

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What 1s Software Architecture?
Software Architecture Elements

Examples

The Process of Designing Software Architectures
Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

Software Architecture Styles
The Attribute Driven Design (ADD)

UML Development - Overview

ACTORS | —

USE CASES

REQUIREMENTS e
ELICITATION * I

SCENAR'OS ... V
ARgLYSIS ANALYSIS — | StateChart

> - >0

\4

<AA>»Z0——-0—0

Specify Domain | CLASS DIAGRAM(DIAGRAMSs
Objects i
\ 4 A4
OPERATION CONTRACTS -\ """ """ 7777777777771
_ "
Architectural Y
Design SUBSYSTEM CLASS/L—D DESIGN SEQUENCE/Comm DIAG.
DEPLOYMENT DIAGRAM
Include OR COMPONENT © CRAM™SS ‘
Design Objects DIAGRAMS
DESIGN DIAGRAMS
Detailed DESIGN
CD)bi?Ct IMPLEMENTATION—+| IMPLEMENTATIO
esign CHOICES Activity DIAGRAMS
\ /
IMPLEMENTATION

PROGRAM

The Requirements, Analysis, and
Design Models

Requirements
Elicitation
Process

The Analysis
Process

The Design
Process

Functional/
Nonfunctional
Requirements

Static Analysis
Dynamic Analysis

Static Architectural
Design
Dynamic Design

Use Case Diagrams/
Sequence Diagrams
(the system level)

- Analysis Class Diagrams
- State Diagrams/

Refined Sequence
Diagrams (The object
level)

 Design Class Diagrams and
Components Diagrams

* Design Sequence/

* Collaboration Diagrams*

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models
What 1s Software Architecture?

Software Architecture Elements
Examples
The Process of Designing Software Architectures

Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

What is Software
Architecture?

A simplified Definition

A software architecture 1s defined by
a configuration of architectural
clements--components, connectors,
and data--constrained 1n their
relationships 1n order to achieve a
desired set of architectural properties.

Software Architecture
Elements

A component is an abstract unit of software
instructions and internal state that
provides a transformation of data via its
interface

A connector is an abstract mechanism that
mediates communication, coordination, or
cooperation among components.

Software Architecture Elements

A datum is an element of information that is transferred
from a component, or received by a component, via a
connector.

A configuration is the structure of architectural
relationships among components, connectors, and data
during a period of system run-time.

Software Architecture views: Architectures are described
using multiple views such as the static view, the dynamic
view, and deployment view.

An architectural style is a coordinated set of architectural
constraints that restricts the roles/features of
architectural elements and the allowed relationships
among those elements within any architecture that
conforms to that style.

Figure 21.8. Banking System: major subsystems

The dynamic view,
a high level diagram

wextermal O
devicexs

: CardReader

cardReaderinput \l/ 1‘ cardReaderCutput
I

wsoftware system:s
: BankinoSystem
customerinput 0o
:Z*Efrﬁgﬂ USErs — _ ATMTransaction asenices
; ustomer wclients — - xsubsystem:s
KeypadDisplay _ - wsubsysteme B ?k'
- display : ATMClient < sk
Information s Sernvice
\ bankResponiss
operator
|F1F'Ut/;z dispenser
printer Qutput
' .I'Z—/I l Output
operator
cwextermnal users Information |
: Dperator

I
wexternal output
dewvices

: ReceiptPrinter

e

wexternal output
devices

: CardDhispenser
Figure 12.2. Dynamic view of client/server software architecture: high-level
communication diagram for Banking System

10

The dynamic view of the ATMClient
for a certain Use Case Scenario

wsubsysEm:=
: BankingS arvica

acliant=
1: Card wsubsystam =
Reader | -ATMClient 2 6: Validate PIN o
Input PIM Walidation Transaction) .
waxiEmal 140 i % a0 = (= fon = ran [Account #=)
dawvicas : CardRaadar e
: CardReadar Imarfaca HRLE: Card Insariad
T
1.1: Card Id, “"“‘-H%
Start Date, e
Expiration Data H“‘“-,_____h wstate dapandant
control=
2 5: PIN Entered . ATIAC ortro]
wantity s [FIM Validation Transaction)
: ATKNCard
‘éfa:ncé' ":'I B":" 2.1: Cand 2. Ba: Updaie
o Reaquast 1.3: Gat PIM, Status (PIM WValid)
Expiration Data L
1.4: PIM Prompt, 2.5: Dizplay kManu
2 9: Selecion Mejnu (Account #s)
2.3 Card d, PIM,
saximal usars - wusar interaction = fﬂari Date, Expiration Dala
: ATRCu st mear : Customar ; wonfitys
KeypadDisplay E—— Intaraction |- ATMTransacfon
2: PIM Input 2.4 PIMN WValidation Transaction
FIM “alidaton Transaction = {lmnsadionld, tansactionType, candld, PN, starDais, axpiration Data}
11

Figure 21.11. Communication diagram: ATM client Validate PIN use case

The dynamic view: another model

«external I/O «external «l/O» «entity» «state dependent «user interaction» .
devices» user» : CardReader . : Customer «entity» «subsystermn»
. : ATMCard control» - ATMT ; . ; -
: CardReader TATM interface . ATMControl Interaction : ATMTransaction : BankingService
Customer | T .
1 Keypad i } : 1 : f
| Display | ' ; : i i
1 I
r : f ' ; i ! !
! l : ! I : I I
| 1: Card Reader Input | : : ' : :
f i 1 | j ‘ ; f
! ! 1.1: Card Id, Start Date, Expiration Date !) I]
! f : = ! : ! |
i i ' 1.2: Card Inserted f ! : !
: i :] —= 1.3: Get PIN : I !
1 i i ! I 1
H H !]
! i ' 1.4: PIN Prompt ! ! : !
e .
! 1 H ! r H : |
i 3.
: | ; 2: PIN Input ! ! : :
1 H [1 ' i ' ;
; ! H ! : ' 1 ;
1 ' I i 2.1: Card Reguest I ' H
i i 1 [== l 1 : H
! ! ! ! ' | ' !
! : ! I 2.2: Card Id, Start Date, Expiration Date ! : :
I
i | i ; T i i I
| ! ! ! i 2.3: Gard Id, PiN, Start Date, Expiration Date i
1 1 I ! : f :]I
; ! : i ! 2.4: PIN Validation Transaction '
! 1 I 1 pees '
I H I i ! I ! !
; 1 ! ! 2.5: PIN Entered (PIN ValidationT ransaction) | 1
I I i I = — ! H
H i H ' r ' 1 1
| : I ! L 2.6: Validate PIN (PIN Validation Transaction) !
1 H I i ! .
1 I i 13
j ! 5 |] s 2.7 [valid]: Valid PIN (Account #s) !
!] ! f i< i i !
! | : ! 2.87 Display Menu (Account #s) ' i
: ;] I !
: ; ; I i
1 1 ! 1 ! H
; } I | ; 2.8a: Update Status (PIN Valid) | i
i ! : —=
! . ! ! 2.9: Selection Menu | : ! |
| < - 1 : 1 | |
| I ' : 1 H i I
1 1 1 [l [

Figure 21.12. Sequence diagram: ATM client Validate PIN use case
12

/ N

: ATMClient : ATMClient : ATMClient
{1 node per ATM} {1 node per ATM} {1 node per ATM}

Figure 21.36. Deployment diagram for Banking System

Introducing Architecture Styles

More details on architecture styles to be discussed later

The Layered Architecture

e.g Network
o Layer & Application Layer
Services |
. Layer 4 Tranb:,purt .La'_..rer
Architecture
|
Layer 3 Ir1terrEIEFt>;_a',rer
|
Laver 2 Metwork Interface
] Layer
|
Layer 1 Physical Layer

Figure 12.4. Layers of Abstraction architectural pattern:

example of the Internet (TCP/IP) reference model 1

Network Services Architecture
Deployment view

MNode 1

4

Layer &

Layer 4

Layer 3

Layer 2

Layer 1

Application
Layer

Transport
Layer
(TCP)

Mode 2

Layer 5

Layer 4

Internet
Layer (IP)

Network
Interface

Layer

Physical
Layer

Layer 3

Layer 2

Layer 1

Internet Layer

Layer 3

Layer 2

Layer 1

wlocal area networks

Application
Layer

Transport
Layer
(TCP)

Internet
Layer (IP)

Metwork
Interface
Layer

Physical
Layer

(1P}
Metwork
Interface

Layer
|
Physical Layer
Router
Mode

wwide area network

ﬂ

Figure 12.5. Layers of Abstraction architectural pattern: Internet communication with TCP/IP

15

Layered Software Architectural styles
Example of Web Applications Architecture Style

