Instructor: Dr. Hany H. Ammar

Dept. of Computer Science and
Electrical Engineering, WVU

OUTLINE

The development process

Reviewing Object Oriented Analysis and
Design

Visual modeling and the Unified Modeling
Language UML

OUTLINE

The development process

Phases of system development
The Unified Process

Object Oriented Analysis and Design

Visual Modeling and the Unified Modeling
Language UML

The Development Process

New or changed

#
requirements

New or changed

e
system

Software Engineering
Process

Phases of System Development

Requirements: Develop the Requirements Model

Reguirements
\ _ Engineering
Analysis: Develop the Logical Model
Design: Develop the Architecture
\ Model Engineering
. Design
Implementation

Testing

The IEEE 12207 Development Process

One example of applying 12207 to the Waterfall development strategy

Process Implementation Activity

PP, SDSD Software
Software ?_ggtl —>
Software | Mtegra-
tion
Software Item 1: | Code SCR, TVRR Software
Software | g Test SIP,T/VPr Installation
Software Detailed
Design
Software DeAsrichn. g EOCR, SCR,T/VPr, TIVRR
> Rtleqts. g SRD, UDD System | Tme
Analys's |sap, sipp, DBDD, T/VP Software System | Qual | ¢ 0
SRD, UDD Software ?g:tl » Integra- | Test
- tion
SARAD Software Inte?i:)an
Sys Arch Software Item 2: | Software Code T/VPr
[& Test
besign > Software | Detailed TIVRR
Design
Sg:t?;n Software D:\Sric hn' 2 Software
Analqsis —> Reqts. J P Acceptance
y Analysis Support
SRS T/VRR
> Hardware items L SCR

Supporting Processes: Documentation, CM, QA, Verification, Validation, Joint Review, Audit, Problem resolution

SCMP, SCMR, SCIR, SQAP, SQAR, SVRR, PR/PRR

-~

Organizational Processes: Management, Infrastructure, Improvement, Training

The Unified Process

(The Rational Unified Process (RUP), adopted
by IBM for system development)

Supports System Development Using the Unified
Model Language (UML)

Evolutionary process where the system is built
Iteratively and incrementally in several builds
starting from the requirements phase

Architecture-centric

|

The Unified Process
N

Inception: Define the scope of the system (identify all external
entities with which the system will interact and define the
nature of the interactions)

Elaboration: Specify features and develop the architecture

Construction: Build the system

Transition: Transition Product to its users

Prelim :: Arch I Dey : Dey | Trans

teration lteration lteration | Iteration [teration

A A A A A A A A

Release Release Release Release Release Release Release Release

An iteration Is a sequence of activities with an established plan and
evaluation criteria, resulting in an executable release

The Unified Process

Phases

Core Workflows

I | |
Inception I Elaboration I Construction Transition

[|
; |
I An iteration in t'he

: - | elabdration phgse
Analysis H
I |
|

|

|

I | |

Requirements I

|
lklr
| ! |)
[' [
[| I : |
j p—— __‘L*
| I | . |

iter.
#m +1

iter.

lteration(s) #1 #n+1

#n+2 #m

Preliminary I iter.

iter. | iter.

iter. iter.
#2 #n

Iterations RATIONAL

The Unified Process

_ >

Architecture

The UP develops the architecture iteratively in successive
Refinements during the Elaboration phase

OUTLINE

The development process

Reviewing Object Oriented Analysis and
Design

Object-Oriented Analysis OOA
Object-Oriented Design OOD

Visual Modeling and the Unified Modeling
Language UML

Object Oriented Analysis and
Design (OOAD)

Review of OOAD Basic

Concepts

Develops a system model using a set of
Interacting objects

A Class:

A class Is a description used to instantiate
objects

An Object:

Is an Instance of a class, 1t has a name,
attributes and their values, and methods

An object models an idea found in reality,
(tangible or abstract)

Basic Concepts (cont’d)

Attributes of a class

Methods of a class (Services, Actions,
Messages)

Information hiding and Encapsulation: A
technique Iin which an object reveals as little
as possible about its inner workings (Private
and Public methods or attributes).

