

Use Case Realizations: Object Interaction diagrams

 The use case diagram presents an outside view of

the system

 Interaction diagrams capture the scenarios of the

functional requirements

 They describe how use cases are realized as

interactions among societies of objects (objects

interact to accomplish a function of the system)

 UML supports two types of interaction diagrams:

Sequence diagrams, and Collaboration diagrams

UML Use Case Diagrams:

The Requirements Model

Digital Sound Recorder Case Study

 A sequence diagram displays object interactions arranged

in a time sequence capturing a specific scenario of

interactions in a use case supported by the system

Time

Visual Modeling and the

Unified Modeling Language UML

 What is the UML?

 UML Concepts

 UML Development – Overview

 Requirements Engineering

 Requirements Elicitation

 The Analysis Model

UML Development - Overview

PROGRAM

ACTORS

ANALYSIS
Specify Domain
Objects

Detailed DESIGN

IMPLEMENTATION

D

A

T

A

D

I

C

T

I

O

N

A

R

Y

TimeUSE CASES

ANALYSIS

CLASS DIAGRAM(S)

IMPLEMENTATION

Activity DIAGRAMS

System/Object

SEQUENCE

DIAGRAMS

OPERATION CONTRACTS

StateChart

DIAGRAMs

DEPLOYMENT DIAGRAM
SUBSYSTEM CLASS/

OR COMPONENT

DIAGRAMS

Architectural
Design
Include
Design Objects

Object
Design

SCENARIOS

REQUIREMENTS
ELICITATION

DESIGN DIAGRAMS

IMPLEMENTATION

CHOICES

DESIGN SEQUENCE DIAG.

Requirements

Engineering

UML Class Diagrams:

The Analysis Model

 A class diagram shows the existence of classes

and their relationships in the logical view of a

system

 UML modeling elements in class diagrams

1. Classes and their structure and behavior

2. Association, aggregation, and inheritance

relationships

3. Multiplicity and navigation indicators

4. Role names

UML Class Diagrams:

The Analysis Model

Define Classes, Relationships, Multiplicities,

Attributes, and operations

UML Class Diagrams:

The Analysis Model
Digital Sound Recorder Case Study

UML State charts:

The Analysis Model

The State of an Object

 A state transition diagram shows

– The life history of a given class

– The events that cause a transition from one state
to another

– The actions that result from a state change

 State transition diagrams are created for
objects with significant dynamic behavior

UML State charts:

The Analysis Model

UML State charts:

The Analysis Model
Digital Sound Recorder Case Study

Visual Modeling and the

Unified Modeling Language UML

 What is the UML?

 UML Concepts

 UML Development – Overview

 Requirements Engineering

 Requirements Elicitation

 The Analysis Model

 The Design Model

UML Development - Overview

PROGRAM

ACTORS

ANALYSIS
Specify Domain
Objects

Detailed DESIGN

IMPLEMENTATION

D

A

T

A

D

I

C

T

I

O

N

A

R

Y

TimeUSE CASES

ANALYSIS

CLASS DIAGRAM(S)

IMPLEMENTATION

Activity DIAGRAMS

System/Object

SEQUENCE

DIAGRAMS

OPERATION CONTRACTS

StateChart

DIAGRAMs

DEPLOYMENT DIAGRAM
SUBSYSTEMS /

CLASS/

OR COMPONENT

DIAGRAMS

Architectural
Design
Include
Design Objects

Object
Design

SCENARIOS

REQUIREMENTS
ELICITATION

DESIGN DIAGRAMS

IMPLEMENTATION

CHOICES

DESIGN SEQUENCE /or

COLLABORATION DIAGRAMS.

Requirements

Engineering

Object Oriented Design OOD

1. Architecture Design (Subsystem/Component

Diagrams)

– The static view: structural description (defining the

components and subsystems)

– The Dynamic view (defining the interactions between

components and subsystems)

2. Detailed Design: Define detailed Class and object

description

– Visibility (Private, protected, ..)

– Containment (ex. Packages or Components)

– Concurrency

UML Class Diagrams:

Architecture Design: The static view

Digital Sound Recorder Case Study
• Define the subsystems/components and their dependencies

• Interactions between components are defined in design sequence diagrams

UML Class Diagrams:

Detailed Design: The static view

Digital Sound Recorder Case Study

Define the detailed design of each subsystem/component

Example:

The Static

Analysis Model

Class diagram

The dynamic

Model:

A Scenario

Of

Interactions

Recall: OOA (cont.)