3 EXTERMAL SY¥STEMS
USERS
See=rwileer COrmsuirners
L

1 F 3
= ' N
o
E e U Componamts N YT Y
=X
— Prasamntaticn Lo gic
E Componants
(=
" e T
= = s |l =
— , — h =y
E Service Interfacas Peszage Types - - i i
] =] = Ei; nE
(] —
o | & = =
=] k= =
o pRlicaticn Facade T
g O -t
= O
v << Business Bus imess Business
g Whor ke fllowa Compeorents Emtitias
L.
'.‘...-—
iﬂ: E Data Access Data Helpers/ Service
g E Compomnents Litilities Agents L A S
“ e, o

I I

. Oj [cervices j

)
:
3
2

Service Oriented Architecture (SOA):
Makes use of an Enterprise Service Bus ESB
Used in web-based systems and distributed computing

[Ot || Ot || Gt || e |
| :

Ty | i
| i

m—t— SE8 808

|
TRV RRC (statefl] Event/Fle

| | | |
| . . .
S B E|]E|]$|IE|IE|IE|]E|
: i —— [sp
S
¥ oy = = =
C C " = F?L “%zﬁﬂ =
L o % “j_ -
| P e -
¢ nodes on a network make resources available to other
[é‘it:___; participants in the network as independent services that
— the participants access in a standardized way using thelESB

Examples of Architecture Styles

Embedded Systems architecture style

<<Interface>>
Input devices
or actors

Monitors

——Controllers

./

Schedulers

~ N
<<Intertace>>

Output devices
or actors

18

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What 1s Software Architecture?
Software Architecture Elements
Examples
The Process of Designing Software Architectures

Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

19

Example: Interactive Electronic
Technical Manual (IETM) System

Web Services 3-tier architecture

Data Services Business Services User Services

IETM Electronic Display
System (EDS)

User Interface

IETM Data < DataAccess < —

20

wexternal input devices

M onitoringSensor

wexternal systemnss

RemoteSystem

Figure 232.2. Software system context class diagram for
Emergency Monitoring System

EMS Architecture

wextermal input devices vexternal systems
s MonitoringSensor s Remote System

usoftware systems
EmergencyMonitoring

wlser interactiony
IS ystem
: Operator
- ¢Sm1mr Input Presentation . .
Sensor Input wuser interactiony»
» AlarmWindow .
I Display Info
[~~~
winputy — =
: MonitoringSensor
. Eaels : RemoteSystem Proxy
Component _) o
Alarm MNotification Alarm Request)) Operator Request
Monitoring g/ “user interactiony =
Diata Operator] nteraction —
Monitoring Data

Display Info

\

Ni‘\. larm

—
Display Info

: Monitoring
Operator

wuser interactions /

: EventMonitoring

Window
Alarm Maonitoring ——
Status
\Z Request J ﬂ o
Joritoring
Infio ﬂ

Event Motification
Alarm Info
ervicen wservices
(LT Cey i i
. : MonitoringData
 AlarmService .-
Savice

Figure 23.8. Integrated communication diagram for Emergency Monitoring System

22

Monitoring Sensor
Component
{1 node per
menitoring location}

Monitoring Data
Alarm Service Sarvice
{1node} {1 node}

Figure 13.5. Example of geographical distribution: Emergency Monitoring System

Example of Hierarchical Architecture:

Cruise Control and Monitoring System

«subsystem» «subsystem» «subsysten»
AutoControl . TripAverages Maintenance
Subsystem - Subsystem Subsystem
S i P
-~ — P -
-~ ’ -
- 4 -
-~) -
-~ . -
- 4
‘ﬁ, AN -
w* ~ . , ‘
. N «subsystem» . e
B \\ 'l - -
. ’ ’ -
(- « . ’ Pl - -
2y| Distance&Speed [z _.--
A Subsystem e
3[-
-7]
L4 hd 1
rs d ‘ 1
Calibration 'A:" :
Subsystem - :
- 1
- [}
-~ ~ . V

«subsystem» I

ShaftSubsystem -

12.3 Example of hierarchical architecture: Cruise Control and Monitoring

24

]
]
]
]
]
]
L]
]
L]
]
L]
]
L]
L]
L]
L]
L]
L]
L]
o
ol
i
]

«external input «external output «external input
device» device» device»
: ElevatorButton : ElevatorLamp : ArrivalSensor
Elevator Elevat:r Arrival
Lam Sensor Input
Button Request \ Output / P
Motor Door
Command HgySIEIEy \ / Command
I : ElevatorControl —
«external output = System «control — «wexternal output
device» —y subsystem» P device»
: Motor : ElevatorSubsystem D : Door
e | Motor | N oor w—
N ar FloosSamp Scheduler Bacaui
X co d L/ Arrival (Floor #)\\ Request
Direction Lamp \ \
Command ‘/ Departed (Floor #)
Floor Elevator Commitment\
r Button r
«wexternal input Request «data collection «coordinator
device» subsystem» subsystem»
: FloorButton > : FloorSubsystem > : Scheduler
| Service Request
4 \L Direction Lamp
Floor Lamp Output
L Output r]
«external output «external output
device» device»
: FloorLamp : DirectionLamp

Figure 12.4 Example of distributed mﬂwg&mmw Elevator Control System
%5 S _';‘a'_ .;?L___ e ,,..\ 5 TR — -E 3 = B : = B

= Fl SRR St S =SS —

Online Shopping System: Structured Classes with Ports

aLSEr iFerac ion e
HCOIMIPONENLs
Customer
[Fiteraction
1

alISer interaction:
HCOT PONEN B
Supplier
Interaction
1

RCustomerC oordinator RSupplierCoordinator

PsuppherCoord inator

PCustomerCoordinator

L

L
sicoordinators
“componenty

Customer
Coordinator

iC
LPL’ reditCardService

L

RDOService

— RCraditard

T

e

PEmailservice

HEETVICED
CrediCand

. '
HETVICE

L
HRBTVICED
Email
Service

: ~__ Service .~
. oy ""'\-.__
RCustAccount —

-

—

alop=Service
(=] e
-

wcoordina o
ACOMMPOnEnts:

Coordinator

x
mail \RCust)
Service

PCatalogService

HFBTVICED
Catalog

. \
SETVICE

Billing [

R InterC oordinator

"\ Service

acoordinat o
HComponent s

L a
= L Supplier
PlInterCoord nator Coordinator
1 1 1
RDOService RDOService T
sount I"‘-._'
Y
Y
Y
Y
)
PCustAccountService ,—LPIJEJSEI'H&‘

Ve

L'\" R lnventor vservice

aERIVICER
Custorme rAccaint
Service

L

HRervicey
Delvervirder

: \
HErVICE

N _—
I‘LI Plrventory Service
L

wRervicey
[nventory
service

Figure 22.25. Service-oriented software architecture for the Online Shopping System

26

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What 1s Software Architecture?
Software Architecture Elements
Examples
The Process of Designing Software Architectures

Stepl: Defining Subsystems
Step 2: Defining Subsystem Interfaces

Design Using Architectural Styles

27

Information Available At
Architectural Design

The Requirements model

Use cases, Use case Diagram, system
sequence diagrams

The Analysis model
Analysis class diagram,
stateCharts for multi-modal classes, and
Domain Object sequence diagrams

28

Artifacts Developed at Architectural
Design

Subsystems + their public interfaces (APIs)

Subsystems class diagrams. A class diagram
for each subsystem

Subsystem dependencies (interaction

diagrams)
Requirements Design
And ———— Architecture design— Class/ and
Analysis models Interaction

Diagrams
29

The Process of Designing Software
Architectures

Software Architecture

Step1: Define overall structure of the system into
components or subsystems, or classes

Step 2: Define Component interfaces and
interconnections separately from component internals
(defined during details design)

Each subsystem performs major service
Contains highly coupled objects
Relatively independent of other subsystems
May be decomposed further into smaller subsystems
Subsystem can be an aggregate or a composite object

30

Step 1 - Subsystem/Components
Structuring Criteria

Decompose the system into subsystems or classes such that each performs a specific
function or task to maximize cohesion and minimize coupling, the following are
typical examples of subsystems or classes

Controllers

Subsystem controls a given aspect of the system (e.g., Cruise cont. Fig. 20.45)
Coordinators/Schedulers

Coordinates several control subsystems (e.g., Cruise cont Fig 20.45,20.46)
Data Collectors/Monitors

Collects data from external environment (e.g., Cruise cont Fig. 20.45)e
Data analyzers

Provides reports and/or displays (e.g., Cruise cont Fig. 20.26)

Servers

Provides service for client subsystems (e.g., MyTrip example)
User/Device Interface

Collection of objects supporting needs of user (e.g., Cruise cont Fig. 20.26)

31

Control, Coordinator, Data Collection
Subsystems

«external output
device»
: Motor

«external input
device»
: FloorButton

«external output
device»
: Door

——

«external output
device»