Inheritance defines a class hierarchy based on
abstraction

OUTLINE

The development process

Reviewing Object Oriented Analysis and
Design

Object-Oriented Analysis OOA
Object-Oriented Design OOD

Visual Modeling and the Unified Modeling
Language UML

Object Oriented Analysis
OOA

OOA Develops a Logical Model of the system as a set of
Interacting domain objects
» The model consists of two views
 The static view: defines the classes

and their dependencies Requires

Class A = Service

From = Class B
Class B

*The dynamic view: models the scenarios of
Interactions between objects obren Qg

| _Set_Alarm(messaqe |

OOA (cont.)

Example:
The Static

Analysis Model

Class diagram

mControlSystem::SatelliteControlSystem

pc

PowerController

db

DataBus

sd

Basic Cou rseJ

The dynamic
Model:

A Scenario
Of
Interactions

[

ac

cC

CommunicationsController

AttitudeController

interaction ProcessPositionhMessage

=<=actor==

'Ground

Control’

I I oo

P CommunicationsContraller |

I db : DataBus |

I ac @ Attitude Controller

requiresdPosition Messaaga|(

JoDo,

=

| k.= messagaewWeaerified(VLN H I
alt[TcheckOk])
nak (3
C = D
B = = v e [
ack ()
=1 sredbP oo ition T oo

CeayiredbPositionEraom Blis

I ac.storePosition(

C

1
WalltborSensorllala)

OOA (cont.)

OOA starts by identifying domain objects
from the requirements model (se-case Models)

1. Discovering Objects

The Data Perspective
In the problem space or external systems
Physical devices (sensors, actuators)
Events that need to be recorded (ex. Measurements)
Physical or geographical locations

OOA (cont’d)

The Functional Perspective

What responsibilities does the object have? Ex. An
event handler, a controller, monitors, sensors, etc.

The Behavioral Perspective
Who does the object interact with? How?

Use a State Transition Diagrams to describe the
object behavior

OOA (cont’d): Identifying Domain
Objects from the requirements model
In the statements of the requirements:

An object may appear as a noun (ex. Measurement)
or disguised in a verb (to measure)

A method might appear as a verb (ex. Investigate)
or disguised in a noun (investigation)

Attributes describe some kind of characteristics for
the object (adjectives). Attributes can be simple or
complex. Complex attributes may lead to forming
new objects. Attributes can also be nouns.

OOA (cont’d): Object Types

External Entities and their interfaces: Sensors,
actuators, control panel, devices, operators, pilots

Information Items : Displays, Commands,
Requests, etc.

Entities which establishes the context of the
problem : Controller, monitors, schedulers

OOA (cont’d)

2. Define Class Hierarchies
Generalization

Display - Login Display

Specialization (IS_A)
Temperature_Sensor -> Sensor

Sensor

/

Brake Sensor

Engine Sensor

OOA (cont’d)

3. Class Relationships

Types

Association
General form of dependency
Aggregation
An object may consist of other objects
Inheritance

Cardinality (Multiplicity)
(Binary, Many, ..)

OOA (cont’d)

Example of identifying Class diagrams with Relationships, Multiplicities,
Attributes, and operations (E-Commerce)

Customer Order
name 1 0.* | date
address # status
~association -, calcTax
) calcTotal
1% Paviment * / .
abstract class— ¥ 1. F 1 calcTotaleight
armaunt 1
role name —
eneralization __ e
$ _’% line item | 1.7 €—0 ,I"“‘J”“P'ff“'5'1|Ir
| | | OrderDetail ,-'I \ tem = class name
Credit Cash Check , v \ o
guantity 0 1 shippingeight attributes
number cashTendered name taxstatus - description
type banklD
expDate calcSuhTotal getPriceForCuantity
authorized calcWeight || vetweight < operations
authorized \
- navigability

OOA (cont’d)

4. Object Attributes
Discovering attributes of classes

Attribute types
Naming : Ex. SensorID, Account
Descriptive Ex. Card expiration date
Referential Ex. Referring to other objects

OOA (cont’d)

5. The Dynamic View: Object Behavior

Discovering states, transitions between states, and
conditions and actions

Building the state diagrams of objects

I

Idle

Engine On / Clear Desired Speed (

1\ Engine Off
" 2 N
(Engine Running N
—_— s o = Off
E Initial] E Cruising Off }
S Accel Resume =
Accel 3rake Of 3 E = Off 3rake Presse
ccel [Srice f] [Brake Off] [Brake Off] s S e
(Automatic Control =)
WV A 4 J/
r Accelerating i (5 Resuming W
o Accel =
Do Increase Speed i)o Resume (‘ruising
Exit / Select Desired Spc‘egj
Reached Cruising
Cruise Accel
Cruising 7
U)o Maintain Speed J
N—

N

Figure 10.19 Hierarchical Cruise Control statechart with activities and exit actior

OOA (cont’d)

6. ODbject Services

Implicit Services (create, modify, search,
delete , etc.) ex. constructors

Services assoclated with messages

Services associated with object
relationships

Services assoclated with attributes
(accessor methods ex. get, set . ..)