Satellite Control Example

UML Class Diagrams:
Detailed Design: The static view

Composite Structure Diagrams (UML2)
Satellite Control Example

UML Development – Overview

Detailed Design: The dynamic view, Design

Sequence Diagrams

PROGRAM

ACTORS

ANALYSIS
Specify Domain
Objects

Detailed DESIGN

IMPLEMENTATION

D

A

T

A

D

I

C

T

I

O

N

A

R

Y

TimeUSE CASES

ANALYSIS

CLASS DIAGRAM(S)

IMPLEMENTATION

Activity DIAGRAMS

System/Object

SEQUENCE

DIAGRAMS

OPERATION CONTRACTS

StateChart

DIAGRAMs

DEPLOYMENT DIAGRAM
SUBSYSTEM CLASS/

OR COMPONENT

DIAGRAMS

Architectural
Design
Include
Design Objects

Object
Design

SCENARIOS

REQUIREMENTS
ELICITATION

DESIGN DIAGRAMS

IMPLEMENTATION

CHOICES

DESIGN SEQUENCE /or

COLLABORATION DIAGRAMS.

Requirements

Engineering

UML Sequence Diagrams:

Detailed Design: The dynamic view

Digital Sound Recorder Case Study
Define design sequence diagrams for scenarios defined in the requirements

model

Detailed Design: The dynamic view, UML

Collaboration Diagrams
This diagram has similar information as in sequence diagrams

with no time axis

Digital

Sound

Recorder

Case

Study

UML Component and Deployment

Diagrams

 Component diagrams illustrate the

organizations and dependencies among

software components

 A component may be

– A source code component

– A run time components or

– An executable component

UML Development – Overview

Detailed Design: The dynamic view, Design

Sequence Diagrams

PROGRAM

ACTORS

ANALYSIS
Specify Domain
Objects

Detailed DESIGN

IMPLEMENTATION

D

A

T

A

D

I

C

T

I

O

N

A

R

Y

TimeUSE CASES

ANALYSIS

CLASS DIAGRAM(S)

IMPLEMENTATION

Activity DIAGRAMS

System/Object

SEQUENCE

DIAGRAMS

OPERATION CONTRACTS

StateChart

DIAGRAMs

DEPLOYMENT DIAGRAM
SUBSYSTEM CLASS/

OR COMPONENT

DIAGRAMS

Architectural
Design
Include
Design Objects

Object
Design

SCENARIOS

REQUIREMENTS
ELICITATION

DESIGN DIAGRAMS

IMPLEMENTATION

CHOICES

DESIGN SEQUENCE /or

COLLABORATION DIAGRAMS.

Requirements

Engineering

Component Diagram

CourseInfo

PeopleInfo

Course

CourseOffering

StudentInfo ProfessorInfo

Register.exe

Course registration

System example

Component Diagram:

Components Interfaces

 The interfaces to a component may be

shown on a component diagram

Registration.exe Billing.exe
Billing

System

UML Development – Overview

Detailed Design: The dynamic view, Design

Sequence Diagrams

PROGRAM

ACTORS

ANALYSIS
Specify Domain
Objects

Detailed DESIGN

IMPLEMENTATION

D

A

T

A

D

I

C

T

I

O

N

A

R

Y

TimeUSE CASES

ANALYSIS

CLASS DIAGRAM(S)

IMPLEMENTATION

Activity DIAGRAMS

System/Object

SEQUENCE

DIAGRAMS

OPERATION CONTRACTS

StateChart

DIAGRAMs

DEPLOYMENT DIAGRAM
SUBSYSTEM CLASS/

OR COMPONENT

DIAGRAMS

Architectural
Design
Include
Design Objects

Object
Design

SCENARIOS

REQUIREMENTS
ELICITATION

DESIGN DIAGRAMS

IMPLEMENTATION

CHOICES

DESIGN SEQUENCE /or

COLLABORATION DIAGRAMS.

Requirements

Engineering

Deploying the System

 The deployment diagram shows the

configuration of run-time processing

elements and the software processes living

on them

 The deployment diagram visualizes the

distribution of components across the

enterprise (the servers of a distributed

network).

Deployment Diagram

Registration Database

Library

Dorm

Main
Building

Defines the HW

Network

configuration

Deployment Diagram

Digital Sound Recorder Case Study

Extending the UML

 Stereotypes can be used to extend the UML

notational elements

 Stereotypes may be used to classify and extend

associations, inheritance relationships, classes,

and components using the notation <<stereotype>>.

 Examples: 1. Class stereotypes: Interface,

control, entity, utility, exception,

– 2. Use Case relation stereotypes: includes and

extends,

– 3. Component stereotypes: subsystem

– 4. Design pattern instances

Class and Components stereotypes
e.g., <<external timer>>, <<coordinator>>, <<control>>

Use Case relation stereotypes
<<extend>>

Component stereotypes: subsystem
<<client subsystem>>, <<server subsystem>>

Summary of UML
http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

 The UML is the standard language for visualizing, specifying,

constructing, and documenting the artifacts of a software-

intensive system

– It can be used with all processes, throughout the

development life cycle, and across different

implementation technologies.

http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