: FloorLamp

«external input «external output «wexternal input
device» device» device»
: ElevatorButton : ElevatorLamp : ArrivalSensor
Elevator Ellf:;t;r Arrival
Sensor Input
Button Request \ Output p
Motor
Command «system» \ /) Door
: ElevatorControl I Command
= System «control — -3
—_— subsystem» ——
: ElevatorSubsystem
Motor 1 5 Door
Response €Sponsec
4 F(l‘oor Lamdp Scheduler
‘omman .
o / Arrival (Floor #)\ Request
Direction Lamp \4 ‘-\
Command / Departed (Floor #)
Floor Elevator Commitmcnl\\
Button L
RequesE «data collection «coordinator
subsystem» subsystem»
> : FloorSubsystem > : Scheduler
oo 1| Service Request
L \L Direction Lamp
Floor Lamp Output
Output C

wexternal output
device»

: DirectionLamp

Figure 12.4 Example of distributed software architecture: Elevator Control System

32

Coordinator, Service, and User InterfaceSubsystems

aLSEr iFerac ion e
HCOIMIPONENLs
Customer
[Fiteraction
1

alISer interaction:
HCOT PONEN B
Supplier
Interaction
1

RCustomerC oordinator RSupplierCoordinator

PsuppherCoord inator

PCustomerCoordinator

L

L
sicoordinators
“componenty

Customer
Coordinator

iC
LPL’ reditCardService

L

RDOService

— RCraditard

T

e

PEmailservice

HEETVICED
CrediCand

. '
HETVICE

L
HRBTVICED
Email
Service

Figure 22.25. Service-oriented software architecture for the Online Shopping System

: ~__ Service .~
. oy ""'\-.__
RCustAccount —

-

—

alop=Service
(=] e
-

wcoordina o
ACOMMPOnEnts:

Billing [

Coordinator

x
mail \RCust)
Service

PCatalogService

HFBTVICED
Catalog

. \
SETVICE

R InterC oordinator

"\ Service

acoordinat o
HComponent s

o] mpoT
— L Supplier
PlInterCoord nator Coordinator
| M [
RDOService RDOService T T RlnvenioryService
.ount I"‘-._'
3
Y
Y
Y
4
4
\
I".
\
!
\
e
) Q
PCustAccountService PDOService

aERIVICER
Custorme rAccaint
Service

HRervicey
Delvervirder

: \
HErVICE

N _—
I‘LI Plrventory Service
L L
HRErVices
[nventory
Service

33

Service subsystems, Input & User Interface

- - {Layer 3}
wilser interaction: -
WCOIMpOment:
: Operator
Presentation
alarmR equest
{im request, out alarmData)
n| m ﬁrf
winput= CPIOKY
“COMponent: T DT POTE T {Layer 2}
: MonitoringSensor : RemoteSystam
Component Proxy
1
| . ,
5t {event) L
\ pe N monitonngRaquest
I — {im request,
post (alarm) post (event) out monitoringData)
,ly. post (alarm)
— HEATVICEN
. jﬁT;[::_IEL;?:-mD : Monitoring fLayer 1}
. DataService

Figure 13.9. Examples of service subsystems

Coordinator, Control, and Interface

« conrdinators
« subsy stems
: Supernvisony System

Mowe Command \l/ /I\ Vehide Ack

Vehicle Status

Hsz'éﬂs-zgf;ﬂmm auser interactiony
_ . : «subsystemy
- Autom atg}ldsﬂt::r-::ll&d‘-."ehmle : Display System

Figure 13.10. Example of control and coordinator subsystems in Fac-

tory Automation System 15

User Interface, Coordinator, Service

auser imteractonss
C OITPOTIeT b
 Customer
Imteraction

Customer
M Coordinator

Customer +
Response

Request

sooordinators

T OTIIPOTIETI D
: Customer
Coordinator

%Scnd

Aunthornzation

Request J

Authorization
Response

h-\.

Catalog
Info

HEETWICSH HEETVICEN:
: CreditCard : Ermnanl
Service Service

Duery,
Select

Store,
Update,
Request
==
Accout

Info

Figure 13.11. Example

CCEETWVICE W
: Catalog
Service

WSErVICE®R
: Customer
Accoumnt
Service

360

of coordinator subsystem in service-oriented architectures

Another way of forming subsystems

Aggregate into the same subsystem

Objects that participate in the same use case
(functional cohesion)

Objects that have a large volume of interactions
(e,g, Control object & objects i1t controls) or
share common data or file structures
(communicational cohesion)

Object that execute 1n the same time (temporal
cohesion)

37

User Interface Subsystem

RV SIS

: Basic Emergency MonitoringSy stem

wuser interact o
ACOMpOnents
: BasicOperatorPresentation

duser interact ony Alarm Info

i ==

CAlrmWindow =t {]
——\é

Adarm Reques

alarmRequest

| [i" |Eque\t |':'l|"|_"|-|t |{L"l.-|'|.|L1!"\-t
out alarm Data) “=
—F : Monitoring
e | nter:!:ﬁ on» T Event Info Operator
: EventMonitoring (=]

Window
i BETVICED

A larmService

monitoring Request
(inrequest,
out monitoringData)

wservices
: MonitoringData
Service

Figure 13.8. Examples of user interaction subsystem with multiple windows 38

wexternal input devicen wexternal system»
s MonitoringSensor : RemoteSystem

wsoftware system» . .
- wuser interactiony
EmergencyMonitorings ystem - Operator

\L Sensor Input Presentation

wuser interactiony

T A Wi
larmWindeow \ Display Info

“'\-‘"\-.‘_‘5

J/ Sensor Input

winpube «proxy»

: Moum:;mnw : Remote System Proxy
- Operator Request
Com wnser interactions <

: Operatorl nteraction —

Display Info
— = : Monitoring

Operator
Display Info

wuser interactions
: EventMonitoring
Window

',.-"'

Event Noti fication

wservices
: MonitoringData
Savice

wservicen
: AlarmService

Figure 23.8. Integrated communication diagram for Emergency Monitoring System

Aggregate Control, input, and output
of each distributed controller

«coordinators
wcomponents
: Hierarchical
Controller
command — e
. T command
= i T T
o command L[response —
= T
response response 'm.____h-
acontrols wcontrals controls
«components «COmMponents «components
- Distributed - Distributed - Distributed
Coniroller Controller Controller
¥ ."l
lsens-::lr ; Y E]ctuatclr SENsor ff ~ actuator sensor | H‘-. | aﬂctuatnr
nput 4 / H“-\ utput Input ;;’-f / 'HR_[.]ULFIUt Input ,ﬂ{ aﬂx \ utput
// \ /) \\ /| \
! L1
.r"llr b - ! f
winput xoutputs inputs " #OUtpULe ginputy «0utputs
«Ccomponents componenty ﬁ comeen=n components «components components
J;Sﬂmrmpt - ActuatorCmpt : SensorCmpt - ActuatorCmpt - SensorCmpt : ActuatorCmpt

Figure A, Hierarchical Control pattern

40

Example: MyTrip System, uses a Global Positioning
System to locate and coordinate a trip for a driver in

an automobile software system
The Analysis Class Diagram

RouteAssistant

\

Location

T Trip

/

Direction

Crossing i:

PlanningService

Destination

il

Segment

41

Design Class Diagram
MyTrip Subsystems

RoutingSubsystem PlanningSubsystem

RouteAssistant PlanningService

Location Direction

\ v /

Destination

Segment

42

MyTrip Deployment Diagram

Components must be associated with a processor node in
the deployment diagram

e e

-OnBoardComputer -WebServer

I:::I -RoutingSubsystem : :PlanningSubsystem

— .

New Classes and Subsystems

RoutingSubsystem \\

RouteAssistant

Location

TripProxy

SegmentProxy

PlanningSubsystem

PlanningService

Destination

Direction

Crossing

CommunicationSubsystem

Message

Connection

Segment

44

MyTrip Data Storage

RoutingSubsystem PlanningSubsystem
N BB\
I N - \
II > 2T \
N \
/ Q \
y CommunicationSubsystem \
N

TripFileStoreSubsystem
MapDBStoreSubsystem

45

Example: Cruise Control and
Monitoring System

“«

- «system» | " o
.} CruiseControl |- R . 3
| &Monitoring | . o . o _ v
_ System L IR . -
«subsystem» | o «subsystem»
- CruiseControl - fg-cecivico-aloo2) - Monitoring”
Subsystem.- ' Subsystem

Flgure 12.8 Cruise Control and Monitoring System: major subsystems

46

wa3shisqng jo4107) astn. D 40f wviSmp Ssv]D) 62’0z @4nbi4

" Example: Cruise Control
And Monitoring System B"“'ea“'“w?