OUTLINE

The development process

Reviewing Object Oriented Analysis and
Design

Object-Oriented Analysis OOA
Object-Oriented Design OOD

Visual Modeling and the Unified Modeling
Language UML

Object Oriented Design OOD

1. Architecture Design

The static view: structural description (defining the
components and subsystems)

The Dynamic view (defining the interactions between
components and subsystems)

2. Detailed Design: Define detailed Class and object
description
Visibility (Private, protected, ..)
Containment (ex. Packages or Components)
Concurrency

OOD: Architecture Design

* Define the subsystems/components and their dependencies
* Interactions between components are defined in design sequence diagrams
]

<=subsysiem:=:
Alarm Clock

.
.

" \—l

=< sUbsystem:== z<subsystem==
User Interface rMemory
{_ S —
=4 W 7
rd o o
A . o

—l e . L
<<subsystem:=:> =<subsystem=>>
Battery Audio

Figure 3.3: Subsystems in the sound recorder

OOD: Detailed Design

Define the detailed design of each subsystem/component

- Message AudioControlier Synthesiser
AudioBlock ®
_ o layMessage(. :

_ @getaudioBlock() oo el) SbuildAudioBlock()
“getSamplel) 0 - YappendaudioBlock() Sgeletal tessage! . WplayMote()
PaddSample() - “%getHeader() Sty Y WplayChord()

& ol playalarmi) dyoi P
_ setHeadar) Wstoni) silencel)
CompressedAudioBlock
Audiolnput AudicOutput
|| Timer . .
%recordComprassedAudioBlock(| :F‘"3"1":':'”_"‘:'reSEed:'ﬁ'“'d":'E’mCH[J
WsolectinputFilter]) *chli}'.i‘-%d:r:[:uelﬂlgll-;t['
selectOutputFiltern|)
Microphone Speaker
WgetSamplel) YpolaySample!)

Figure 3.4: Audio subsystem class diagram

OOD: The Dynamic View

Define design sequence diagrams for scenarios defined in the requirements
model

- Userinterface - AundioComtroller . Message ~Audio Ottt L Speaker

I
] 1 playiMessage {) | | [
2 getaudioBlock () |
I
1

3 playCompressedAaudioBlock () 4 playSample ()

D plavSample ()

al
S playSample ()

T getaudioBlock)

]

8 playCompress

daudioBlock ()

9 playSample ()

10: playvSample {)

171: playvSample ()

£
i

=

]

I

I

I

|

|
|| I I
L. I I I
I I I I
| | |

Figure 3.60: Play message sequence diagram

OOD (Cont’d)

.Design Refinement: Enhance Design Goodness Criteria
(e.g., using design patterns)
Coupling:
The manner and degree of interdependence between
classes (objects)
Cohesion:

The degree and manner to which the services or tasks
performed by a component or an object are related to
each other.

Modularity
Understandability
Decomposability

Clarity

Simple classes, messages, methods

Summary of the Object-Oriented Analysis
and Design (OOA) Methodology

Based on describing the logical model of the
system and the environment as a set of interacting
objects

Defines the external objects (actors) interacting
with the system as well as the internal objects that
the system must contain

Defines the static architecture of objects and the
dynamic behavioral interactions between them

Defines the internal dynamic behavior of objects

OUTLINE

The development process

Reviewing Object Oriented Analysis and
Design

Introducing visual modeling and the Unified
Modeling Language UML

Visual Modeling and the
Unified Modeling Language UML

» What is the UML?
» UML Concepts
» UML Development - Overview

The Unified Modeling Language
UML

What Is the UML?
UML stands for Unified Modeling Language

The UML is the standard language for visualizing,
specifying, constructing, and documenting the
artifacts of a software-intensive system

It can be used with all processes, throughout the
development life cycle, and across different
Implementation technologies.

