UML Diagrams: Sequence Diagrams The Requirements Model, and The Dynamic Analysis Model

Instructor: Dr. Hany H. Ammar Dept. of Computer Science and Electrical Engineering, WVU

Outline

- Review of previous Lecture
- The Requirements Model and the Analysis model
- Importance of Sequence Diagrams
- Rules of sequence diagrams
- Use Cases and Sequence Diagrams
- The System Sequence Diagrams
- The Sound Recorder Example
- The E-Commerce Example
- Other Examples

Review of Previous lecture

- Review of development phases and UML Development Overview
- Introduction and importance of Use Case Diagrams
- Use Case Diagram Rules

- Examples of Use Case diagrams
- Requirements Elicitation Process
 - 1. Identify Actors
 - 2. Identify Scenarios
 - 3. Identify Use Cases
 - 4. Refine Use Cases
 - 5. Identify Relationships between actors and Use Cases
 - 6. Identify Initial Analysis Objects
 - 7. Identify Non-functional requirements

Requirements, Use cases, and Scenarios

Where are we in the Requirements Engineering ?

Requirements Engineering focus: elicitation and analysis

Figure 2. Subdisciplines of requirements engineering.

The Requirements Model and the Analysis Model

The Requirements Elicitation Process Functional/ Nonfunctional Requirements

Use Case Diagrams/ Sequence Diagrams (the system level)

The Object-Oriented Analysis Process

Static Analysis Dynamic Analysis

Class Diagrams
State Diagrams/
Refined Sequence
Diagrams (The object
level)

Outline

- The Requirements Model and the Analysis model
- Introduction to Requirements Engineering
- Importance of Sequence Diagrams
- Rules of sequence diagrams
- Use Cases and Sequence Diagrams
- The System Sequence Diagrams
- The Sound Recorder Example
- The E-Commerce Example
- Other Examples

Importance of Sequence Diagrams

Depict object interactions in a given scenario identified for a given Use Case
 Specify the messages passed between objects using horizontal arrows including messages to/from external actors
 Time increases from Top to bottom

- Identify objects needed to support use cases, determine sequence of internal events following the external initiating event
- Diagrams that are not initiated with an external actor represent only a partial sequence
- Partial sequence diagrams should clearly identify the actor initiated sequence diagrams from which they are launched

Example of Sequence Diagrams Notation

 Messages specified on interactions can be synchronous or asynchronous

Asynchronous call

Numbering the Sequence of Interactions

Showing alternate behavior in a sequence diagram

Showing Extension Point

diagram name

sequence diagram (interaction)

Showing alternate behavior in a sequence diagram

Figure 9-3. Structured control constructs

Figure 14-249. Object states on a sequence diagram

Communication/Collaboration Diagrams They Specify similar information of interactions without the time axis

comm takeOrder role :TicketDB :OrderTaker tickets connector message flow. 1: checkCredit(customer) 3: debit(customer,cost) ----- one-way navigation on credit \ underlying association sequence number : CreditBureau

Figure 9-4. Communication diagram

Specifying Timing Requirements

Specifying Timing Requirements

Specifying Timing Requirements (Data rates in notes)

Interaction Operators

Specifying Timing Requirements: on interactions

Specifying Timing Requirements (ave and max)

Specifying Timing Requirements: (Timeout events)

Outline

- The Requirements Model and the Analysis model
- Introduction to Requirements Engineering
- Importance of Sequence Diagrams
- Rules of sequence diagrams
- Use Cases and Sequence Diagrams
- The System Sequence Diagrams
- The Sound Recorder Example
- The E-Commerce Example
- Other Examples

Recall Requirements Elicitation Process

The process of requirements elicitation consists of the following steps

- 1. Identify Actors
- 2. Identify Scenarios
- 3. Identify Use Cases
- 4. Refine Use Cases
- 5. Identify Relationships between actors and Use Cases
- 6. Identify Initial Analysis Objects
- 7. Identify Non-functional requirements

Requirements Elicitation Process Step 4. Refining Use Cases

System Sequence Diagrams

- System sequence diagrams establish the dynamic behavior in terms of key scenarios of the system for each use case
- The system sequence diagram models a scenario of the system interactions with the environment for a given use case
- Input/output events are clearly identified in each sequence diagram,
- The State of the system before and after each event are also depicted
- Different diagrams model scenarios with the normal flow of events and the abnormal flow of events

Sequence Diagrams and Use Cases System Sequence Diagram

The use case diagram Of system S

The sequence diagram of use case UC1 for system S

UML Use Case Diagrams: The Requirements Model

Figure 2.4: Playing message scenario

Sys. Seq. Diagram for Alarm sounding while playing Massage Scenario

Figure 2.5: Alarm while playing scenario

Sys. Seq. Diag. for Alarm while stand-by followed by No-power event.

Figure 2.6: Entering and exiting stand-by mode scenario

The ATM Example

Figure 21.1. Banking System use case model

Figure 21.12. Sequence diagram: ATM client Validate PIN use case

PIN Validation Transaction = {transactionId, transactionType, cardId, PIN, starDate, expirationDate}

Figure 21.11. Communication diagram: ATM client Validate PIN use case

This is for the Banking Service Subsystem

Figure 21.15. Sequence diagram: Banking Service Validate PIN use case

;

Figure 21.14. Communication diagram: Banking Service Validate PIN use case

Figure 21.17. Sequence diagram: ATM client Withdraw Funds use case

Example: Use Case Diagram of the E-Commerce System

Place Requisition Scenario

Confirm Delivery Scenario

Send Invoice Scenario

Confirm Shipment Scenario

Another Example: Pace Maker Use-Case model

Figure 2-6: Capturing QoS Requirements

Pace Maker Sys. Seq. Diag

Figure 3-6: Pace the Heart in AAI Mode (Use Case Level)

Seq. Diag. at the object level (The Analysis Model)

Figure 3-8: Pace the Heart in AAI Mode (Object Level)

A Simple Example of Using UML2

Example of Software Architecture Using UML2

A Simple Example Using UML2