«input device interfacey

tDevicelnterface

«input device interfacey «input device
CruiseControl interfacey
LeverInterface Brakelnterface

Notifies Notifies
4

-

Class Diagram of the
Cruise Control

«input device
interfacey
Enginelnterface

«state dependent
control»

«state dependent
control»
StateMachine

T

CruiseControl

«algorithmy
Acceleration

StateMachine

Controls
4

«algorithmy

«algorithmy

Controls

Notifies

Triggers

Subsystem

«timer»
Timer

Triggers

. i SpeedControl
Cruiser Algorithm
«algorithm» | , Outputs to

Resumption

«output device
interface»
ThrottleInterface

«input device interfacex»
CalibrationButton
Interface

Notifies
y

«state dependent

controly»
CalibrationControl

W Controls

«entity»

Uses

Calibration
Constant

«entity» «entity» .
: ses Uses -
Desired e Current = > B‘f?ht)/”
Speed Speed istance

Uses
«input device

interfacen
ShaftInterface

Updates
Y

«entity» Uses

ShaftRotation < 47

Count

«input device

Example: Cruise Control System;
The Monitoring Subsystem

Resets
)]

«algorithm»
Maintenance

Displays

on
~

interface»
ButtonInterface
A
[I
«input device «input device «input device
interface» interface» interface»
Calibration TripReset Maintenance
ButtonInterface ButtonInterface ResetButtonInterface
Resets ? . .
\f Triggers «timen» Triggers
Displays Timer
«output device :
54 o «algorithmy
interfacey» TrioAv :
TripDisplay [REhee > centityy e
Interface ? Uses Distance Uses

Jay

7

«output device
interface»
Maintenance
DisplayInterface

«algorithmy»
TripSpeed

«algorithmy»
TripFuel
Consumption

«algorithmy
QilChange
Maintenance

«algorithmy
AirFilter
Maintenance

«algorithm»
MajorService
Maintenance

i

«output device interface»
DisplayInterface

Figure 20.26 Class diagram for Monitoring Subsystem

48

Example: Aggregating classes into a subsystem using temporal

cohesion

«passive input . assive input
pd ; P «external timer» “P “f wt. i
evice» o device»
. i : DigitalClock
: Engine : Brake
read read
(out _ (out
engine timerEvent brake
Input) Input)
«temporal clustering»
. AutoSensors .
«coordinator»
: AutoSensors
read (out Monitor read (out
engineStatu:)/ \brakeStams)

I S

«input device
interface»
: Enginelnterface

Request

«control»
: CruiseControl

Figure 20.45 Detailed software design of Auto Sensors task

L cruiseControl

«input device
interface»
: Brakelnterface

49

Example: aggregating classes

«wcontrol»
: CruiseControl

USlng fU.IlCthIlal COhCSlOIl cruiseControl

Command

v

r reachedCruising

«mutually exclusive

clustering»

: Speed Adjustment

enablelncreaseSpeed,
disableIncreaseSpeed

-~

«algorithm»

: Acceleration

«coordinator:
. SpeedAdjustment

Coordinator

enableMaintainSpeed,
disableMaintainSpeed

«algorithm»

enableResumeCruising (out reached

A

«algorithm»

Cruising), disableResumeCruising

read
(out
current
Speed
Value)

Figure 20.46

’

: Cruiser : Resumption
Y N yd
/ read (out
throttle ‘ desiredSpeed
Value read (out Value)

throlt]ePositionl

throttle
Value

«periodic output
device interface»

desired

Speed «entity»

Value) | : DesiredSpeed throttle
Value
-

: ThrottleInterface

«external output
device»
: Throttle

'

wentity»

read (out
currentSpeed
Value)

v

: CurrentSpeed

read (out
currentSpeed
Value)

v

Detailed software design of Speed Adjustment task

read
({out
current
Speed
Value)

50

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What 1s Software Architecture?
Software Architecture Elements
Examples
The Process of Designing Software Architectures

Stepl: Defining Subsystems
Step 2: Defining Subsystem Interfaces

Design Using Architectural Styles

51

Step 2 - Define Subsystem Interfaces

The set of public operations forms the subsystem
Interface or Application Programming Interface
(API)

Includes operations and also their parameters,
types, and return values

Operation contracts are also defined (pre- and
post-conditions) and accounted for by client

subsystems — they can be considered part of the
API

52

Subsystem Interfaces

Interfaces can be methods such as Notify, update,

Or can be classes such context.

E— Ngt?fy\ <<Observer>>
<<Strategy>> FeedbackObserver
(r— FeedforwardStrategy (rom POAD1-Feedback)
(from POAD1-Feedback)
Context Q
ﬁ Update777777777
‘ <<Obsener>> V <<Strategy>> ‘
O— ErrorObserver - O — —(—— FeedbackStrategy
(from POAD1—Feedback) . - (from POAD1—Feedback) ‘
Update\ ~ Notify o Context\ ‘
| B - N\
| N - N |
N N \
‘ XQL\ <<Blackboard>> ®
T Blackboard -]
‘ setData (rom POAD1-Feedback) getData

Internal and External Interfaces (Informal Notation)

Web
Sarvice G

ActivityPO
yyService

AdrlinePO 5
Service

& Lodging PO

Client-side —_— e HTTP/HTTPS

application

Java EE — = SOAP call

application
Data access

External Wweb

service provider

— = SMTP

Web sn_ervices [Scope of the

endpoint =4 _| application (not
oo s medl @ cOMponent)

Data
repository

Figure 4.5

Diagram of the SOA view
for the Adventure Builder
system. The OPC (Order
Processing Center)
component coordinates the
interaction with internal and
external service consumers
and providers

54

Client-Server Interfaces (Informal Notation)

server server

server

client

server

client

ATM 0S/2
client process

- TCP socket connector with
Server client and server ports

Windows
application

Figure 4.3

Client-server architecture
of an ATM banking system.
The ATM main process
sends requests to Bank
transaction authorizer
corresponding to user
operations (such as
deposit, withdrawal). It also
sends messages to ATM
monitoring server
informing the overall status
of the ATM (devices, sen-
sors, and supplies). The
Reconfigure and update
process component
sends requests to ATM
reconfiguration server
to find out if a reconfigura-
tion command was issued
for that particuiar ATM.
Reconfiguration of an ATM
(for example, enabling or
disabling a menu option)
and data updates are
issued by bank personnel
using the Mon1itoring
station progranm.
Monitoring station
program also sends peri-
odic requests to ATM
monitoring serverto 99
retrieve the status of the

Client-Server Interfaces (Informal Notation)

Figure 7.1
Graphical notations for
interfaces typically show a
symbol on the boundary o
the icon for an element.
Lines connecting interface
symbols denote that the
interface exists between
the connected elements,
Graphical notations like this
can show only the exist-
ence of an interface, not its
definition. (a) An element
with multiple interfaces. For
elements with a single
interface, the interface
symbol is often omitted.
(b) Muttiple actors at an
interface. Internal client and
""" | Element | Interaction | External client both interact
(type unspecified) @ Interface __,, (type unspecified) | With Transaction Authorizer
' viathe same interface. This
interface is provided by
Transaction Authorizer ang
required by both Intggnal
client and External client.

Interfaces in UML Notation)

IMovementControf | C] ISensor UML uses a lollipop to
: o daldge denote aprovided interface,
PrOV_lded Oh Door ;{C ired | which can be appended to
Service eql} Notation: UML classes, components, and
(server) Serylce packages. Required inter-
(Client) faces are represented with
— the socket symbol, whichis
cen also appendd to classes
e oo andothertypes of elements,
| wsey | Minterface UML also allows a class
f symbol to be stereotyped
as an interface; a dashed
line with a closed, hollow
arrowhead shows that an
element realizes an interface,
— The operations compart-
ment of the class symbol
can be annotated with the
interface’s signature ifor-

Mindimme me el o

Figure 7.2

Figure 7.3

An interface can be shown
separately fromany element
that realizes it, thus empha-
sizing the interchangeability
of element implementa-
tions. OrderDao (and other
classes not shown) require
an object thatimplements a
database connection,
which is represented by the
Connection interface.
Many elements realize this
interface, representing the
interchangeable alterna-
tives of database connec-
tion implementations.

/

/ ervers

Implepient the methods open().etc.)

Client

»»»»»»

equied v 7 provideo
. \ .
nterfaces 7/ Interfaces

MutualFundAnalyzer

FinancialPlanner -—: - - - 7@
\
\
\ /

UpdatePrices

/

UpdatePrices

Figure 14-160. Inferface suppliers and clients

Fy
:{

ManualPriceEntry

QuoteQuery

59

«interface»
GetQuotes

gef ou ote(name:String):Money

required \

N \ dependency
\

provided

required -
interface . -~

«interface»
UpdatePrices

getPrice(name:String):Money

provided

FinancialPlanner

QuoteQuery

updateChanges(list:SecurityList) | interface

A

generalization of interfaces

«interface»
PeriodicUpdatePrices

implements the
methods 1in both
Interfaces

<}_~._..

riodicUpdate(list:SecurityList, period:Time)

QuoteServer

e 14-161. Full interface notation

60

Example: A Digital Sound Recorder
From Requirements-to-Analysis-to-Design

The main function of the DSR 1s to record and
playback speech.