UML Concepts

The UML may be used to:

Develop a Requirements Model

Use Case diagrams - Define the scope, and display the
boundary of a system & its major functions using use
cases and actors

System Sequence diagrams - lllustrate use case
realizations or scenarios of interactions between the
actors and the system

Develop the Analysis model
Class diagrams - Represent a static structure of a system

State Charts - Model the behavior of objects

UML Concepts

Develop the architecture design model

Class diagrams: Represent the static architecture
using packages or subsystems

Design Sequence diagrams — Represent the
dynamic interactions between the design objects

Develop the physical architecture
Implementation model

component & deployment diagrams - Reveal the
physical implementation architecture

Visual Modeling and the
Unified Modeling Language UML

» What is the UML?
» UML Concepts
» UML Development - Overview

UML Development - Overview

ACTORS |
REQUIREMENTS USE CASES Time
ELICITATION - —
= SCENAR'OS ...
Requirements ———— = R —
5 T S SEQUENCE
Engineering l SEQUENCE
ANALYSIS ANALYSIS | StateChart
Objects

DIAGRAMs
Y \4

OPERATION CONTRACTS \"~~"""7"""""777""°77

Architectural Y *

Design SUBSYSTEM CLASSA‘——» DESIGN SEQUENCE DIAG.
DEPLOYMENT DIAGRAM

Include OR COMPONENT T~ 3

Design Objects DIAGRAMS

Detailed DESIGN

DESIGN DIAGRAMS

>—2>0

\%

<AT>»rZ20—-—4—-0-—-0

gbj‘?Ct IMPLEMENTATION———>| IMPLEMENTATIO
esign Activity DIAGRAMS
\4
IMPLEMENTATION

PROGRAM

A Model of embedded systems
development

- interacts
| Fegquirement |

conforms

Use Case

Use Case Diagrams |

implemaenits

1 . i

! System |(@_' Frocessors |
f"‘_\‘" /ﬂﬂ |

- e
| Froduction System |

— i Concurrsncy Pattern

insfanciaies

Collakoration Fatterm |—

.

Beharsicur

SDresSaerTis meoresernTts

[o |

Figure 9.1: EFimbedded swvstems design class diagram

Visual Modeling and the
Unified Modeling Language UML

» What is the UML?
» UML Concepts
» UML Development — Overview
» Requirements Engineering
» Requirements Elicitation

UML Development - Overview

ACTORS |
REQUIREMENTS USE CASES Time
ELICITATION - —
- SCENARIOS ..
Requirements ——F———. e
5 A SEQUENCE
Engineering l SEQUENCE
ANALYSIS ANALYSIS | stateChart
Objects

DIAGRAMs
Y \4

OPERATION CONTRACTS \"~~"""7"""""777""°77

Architectural Y *

Design SUBSYSTEM CLASSAG——» DESIGN SEQUENCE DIAG.
DEPLOYMENT DIAGRAM

Include OR COMPONENT T~ 3

Design Objects DIAGRAMS

Detailed DESIGN

DESIGN DIAGRAMS

>—2>0

\%

<AT>»rZ20—-—4—-0-—-0

gbj‘?Ct IMPLEMENTATION———>| IMPLEMENTATIO
esign Activity DIAGRAMS
\4
IMPLEMENTATION

PROGRAM

UML Use Case Diagrams:
The Requirements Model

Defining Actors (External

objects)

An actor is an object that must interact with the system under

development
O

A

Cellular
network

'\

Cor
@,

PI ace p

/\ call

0§< extend Place
""""" conference call

ex te ds relation shp

ecewe\ h/exlend Receive
phone call < _______ \‘Jmonal call

/ Use

use CEISE‘

|
I
User \
association

A

Cellular Telephone

system boundary

!hedule

UML Use Case Diagrams:
The Requirements Model

Defining Use Cases

A use case captures the user requirements, It is a pattern of
behavior the system exhibits

Each use case Is a sequence of related interactions
performed by an actor and the system in a dialogue

Actors are examined to determine their needs

Each actor must have association with at least one use
case

Use cases can be related to each other

UML Use Case Diagrams:
The Requirements Model

Case
Study

/ 'n\
[
JIIII IIIHL

Digital Sound Recorder

Figure 2.3: Use Case diagram

UML Use Case Diagrams:
The Requirements Model

Documenting Use Cases
A flow of events document is created for each use cases
Written from an actor point of view

Details what the system must provide to the actor when the
use cases IS executed

Typical contents
How the use case starts and ends
Normal flow of events
Alternate flow of events
Exceptional flow of events

UML Use Case Diagrams:
The Requirements Model

Use Case Realizations: Object Interaction diagrams

The use case diagram presents an outside view of
the system

Interaction diagrams capture the scenarios of the
functional requirements

They describe how use cases are realized as
Interactions among societies of objects (objects
Interact to accomplish a function of the system)

UML supports two types of interaction diagrams:
Sequence diagrams, and Collaboration diagrams

UML Use Case Diagrams:
The Requirements Model
Digital Sound Recorder Case Study

A sequence diagram displays object interactions arranged

In a time sequence capturing a specific scenario of
Interactions in a use case supported by the system

== gactor == . System
User

Speaker

| 12 Play Message |

{0.5 s} 2 Start playing sound

3. Display Progress Indicator

| 47 MNext Second
8 Display Clock {0.5s.}
& Display Progress Indicator
I I I ' |e 7. Stop
0.5 s}

2 Stop playing sound

Figure 2.4: Plaving message scenario

Visual Modeling and the
Unified Modeling Language UML

» What is the UML?
» UML Concepts
» UML Development — Overview
» Requirements Engineering
» Requirements Elicitation
» The Analysis Model

UML Development - Overview

ACTORS |
REQUIREMENTS USE CASES Time
ELICITATION)
- SCENAR'OS ...
Requirements —F———= e
5 A SEQUENCE
Engineering l SEQUENCE
ANALYSIS | ANALYSIS] StateChart
Specify Domain CLASS DIAGRAM(DIAGRAMSs
Objects ! il

OPERATION CONTRACTS \"~~"""7"""""777""°77

Architectural Y *

Design SUBSYSTEM CLASSAG——» DESIGN SEQUENCE DIAG.
DEPLOYMENT DIAGRAM

Include OR COMPONENT T~ 3

Design Objects DIAGRAMS

Detailed DESIGN

DESIGN DIAGRAMS

>—2>0

\%

<AT>»rZ20—-—4—-0-—-0

gbj‘?Ct IMPLEMENTATION———>| IMPLEMENTATIO
esign Activity DIAGRAMS
\4
IMPLEMENTATION

PROGRAM

UML Class Diagrams:
The Analysis Model

A class diagram shows the existence of classes

and their relationships in the logical view of a
system

UML modeling elements in class diagrams
Classes and their structure and behavior

Assocliation, aggregation, and inheritance
relationships

Multiplicity and navigation indicators
Role names

UML Class Diagrams:
The Analysis Model

Define Classes, Relationships, Multiplicities,

Attributes, and operations

Customer

harme
address

abstract class—

generalization ___ *[ﬁ

Order
0.* | date
status
~association -, calcTax
' calcTotal
—{ Pavment * / ;
¥ 1. ¥ 1| calcTotaeight
amoaount 1
role name —

line iterm [1.% f——

Credit

numhber

fype

explate

authorized

_multiplicity

kem «f

| | OrderDetail
Cash Check
guantity
cashTendered name taxStatus
hanklD
calcSubTotal
authaorized calciWeight

shippingeight

description
getPriceForCuantity
getieight +

- navigability

class name

attributes

operations

UML Class Diagrams:

The Analysis Model
Digital Sound Recorder Case Study

Display

Battery

Userinterface

Keyvboard

AlarmClock

AudioController

()

Audiolnput

MessageMemory

Microphone

AudioOutput

Speaker

i'ﬁ,"

Measage—|

Figure 3.2: Sound Recorder class diagram

UML State charts:
The Analysis Model

The State of an Object

A state transition diagram shows
The life history of a given class

The events that cause a transition from one state
to another

The actions that result from a state change

State transition diagrams are created for
objects with significant dynamic behavior

Engine On / Clear Desired Speed r

r
£
(¢}
-

il Engine Running W
E Initial J rLCruising Off L2
Accel Resume
Accel [Brake Off] [Brake Off] [Brake Off] Off | Brake Pressed
i Automatic Control =
N N \
r Accelerating l Ascel b Resuming 1
Do / Increase Speed Eo / Resume Cruising
Exnt / Select Desired Speed
Reached Cruising
Cruise T Accel
Cruising %)
LDo / Maintain Speed
- S
-

Figure 10.19 Hierarchical Cruise Control statechart with activities and exit action

UML State charts:

The Analysis Model
Digital Sound Recorder Case Study

T Cvmand
\‘ FlayC AudioBl AudioBlock)? f Expand -
BYVoOmprassedAaudio OCEI B AUudigplock)« . e
) o exit: Start
)
4

i
||-||.n. l“"\-
o 1

PlayAudicB :-:'-: AudioBlock)?
-
DMA EndCfTransfer? / Motify!