The messages are recorded using a built-in
microphone and they are stored 1n a digital
memory.

The DSR contains an alarm clock with a calendar.
The user can set a daily alarm. The alarm beeps
until the user presses a key, or after 60 seconds.

61

Digital Sound Recorder:A Complete Example
From Requirements-to-Analysis-to-Design

Ficure 2.1: External appearance

Digital Sound Recorder

Cm ird & mes.:—.n-;l>
/CDIJ;-‘DJ-:I& n1e55:|-;le>

C)

<
\(
i

>

Figure 2.3: Use Case diagram

62

Digital Sound Recorder:
A Complete Example

Record
messadge, set

alarm, set time™ ————

i Flay message,
¥ “=——heep alarm

User fi Elmm\//
=

Powwer

Digital Sound Recorder

B

Sensors/Actuators
1
+Buttons
+Microphone System
+5oresn
+Speaker
+Battery Level Mater .
* L]
k L]
' L]
. |
: Interfaces

* # 4 ® ®E ® F ¥

-fnalog To Digital
-Digital To Analog
-Digitral to Digital

X

Battery

Figure 2.2: Context-Level diagram

63

Digital Sound Recorder:
A Complete Example

System
Sequence
Diagram

User

<< actor >

s System

1: Play Meassage

0.5 5.}

3. Display Progress Indicator

=

.

2: Start playing sound

=<

e

5: Display Clock

=

&: Display Progress Indicator

7 Stop

4: Next Second

[05 g }

0.5s)
8: Stop playing sound

Ficure 2.4: Plaving message scenario

64

Digital Sound Recorder:
A Complete Example

=-= actor == I Swvstaem
Usar

I 1: Play Messags |

=

2 Start playving sound

W

> Display Progress Indicator

S5 Display Clock

A

G Display Prograess Indicator

S = 7IoAlanm!
— :I

|j._.-

5 s

A

fo.s T
] il 2 Start playing alarm
I
9 Displaw .f:'-.li'?ll'r‘l‘l Indicator
10: Stop =S - 11: Stop playving alarm sound

-1

13: Display Coclk

; | 12 Next Second

----O- TG -

Ficure 2.5: Adlarm while plaving scenario

@
S S S S
i)
e
@

Digital Sound Recorder:
A Complete Example

™

. Eattery | | D Swstaerm | | : Displany IS peaker |
i I I
| |
; | 1: MNMext sscond | 1
o | T T] Adter somea minutes
.] wwithhaout armny activity
. - — — [
;- | =2 Maext Second | 1
3 Shwwitch off display | 1
"I_;_I 1
4 Swwitch off glr‘nplif_:e-r :
| L]
L | |
| | |
; | S5 MNext sscond | 1
| 1
; | S o Adarrm ! | 1
- - | |
T Swwitah on displayw | I
. L. |
g Switch omn amiplifier 1
1
|
D Start playimnag alarm “Eﬂ::lLll‘ll:l —-—I—I
T
| >|:::|
L | |
1 | 1
[| 1
- I 10 MNMext second | 1
|| | |
11: Mo Powve=r! 1 I 1
. e 1 12 Stop playing alarm scourncl 1
T
132 Swwitch off amplifier >I:;:I
I
14 Swwiteh Off dispolay I -‘—L'_I
,——L:_I 1
1
T | 1
| | |
| | |
| | |
. ' .

Figure Z2.0: FEnterimng amnd exitimgs

stand-b» mode scenario

66

Digital Sound Recorder:
A Complete Example

Analysis
Class Diagram

Display

Eattery

Iserinterfaca

Kevyboard

AlarmClock

AundioControllar

Audiolnput

MessagehMemory

Microphone

AudioOutput

Speaker

i 10
Message |

Figure 3.2: Sound Recorder class diagram

67

: Userlnterface - AudioController - Message : . AudioQutp
Memory

| 1:playMessage (X) | 2: getMessage () |

3 getAudioBllock ()

I

4: playAudioBlock
1

5: deleteMessage (X)

6: stop ()

<
7: deleteMessage ()

S~

-
|
|
|

Figure 3.8: Deleting a message while playing it

Digital Sound Recorder:
A Complete Example

Design
Class
Diagram:
Designing
The
Subsystems,

The names of

subsystems
Should be
improved

[]

<<subsystem:s=
Alarm Clock

™

™

d

[]

<<subsystem==
Battery

<<Interface>p

)

<<Interfacep>

—

<<=subsystem==
User Interface

- X

[]

<<subsystem:s=
Memory

<<subsystem==
Audio
<<Control>>

Figure 3.3: Subsystems in the sound recorder

69

Digital Sound Recorder:
A Complete Example

4 udioController
_ IMessage _ Synthesiser
AudioB ook N
T . laviessage) .)
SgetaudioBlocki) payi L % buildAudioBlock)

SaetSample() [#appendAudioBlock() :r;ﬁ’:'tjrr‘ff:::];;' ! % playNote()
addSample() - %qetHeader() *f-l}:ﬂdl%rﬁw v % playChordi)

% %setHeader() Mstop() Ssilence)

CompressadAudioBlock

. Audiclnput AndioCutput
Interactions between | [imer —————
] %recordCompressedAudioBlock) :':'Iaf"_f:":'r'?"'re‘_E'E'efJ:P‘J'"'I""E'I"":k" "
Ob_] ects are deﬁned %selectinputFilter|) *_;"E:;:bg{'l':tﬁll'tfiﬁé i'_I: ;|
Using Design
Sequence diagrams Microphone Speaker

*getSamplel) R playSamplel)

Figure 3.4: Audio subsystem class diagram

70

Digital Sound Recorder:
A Complete Example

AudioController

1

MessageMemory

¥newMessage()
CdeleteMessage()
¥getMessage()

>

Message

%getAudioBlock()

¢

AudioBlock

Is a sequence of

. ®appendAudioBlock()
| ®getHeader()
¥setHeader()

1

[

0.*

Figure 3.7: Message memory class diagram

Digital Sound Recorder:

A Complete Example

o P R
1

Tirmme

S

AdarmiiZlock

BgetTimed)
ToetDate])
TogoetSAlarmmd)
WoetMlarmState(
WosetllarmState(|

e

T get()

st)
ThnextSecond({)
wovoleHoaur()
ToyolehMinmnuted)

Az T e

Todaw

i

LF
E—]

CDhate
Woat()
Wt)

ThaextDaw({)
WoyveleDawyw()
woyvoclehMMonthd)
woyvoleYyaeard)

wure 3.9: Alarmm clock class diagsram

Digital Sound Recorder:
A Complete Example

Keyboard

AvdioController

Battery

WootLastKey()

AlarmClock

Lserlnterfacea

FsotUsaerfode()
“Alarm!)

LserMode

Factivate()
“deactivate()
Fupdate()

Sgatlevel()

"'-_-'l-i (=14

GraphicContaext

L

MenulUsarMode

SettingTimeUserMode

SettingDatelUserMode

Figure 3.11: User interface subsvstem class diagram

Supdate()

AN

ClockWizw

TaskWiew

MenuWiew

@drawlLine()
WdrawPoint()

SdrawText()
SforegroundColor()
@hackgroundColor{)
®font()

Welear()
WsetViewport])

Display

®0n()
"E:Jf‘ﬁ:)

73

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What 1s Software Architecture?
Software Architecture Elements

Examples

The Process of Designing Software Architectures
Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

Software Architecture Styles
The Attribute Driven Design (ADD)

74

OUTLINE of SW Architecture Styles

» Introduction

Software Architecture Styles

» Independent Components
» Virtual Machines

» Data Flow

» Data-Centered

» Call-and return

» Other Important Styles
» Model-View-Controller
» Broker Architecture Style
» Service Oriented Architecture (SOA)
» Peer-to-Peer Architecture
» SW Systems Mix of Architecture Styles

75

Design Using Architectural Styles

An architectural style 1s a class of architectures
characterized by:

Components types: are component classes
characterized by either SW packaging properties
or functional or computational roles within an
application.

Communication patterns between the components:

kinds of communications between the component
types.

76

Families of Architecture Styles

There 1s a number of families of styles that has been
defined and used in many software systems Notable
examples are:

Independent Components: Event-based
Architectures

Virtual Machines

Data Flow: Pipes and Filters
Data-Centered Systems
Call-and Return Architectures

77

Architectural Styles
Grouped Into Five Families

Independent Components. SW system 1s
viewed a set of independent processes or
objects or components that communicate
through messages.