Flaying -+

Figure 4.3: AudioOutput statechart

l SwitchOn? —_— \
'\-\x
_ A {GetSample{value]
dle samping

4 awiteh Off?

P

Figure 4.4: Microphone statechart

Visual Modeling and the
Unified Modeling Language UML

» What is the UML?
» UML Concepts
» UML Development — Overview
» Requirements Engineering
» Requirements Elicitation
» The Analysis Model
» The Design Model

UML Development - Overview

ACTORS | ——

REQUIREMENTS USE CASES -
ELICITATION - — Y
= SCENAR'OS ...
Requirements ———— = R —
5 T S SEQUENCE
Engineering l SEQUENCE
ANALYSIS ANALYSIS | StateChart

Specify Domain | CLASS DIAGRAM(DIAGRAMS
Objects 1 !
\ 4

OPERATION CONTRACTS \-=========-=-=----~-
"

Architectural . DESIGN SEQUENCE /or

Design SUBSYSTEMS / le,l i
Elde CLASS/ DEPLOYMENT DIAGRAM\COLLABOR‘T!ON DIAGRAMS
Design Objects| OR COMPONENT
| esian DIAGRAMS DESIGN DIAGRAMS

etalle

Object
Design IMPLEMENTATION————>| IMPLEMENTATIO
Activity DIAGRAMS

\4

IMPLEMENTATION PROGRAM

>—2>0

\%

<AT>»rZ20—-—4—-0-—-0

Object Oriented Design OOD

1. Architecture Design (Subsystem/Component
Diagrams)
The static view: structural description (defining the
components and subsystems)

The Dynamic view (defining the interactions between
components and subsystems)

2. Detailed Design: Define detailed Class and object
description
Visibility (Private, protected, ..)
Containment (ex. Packages or Components)
Concurrency

UML Class Diagrams:
Architecture Design: The static view
Digital Sound Recorder Case Study

* Define the subsystems/components and their dependencies
* Interactions between components are defined in design sequence diagrams

]

<=subsysiem:=:
Alarm Clock

™
e \—l
=< sUbsystem:== z<sUbsystem==
User Interface rMemory
{_ - - - - 1
i W=, 7
e o 4
/ . Vd
-~ ., o
==subsystem:=:= =<subsysiem:>=>
Battery Audio

Figure 3.3: Subsystems in the sound recorder

UML Class Diagrams:
Detailed Design: The static view

Digital Sound Recorder Case Study

Define the detailed design of each subsystem/component

AudioBlock

Message

AudioController

S getaudioBlock()

WgetSamplel)

-
L
FooL

o

®addSample() |-

o

CompressedaudioBlock

SplayMessage!)

Synthesiser

ShuildAudioBlock)

: . ¥recordMessage)
S appendAudioBlock() #deleterv‘lessage:} y WplayNote|)
igetHeau:ler[1 #pla‘--ixlarr“l[. i ‘nla-j(}hn rd()
WsetHeader() Scton) ! Wsilence()
Audiolnpus AudicOutput
Timer

YrecordCompressedAudioBlock()

$selectinputFilter{)

Microphone

SgetSamplal)

W playCompressedAudioBlock()
WplayAudioBlock()
W selectOutputFilter])

Figure 3.4: Audio subsystem class diagram

Speaker

WplaySample()

Recall: OOA (cont.)