Two subfamilies:

- Event based systems (implicit and direct
invocation style), and

- Communicating processes family (client-server
style).

78

Architectural styles: Event-based Architecture
Some processes post events, others express an interest in events

——p Control

g Publish
====——pp Subscribe

Event

+

™
=
"IL-..______

The publish and subscribe event-based architectural style.

79

Event-based Architecture

Implicit Invocation: The Observer Pattern (to be discussed later)

+addEventListener()
+removeEventListener()
+notify()

1

-state

+notify{)
+getState()
+setState()

+handieEvent ()

T

A

» ~state

+handleEvent ()

{lass diagram for event-
based implicit invocation
architacture

80

Events at Different Levels of Abstraction

Represented b

»

Mapped to

Events T User 1Actions Event Target
O Pixel
] Character

Physical I/O Objects

Actions
0 Window

Logical GUI Objects
O Text field

Actions Events

Application Objects

, 1 Article
Database Objects
[News feed

Events

[Key pressed on
keyboard

] Mouse moved

] Menu item
selected

(1 Article window [Article moved
O News article list O Article dropped

[Message created

] News arrived

81

Example: GUI Event Processing

1 Event: “Button” “double-clicked” “17:31:22

O EventSource: Button managed by the GUI subsystem of the operating system

O EventHandler: Notification method in the application code

O EventManager: Operating system

s | i

vl anEvent Event g

new (...

anhounce(anEvent)

.EventManager

or GUI library code

aHandler:ClickHandler | :Application

register (aHandler)

new()

0

]J‘ dispatchEvents ()

getinfo ()

action(aButton, anEvent

concurrency!

Software Architectures Chapter 5: Event-based Architectures

118

82

OUTLINE of SW Architecture Styles

e Introduction

Software Architecture Styles
*Independent Components

 Virtual Machines
» Data Flow

» Data-Centered
 Call-and return

* Other Important Styles
Buffered Massage-Based
Model-View-Controller
Presentation-Abstraction-Control
Broker Architecture Style
Service Oriented Architecture (SOA)
* Peer-to-Peer Architecture

* SW Systems Mix of Architecggure Styles

Architectural Styles: Virtual Machines

2. Virtual Machines. Originated from the
concept that programs are treated as
data by a virtual machine, which 1s an
abstract machine implemented entirely
in software, that runs on top of the
actual hardware machine.

84

Architectural Styles
Java Virtual Machines

Java Virtual Machine. Java code translated to
platform independent bytecodes. JVM is
platform specific and interprets the bytecodes.

ER R

Role of Java‘\ﬁrtua
Machine

85

Virtual Machines: The primary benefits are the
separation between instruction and implementation,
(Used when 1nputs are defined by a scrip or Commands,

and data)
Inputs Program Interpreted
> data program
4 State of the
mreted Next statement/
progr mstruction
data updates
L 4

Outputs Statement/mstruction Current state of

“ Interpreter

The virtual machine architectural style.

86

OUTLINE of SW Architecture Styles

e Introduction

Software Architecture Styles

*Independent Components
* Virtual Machines

e Data Flow
» Data-Centered
e Call-and return

* Other Important Styles
Buffered Massage-Based
Model-View-Controller
Presentation-Abstraction-Control
Broker Architecture Style
Service Oriented Architecture (SOA)
* Peer-to-Peer Architecture

* SW Systems Mix of Architecgt7ure Styles

Architectural Styles: Data Flow

3. Data Flow. Include batch sequential systems
(BSS) and pipes and filters (PF).

- BSS: different components take turns at
processing a batch of data, each saving the result
of their processing in a shared repository that the

next component can access. EX. Dynamic control
of physical processes based on a feedback loop.

- PF: A stream of data processed by a complex
structure of processes (filters). Ex, UNIX.

88

The pipes-and-filters architectural style.

Example: P&F Compiler Architecture ()

O Sources & Sinks, Input & Output Streams
g = Machine
O Flexible composability s @

0 Aggregation / Decomposition of Filters Generator

Machine
I Code
Stream

Unicode
Character

Stream Bytecode

Optimizer \@
Semantic Bytecode
@ M

e)

Error
Message
Stream

PF Another Architecture Example:

Watch for the Two Views

Do

Component View

Extractor l—u+ Sorter 1-u+ ﬁmmgntnrl—lr]ll Formatter

KEY: Pump[__ ¥ Fiters__# Sink§___| Plps m==pa Invokes —+ Data Flow o—»
Module View «« [minface >»
«x ghatract »»
OutPort L
inFort nextPort MM w
connectTo{nPort pord cloasy)
pay | I
<« gbhiract »>
Fiter
| A |
| Extrector | Sarter Aggregetor Formetier
| mmcute() | [Josent) cpan() opan()
putDate(Oa)sct cate) putDate(Objuct date) puDeta(Objsct deta)
E'ﬂﬂﬂ“ H ﬂﬂﬂﬂ ﬂ|ﬂin

91

OUTLINE of SW Architecture Styles

e Introduction

Software Architecture Styles

*Independent Components
* Virtual Machines
» Data Flow

- Data-Centered

e Call-and return
* Other Important Styles
Buffered Massage-Based
Model-View-Controller
Presentation-Abstraction-Control
Broker Architecture Style
Service Oriented Architecture (SOA)
* Peer-to-Peer Architecture

* SW Systems Mix of Architecgtzure Styles

Architectural Styles

4. Data-Centered Systems. Consist of having
different components communicate through
shared data repositories. When data
repository 1s an active repository that
notifies registered components of changes
in 1t then-blackboard style.

93

Data-Centered Architectural Styles

tory Architecture Style

1

Repos

Database system

delete
retrieve

Command line client
GUI form client

94

Data-Centered Architectural Styles

Repository Architecture Example: CASE
Tools Example.

Program
Commands scripts Menu

Diagram drawing Diagrams
Fill-in forms Reports (text
(specifications) specifications)
Code for

Generated diagram -

reverse engineering form RE

Graphic Textreport Textcode
files files files

Data-Centered Architectural Styles

Repository Architecture Example: Compiler
Architecture

o Statement
4 |
Var = exp H R
(Int) (Int) {x] address of variable x
] /‘]\ In symbol table
x bY + 1
(Int) (Int) (Int)
Symbol
table Parse tree

Type check
by semantic
parser

96

Data-Centered Systems: Central data repository

Components perusing shared data, and communicating
through 1it.
Used 1n Database intensive systems

—— (ontrol flow
e [ata flow

The Blackboard architectural style.

97

Data-Centered Architectural Styles
Blackboard Architecture Style Example

Figure 4-16.
Lunar Lander in
blackboard style.

| Compare with the PFs Style

Figure 4-15.
TLunar Lander in
pipe-ard-filter
style.

98

Data-Centered Architectural Styles

Blackboard Architecture Style:
Intelligent Agent Systems Example

Figure6

Blackboard architecture

99

Data-Centered Architectural Styles
Blackboard Architecture Style:
Travel Counseling System Example

Blackboard archltecture “
for a travel consuiting
system

100

OUTLINE of SW Architecture Styles

e Introduction

Software Architecture Styles

*Independent Components
e Virtual Machines

 Data Flow
 Data-Centered

 Call-and return
* Other Important Styles
* Model-View-Controller
* Broker Architecture Style
* Service Oriented Architecture (SOA)
* Peer-to-Peer Architecture
* SW Systems Mix of Architecture Styles

101

Architectural styles

5. Call-and Return Architectures. Due to heir simple control
paradigm and component interaction mechanism , these
architectures have dominated the SW landscape by the early

decades of the SW Eng.

There are several styles within this family: examples are
1) Main program and subroutine,
2) Layered architectures.

Main Program and Subroutine Style. Programs are modularized
based on functional decomposition, single thread of control held
by the main program, which is then passed to subprograms,

along with some data on which the subprograms can operate.
102

Main Program and Subroutine Style

Course registration g Main component
System example _—
- —
— —
I
h
- e < -
ourseOffering
I] I
. I
— —
I

103

Architectural styles

-) Layered. Functionality is divided into layers of
abstraction-each layer provides services to the
layer(s) above it, and uses the services of layer(s)
below it. In its purest form, each layer access only
the layer below 1t, but does not depend on other
lower layers.

Connections:
Usually procedure
calls

Components;
composites

Basic Utility

of various
elements

104

Layered Architectural styles
Example of a Layered Application Architecture

EXTERMAL SY¥STEMS
USERS
See=rwileer COrmsuirners

= ' N
o
E e U Componamts N YT Y
=X
— Prasamntaticn Lo gic
E Componants
(=
) = z
L= — T, =
— , — h =2
E Service Interfacas Peszage Types - - i i
] =] = Ei; nE
(] —
o | & = =
] L=, =
o pRlicaticn Facade T
g O -t
= O
v << Business Bus imess Business
g Whor ke fllowa Compeorents Emtitias
L.
'.‘...-—
iﬂ: E Data Access Data Helpers/ Service
g E Compomnents Litilities Agents L A S
“ e, o

I I

Data O j [SeErwvices j 105

)
:
3
2

OUTLINE

®* Introduction

» Data Flow
» Data-Centered
* Call-and return

» Other Important Styles
e Model-View-Controller

106

Model-View-Controller Architecture Style

Database

(-II architecture

* The Controller manipulates the data Model
* The View retrieves data from the model and
displays needed information 107

Model-View-Controller Architecture Style

Dynamic Interactions

]

i

i
L

initiatize(), register()L
initialize() S
. register()
g update() .
5 notify()
h update() - e
Sequence diagram for MVC
| L architecture

108

Model-View-Controller Architecture Style

Web Applications Java-based Implementation Example

Web server

MVC architecture on Java

Web platform .

OUTLINE

®* Introduction

» Data Flow
» Data-Centered
* Call-and return

» Other Important Styles

* Broker Architecture Style

110

Broker Architecture Style

6 o

m&;ﬁ_-ﬁwﬁgq‘ﬂfmi»‘“" L

Brokers gets requests from client proxies and manages them by forwarding

to server Proxies or dispatches them to other connected brokers .

Broker Architecture Style

Transfers
messages

Y

+pack data()
+unpack_dataf()
+send_request ()
+return{)

A

+call_server()
+start_task()
+use_Broker API()

—ilf—

Transfers
messages

Y

Uses
API

+main_event Toop{)
+update repository(}
+register_service()
+acknowledgement ()
+find_server()
+forward_request()
+forward_response()

—_—

Calls

+pack_dataf()
+unpack_data()
+forward_message()
+transmit_message()

A

Uses
API

-

+pack _data()
+unpack_data()
+call_service()
+send_response()

Calls

o W oy . —

+initialize()
+enter main_loop(}
+run_service(}
+use_Broker_ API()

112

Broker Architecture Style

f Se

¥

N

-
I
]
]
i
t

’——‘ callServer(}

—

-

o

r service()

packData() 1

I iﬂ

<

update repository()

acknowledgement

sendRequest()

i

_forwargRequest()

- -
- -

~eeT
A

| resuit |

Client-side

I

i findServer()
r

g

I

i

]

£

1

i

i

'

' .
 Yegiste
- .

i

]

r

1

I 3

I

1

1

1
Ca115ervice()

unpackbata{)

I"""‘"-!—-'u.-

-

forwardResponse()

runService(}

e

IS

s
—

A

~ return()

< U
unpackData{)}

I

'

‘-HH--_“‘I

-

findClient() L packbata()
I
i
1
!
i
i
i
r
b
I
i
I
]
t
I

ﬂ-ﬁ--—hh--’-~

Server-side

-

-y o .

h‘-ﬁlq'l--ﬂ-l-l-lﬂhl—-hl-li—!
—

113

» Server component implementation and location transparency

» Changeability and extensibility

» Simplicity for clients to access server and server portability

Example: CORBA, Common Object
Request Broker Architecture

——— T — — i — —— i — —

—— i ——— ——— . —— — i — = — —

Returnvalue, out args

Client-Side Proxy g Server-Side Proxy] Skeleton Tnterface
IDL 1 | (IDL) FEPOSItOry

Software bus

CORBA architecture

The Object Request Broker (ORB) protocol provides a software bus on the
network for brokering the requests from clients and the responses from
servers; the protocol also supports increased interoperability with other

implementations.
115

Example: CORBA, Common Object
Request Broker Architecture

CORBA also supports the Dynamic Invocation Interface (DII), which
allows CORBA clients to use another CORBA object without knowing its
interface information until runtime. Dynamic Skeleton Interface (DSI) is
used by ORB to issue requests to objects that are implemented independ-
ently and for which the ORB has no compile-time knowledge of their
implementation. Although the dynamic approach of DII and DSI is more
flexible, they are always slower than their static IDL counterpart. The
dynamic remote invocation mode was the only invocation mode available
in the early version of CORBA. In some cases the IDL is not available at
compilation time and the stub and skeleton cannot be generated at compi-
lation time. For example, if a COM client wants to make a CORBA request

or a DCOM object wants to provide its services on CORBA, a bridge inter-

face is required to do the conversian Tn tho £-10 116

OUTLINE

® Introduction

» Data Flow
» Data-Centered
* Call-and return

» Other Important Styles

* Service Oriented Architecture (SOA)

117

Service Oriented Architecture (SOA)

Style

Makes use of an Enterprise Service Bus ESB
Used in web-based systems and distributed computing

[Geot | [Gt | | Ghot | [e |
TY i | '
b | O]
TRY HP[I:ﬂ:,aI‘efuI:l | E‘iEHiL"FILE'
. R B
o
S
.
L
Before 44

SO

A L
=

didy

didy

The SOA Style

= |3 |8 |]E|ﬁ
EsB
= 5

8 8=

Iy

nodes make resources available to other
participants in the system as independent services that
the participants access in a standardized way using theilkSB

|
.25,
_{ﬁ
uls

O O

The SP publishes/updates services using the Web Service Description Language (WSDL’
On the Universal Description Discovery and Integration (UDDI) registry.

Refers to —————®1 -

&

& <,
N @2 -
S & %, £
» ¥ < S =
o o) Q
< o & e
o Sy T
4. G =
iy 0@ O
‘s)
< o =z
Q, @
%, B
® a
e 2

AT

SOAP
request

gi'r.o.vidér SOAP Service requester

Hpleweb service interaction among provider, user, and the UDDi registry. 119

Service Oriented Architecture (SOA)

Style: A Map of SOA Components

Web Portals

Human Business Process Management (BPM)

|

Enterprise Service Bus (ESB)

Data Services

>
| -

)

Sl=

c| 8

Ol &

> €l 2
(e

AR

n| ol C

O >

© | S

cCl n

® o))

= | @

n'd

The ESB Performs:

* ¥ Real time monitoring

data transformation
Intelligent routing

Exception handling
Service security

Process Services

Business Logic

Orchestration

System BPM

Databases

Systems of Record

120

Cloud Services Architecture
SOA supports Cloud Computing Models

Grid = Service + Resource The Grid of Services
and Resources

_ . - Client
Clients request the Grid Services l
and Resources from the Service Directory
Service directory

Grid service architecture

Cloud Services Architecture

Human as a service, Software as a service, Infrastructure as a service

Huaas Saas

[aaS

=1
Crowdsourcing e.g. Mechanical Turk {-—
pa s]
| Information SQggregation Services e.q. lowa Electranic Markets I (o]
o]
]
Applications e.g. Google Docs o]
L]
Application Services
Composite Application Services e.g. Opensocial
Basic Application Saervices = e g. Opaenid
=
= = = (=] > (=] <
=
Programming Enwvironment e.g. Django g
o
Exaecution Enwvircornmeant e.g. Google App Engine
I nfrastructure Services g
Higher infrastructure Services o

Basic Infrastructure Saervices

Cormputaticonsal

Storage

Pl twrairbc

ae.g. O penFlow

eag. Googlke Bigtablae I
e 0. Hadoop MapReduos
e.q. GoogleFS

Resource Set

Wirbual Resource Set

e.q. Avmazmon EC2

Physical Resource Set

e g. Erfmulal

oSy

usluabeuzyy apfy-au Buuoyuopy ‘voneinjuen ‘ualfojdag

Hoddns ssauisng

YuawaBeueuw s voneauayny ‘uryg Guseiapy

.

The Internet of Things (IoT)

layer

\pplication

Network
fayer

Sensing
layer

IGURE .15

RFID label

platform

Sensor
network

Sensor nodes

Merchandise Environment intelligent Tele- Intelligent Smart
tracking protection search medicine traffic home
. Cloud computing

Information
network

Road navigators

Fhe architecture of an loT consisting of sensing devices that are connected to various applications via mot

1etworks, the Internet, and processing clouds.

123

Example in Telemedicine

Hospital
or
medical centar
server PC

art ..|.

‘IEEE802.15.4/ M~
{ ZigBee compliant
AN ommunications

Doctors
i Mobile PDA b

| sensor

Wearable devices
node

(Chest belt, wrist band, etc...)

g 33

" Cellular
| Networks

Patient's
mobile phone

FIGURE 9.19

an be transferred 1g doctors or medical professional
sensor network.