Satellite Control Example

Example:
The Static

Analysis Model

Class diagram

mControlSystem::SatelliteControlSystem

pc

PowerController

db

DataBus

sd Basic CourseJ

The dynamic
Model:

A Scenario
Of
Interactions

[

i

CommunicationsController

ac

AttitudeController

interaction ProcessPositionhMessage

<=<actor= >

"5SS rounad

Zontrol

| | oo D Cormmur

nicationsContraller I

| db : DataBus | | ac @ Attitude Controller

requiredPosition WMaessags=(

JoD,

2. = messageWerified(

alt [TcheckOk])

UML Class Diagrams:

Detailed Design: The static view

Composite Structure Diagrams (UML?2)
Satellite Control Example

CompositeStructure active class SatelliteControlSystem {3/5}
[Actuator _ |J__|l L ISensor
D, [J« pc : PowerController ac : AttitudeController LI &,
|ActuatorPort Ir"—‘\v:tuatu:an’ort Bus Part Busp%?tnsarpartl SensorPort

IDataFromBus

IDataToBu
DataPort
db : DataBus
D ataPort

IDataToBus

IDataFromBus

BusPort
ICommsin

ReqPosition
C;>I'_'I- cc : CommunicationsController .[]<f_>
CroundStationPort UserEquipmentF’ortI UserEquipmentPort

|GroundStationPort ICamms 0 ut

WBlert, ICurrPositidn

UML Development — Overview
Detailed Design: The dynamic view, Design
Sequence Diagrams

ACTORS e —
REQUIREMENTS USE CASES Time
ELICITATION Y
_ SCENARIOS [T
Requirements ———— T Systenonea
5 A S SEQUENCE
Engineering l SEQUENCE

ANALYSIS ANALYSIS | stateChart

Specify Domain | CLASS DIAGRAM(DIAGRAMS

Objects 1

Y \ 4
OPERATION CONTRACTS \"==~~===--===------
Architectural v ;
D(racsiglgr?C e SUBSYSTEM CLASSH—» D=slion SEQoELLE
DEPLOYMENT DIAGRAM COLLABORATION—DIAGRAMS.
Include OR COMPONENT =
Design Objects DIAGRAMS
_ DESIGN DIAGRAMS
Detailed DESIGN
Object
Design IMPLEMENTATION——| IMPLEMENTATIO
Activity DIAGRAMS

>—2>0

\%

<AT>»rZ20—-—4—-0-—-0

\4

IMPLEMENTATION PROGRAM

UML Sequence Diagrams:

Detailed Design: The dynamic view
Digital Sound Recorder Case Study

Define design sequence diagrams for scenarios defined in the requirements

model

C Userinterface

CAaudioControdler

- Message

- Audio Ot

] 1 playMessage {) |

2 getdudioBlock)

— L]

3 playCompressedAudioBlock ()

7: getaudioBlock ()
1

8° playCompressedAudioBlock ()

A4 playSample)

S plavsample {)

& playSample ()

9 playSample {)

10: playSample |

»
11 plavSample {)

Figcure 3.6: Play message seqguence diagram

R (o (o e N

Detailed Design: The dynamic view, UML

Collaboration Diagrams
This diagram has similar information as in sequence diagrams

with no time axis

Digital Model View
Controller
Sound - e
Recorder - S
— 8: getTime . —
Case . ClockView o ' —
= ClockView - AlarmClock — - SettingTimeUserMode
StUdy _ 4 setTime ()
9 drawText() '
. GraphicCaontext _ Display JE: postEvent{ NewTime)
1: postEvent (KeyPress)
_ Keyboard = _ EventProxy
'-_" S
'.\ 3: update(Hey=UpjT
Reactive i _
Subject I_\‘ 2. getBEvent (_:[‘ 6 getEvent ()

- Userlnterface

7- update ()
Figure 6.3: A Model-View-Controller collaboration

UML Component and Deployment
Diagrams

Component diagrams illustrate the
organizations and dependencies among
software components

A component may be
A source code component

A run time components or
An executable component

UML Development — Overview
Detailed Design: The dynamic view, Design
Sequence Diagrams

ACTORS e —
REQUIREMENTS USE CASES Time
ELICITATION Y
: SCENARIOS (.
Requirements ——— ———-"""" Syt mobed
5 T S SEQUENCE
Engineering l SEQUENCE
ANALYSIS ANALYSIS | stateChart
Specify Domain | CLASS DIAGRAM(DIAGRAMS
Objects 1
Y \4
OPERATION CONTRACTS \~"~"""""""""""=----
_ "
[A)rchutectural SUBSYSTE‘&A CLASS DESIGN SEQUENCE /or
esign Aﬂ——b COLLARORATION-—BIAGRAM
DEPLOYMENT DlAGRAM UL LMV UT\TI VI TOUTN L1V N avi i3
Include OR COMPONENT \ I
Design Objects DIAGRAMS
_ DESIGN DIAGRAMS
Detailed DESIGN
Object
Design IMPLEMENTATION———>| IMPLEMENTATIO
Activity DIAGRAMS

>—2>0

\%

<AT>»rZ20—-—4—-0-—-0

\4

IMPLEMENTATION PROGRAM

Component Diagram

Course registration
System example

E . Studentlnfo Professorinfg

CourseOffenng

Component Diagram:
Components Interfaces

The Interfaces to a component may be
shown on a component diagram

Registration.exe Billing.exe]
Billing
M

UML Development — Overview
Detailed Design: The dynamic view, Design
Sequence Diagrams

ACTORS e —
REQUIREMENTS USE CASES Time
ELICITATION Y
: SCENARIOS (.
Requirements ——— ———-"""" Syt mobed
5 T S SEQUENCE
Engineering l SEQUENCE
ANALYSIS ANALYSIS | stateChart
Specify Domain | CLASS DIAGRAM(DIAGRAMS
Objects 0
Y \4
OPERATION CONTRACTS \~"~"""""""""""=----
_ "
[A)rchutectural SUBSYSTE‘&A cLASS] DESIGN SEQUENCE /or
esign COLLARORATION-—BIAGRAM
DEPLOYMENT DIAGRAM UL LMV UT\TI VI TOUTN L1V N avi i3
Include OR COMPONENT \ I
Design Objects DIAGRAMS
_ DESIGN DIAGRAMS
Detailed DESIGN
Object
Design IMPLEMENTATION——| IMPLEMENTATIO
Activity DIAGRAMS

>—2>0

\%

<AT>»rZ20—-—4—-0-—-0

\4

IMPLEMENTATION PROGRAM

Deploying the System

The deployment diagram shows the
configuration of run-time processing
elements and the software processes living
on them

The deployment diagram visualizes the
distribution of components across the
enterprise (the servers of a distributed
network).

Deployment Diagram

Registration

Defines the HW

Database

Network
configuration
Main
Library Building

Dorm

Figure 5.1: Hardware architecture of the digital sound recorder

Extending the UML

Stereotypes can be used to extend the UML
notational elements

Stereotypes may be used to classify and extend
assoclations, inheritance relationships, classes,
and components using the notation <<stereotype>>.

Examples: 1. Class stereotypes: Interface,
control, entity, utility, exception,

2. Use Case relation stereotypes: includes and
extends,

3. Component stereotypes: subsystem
4. Design pattern instances

Class and Components stereotypes

e.g., <<external timer>>, <<coordinator>>, <<control>>

«passive input : «passive input
. «external timemn» .
device» DigitalClock device»
2 : Digi ocC
: Engine = : Brake
read read
(out - (out
engine timerEvent brake
Input) Input)
«temporal clustering»
: AutoSensors :
- AutoSensors «coordinator»
: AutoSensors
rqad (out Monitor read (out
cngmcStauy \\brakeStatus)
«input device «input device
interface» interface»
: Enginelnterface : Brakelnterface

cruiseControl
Request

«control»
: CruiseControl

Figure 20.45 Detailed software design of Auto Sensors task

Use Case relation stereotypes

<<extend>>

Place
conference call

Place phone «extend»

call

Receive

Receive IL «extend»
““““ additional call

phone call

/

Uuse case

system boundary /’

Cellular Telephone

Use
scheduler

association

S T e T T A g -

Component stereotypes: subsystem

<<client subsystem>>, <<server subsystem>>

wexternal I/O device»
: CardReader

Card Reader Input J{ TCard Reader Output

«systerm»
N _ : BankingSystem -) ‘
: - Customer Input ATM Transactions
—D «client —> «server
- — : -~ subsystem» e subsystem»
- IAIM Display Information : --éT—hI-Q-lE!’—t : J Bank Responses | : BankServer al_ﬂ(Server .
Cusl_tgme . ‘ / \ : v :

Operator Input /

Operator Information

_ \Dispenser Output - '-
J, Printer Output L '

«external output devicey «external output device»
A : ReceiptPrinter - : CashDispenser
: Operator ,

Flgure 12.6 Example of subsystem design: high

-level collaboration diagram for Banking
System |

Summary of UML

The UML is the standard language for visualizing, specifying,
constructing, and documenting the artifacts of a software-
Intensive system

It can be used with all processes, throughout the
development life cycle, and across different
Implementation technologies.

http://en.wikipedia.org/wiki/List_of_Unified_Modeling_Language_tools