Cost reduction leading

Miniaturization, power-
efficient electronics, and

available spectrum

Ability of devices located

indoors io receive

Software agents and
advanced sensor
fusion

Teleoperation and
telepresence: Ability to
meniter and control .
distant objects Physical-worid

web

geolocation signals

1 ocating people and
everyday objecis

to diffusion info 2nd
wave of applications

Technology reach

Demand for expedited
logisfics

Surveillance, security,

healthcare, transport,

food safety, document
management

RFID tags for
facilitating routing,
inventorying, and loss
prevention

Supply-chain helpers

e

Vertical-market applications

Ubiquitous positioning

2000

FIGURE 9.14

2010

Time

2020

Technology road map of the Internet of things.

o
1)
N

OUTLINE

®* Introduction

» Data Flow
» Data-Centered
e Call-and return

» Other Important Styles

e Peer-to-Peer Architecture

126

Peer-to-Peer Archltecture Style

Hybnd Client-Server/Peer-to-Peer Napster

P2P systems hecame part of the popular technical parlance due in large measure to the
pOpu]arity of the original Napster system that appeared in 1999. Napster was designed .
to facilitate the sharing of dtgztal tecordings in the form of MP3 files. Napster was iy :

however, a tue P2P spstem. i deszgn chomes however ate instructive.

[KX Tt

Peer &
Content
Directory

1

s

s AR

Figure 11-4,
Notional view of
the operation of
Napster. In steps
I and 2, Peers A
and B log in with
the server. In step
3, Peer A queries
the server where
it can find Rondo
Veneziano’s
“Masquerade.”
The location of
Peer B is
retumed to A
{step 4). In step
5, A asks B for
the song, which is
then transferred
to A {(step 6).

127

Peer-to-Peer Architecture Style
The Gnutella Examnle

Figure 11-5.
Notional
mteractions
between peers
using the origimal
Gnutella
protocol.

* Pure Peer-to-Peer
Architecture

* A sends query for a data
resource to neighbors B and H, \ =~
they pass it on until the peer havin;
the resource 1s found or until

a certain threshold of hops

1s reached 1

Peer-to-Peer Architecture Style
The Gnutella Example

Figure 4.4

A CE&C diagram of a
Gnutella network, using
informal notation

. .an akin;, [
207.192.20.13

Requestreply using Gnuielia
protocol owver TCP ar UDP

% HTTPE file transfer
i fromAtoB

Ultra peers runs in systems with fast internet connects and are responsible for request routing
and responses, they are connected to a large number of other Ultra peers and leaf peers, while
the leaf peers are connected to a small number of Ultra peers 196

Peer-to-Peer Architecture Style
The Skype Example

Figure 11-6.
Notional mstance
of the Skype
grchitectyre.

* A mixed client-Server and Pee-to-Peer
» Skype Peers get promoted to a supernode

status based on their network connectivity Super)
And machine performance node.

* Supernodes perform the
Communication and routing
of massages to establish a call \
* When a user logs in to the server Y,

he 1s connected to a supernode

* [fapeer becomes a supernode

he unknowingly bears the cost of routing
a potentially large number of calls.

130

Peer-to-Peer Architecture Style
The Skype Example

Several aspects of this atchitectute are noteworthy:

» A mixed client-server and peer-to-peer architecture addresses the discovery prob[em..,-.;
The network is not flooded with requests in attempts to locate a buddy, such as woul.dj{;
happen with the original Gnutella. g

» Replication and distribution of the directories, in the form of supernodes addrnsﬂﬁ‘?;;:
the scalability and robustness problems encountered in Napster. .

131

Conclusions

* An architectural style 1s a coordinated set of
architectural constraints that restricts the
roles/features of architectural elements and the
allowed relationships among those elements

* Choosing a style to implement a particular
system depends on several factors based on
stakeholders concerns and quality attributes

* Most SW systems use a mix of architecture
styles

132

SW Systems-Mix of Architecture Styles

Most SW systems use a mix of architecture styles. Ex,
personnel management system with a scheduling
component, implemented using the independent component
style, and a payroll component, using the batch sequential
style.

Choosing a style to implement a particular system depends
on several factors. The technical factors concern the level of
quality attributes that each style enables us to attain. EX,
event-based systems-achieve very high level of evolvability,
at the expense of performance and complexity. Virtual-
machine style-achieve very high level of portability, at
expense of performance and perhaps even testability.

133

SW Systems-Mix of Architecture Styles
Components of each Layer use different architecture styles

Application | sestim | {amsaapnSien:

Resource
r— pormm = e gl
iﬂ'.izr.l.] i_ 1
- m l'?.;Hs';i:).\ljl!\«-‘)'.l‘f'l-:i-rlﬁlle'm TRt T b "":-_‘!—3
———————— { : 1 l—""""*""i
iE—u(erndl}-n-.\'l‘nnol'-_;g:x-; 1Sa:<j|¢_¢'_ n i _4' o v -, e~ el X g SR A (e
= z ! E |

— - - =
Con nECt|V|ty / - ll—l‘l"klfsoc‘llinToir_r_,_:! [Senmre:]Lq 4 o] i — b&‘“"‘" | . —
—— = e I G e

Prnitenediaehamied i tion t 1L
{ SirrySmity S acto i] [OG5 LegemgFaciE ks { | e IEEE t a0 ConlAraby [AURbEnod] pe—
J _\ : i T | B= —3 = i[L [Ercriamsa]
t APCURIMGatsr Jf escagsConden | ’ — $ —3 [usstea
: [cEa cxabeTy D651 Fau Ik‘l’ypn} ! OERIMAte [DGy "_ QS f) it AT AT -] t:::‘
[— — | : i il ; A —
7
i 7
Fa brl C [synersari: -.] [|

Figure 11-3. Architecture of Globus Grid technology (recavered}. (Martmann, Medvidovié et al .
2005).

SW Systems-Mix of Architecture Styles

Gateway Architecture
Service- - :
Oriented ;;& Troubie Topology !\fr?ge '
Subarchitecture :
u i Sve Log Sve Calcutator Sve
Session GwToHub
Operator Processor
£
Publish- 8
Subscribe Session 3 -
Subarchitecture i | Administrator S B
ey
—
o

To sensors

Sensor

GwToGw
Processor &

Architecture

PDA

[Pub-Sub Conn] [Pub-Sub Gonn

or gateways

To other gateways

Event
Display

Pub-Sub Conn

To other PDAs

Un if;r:ista

+Hub Architecture

Event
Maotification

Hub
Operator

Cenn

Prism-MW
Architecture

¥ Request Port

|:[Component

M Reply Port

Meta-level
Compaonent

Distribution
Reguest Port

Service

Distribuiion
Reply Port

C:] Connector |

N '._ .. Pointer

-

Figure 11-12. The MIDAS wireless sensor network architecture. Diagram adapred from (Malek et

al. 2007) © IEEE 2007 .

135

Outline

UML Development — Overview
The Requirements, Analysis, and Design Models

What 1s Software Architecture?
Software Architecture Elements

Examples

The Process of Designing Software Architectures
Defining Subsystems
Defining Subsystem Interfaces

Design Using Architectural Styles

Software Architecture Styles
The Attribute Driven Design (ADD)

136

Designing Architectures Using Styles

One method of designing an architecture to

achieve quality and functional needs 1s called

Attribute Driven Design (ADD).
= In ADD, architecture design 1s developed by taking sets
of quality attribute scenario mputs and using knowledge

of relationship between quality attributes and
architecture styles.

137

Attribute-Driven Design (ADD)

A Method for producing software architecture
based on process decomposition, stepwise
refinement and fulfillment of attribute
qualities.

It 1s a recursive process where at each
repetition, tactics and an architecture style or a
pattern 1s chosen to fulfill quality attribute
needs.

138

Attribute-Driven Design (ADD): Overview

Ficpare

SralTermss
Y Sy =

| Y o = o

Foaolmasn

Ll s

i

T T

Swysterm
O —t
ke emlEly Aptrilbueis Raqguirasmasnis
Cesign Constraints
Functional Raguirameanis
o ——— >
Flaam I Saelact typas of alameantis
Do = Instantiate elements

Crheck - Aonalyvza the desigr

T T

Swsterm

T+ ~

& ,

T A5 Flepm, 3, cdened Clreck e i

Design the Software Architecture Using the Attribute-Driven Design (ADD) Method

Purpose: The Attribute-Driven Design (ADD} Method is an approach to defining software architectures by bas-

ing the design process on the architecture™s guality attribute requirements. It follows a recursive decomposition

process where, at cach stage 1n the decomposition, architectural tactics and patterns are chosen to satisti a set of

quality attribute scenarios.

Role: Sofiware architect [Sofiware architect]

Frequencwy: This activity is optional in the Inception Phase. It should occur in the first iteration of the Elaboration

Phase and can recur in later iterations if substantial changes or additions to the software architecture need to be

explored.

Steps:
1. Choose the module to decompose.
2. Retine the module according to these steps:
a. Choose the architectural drivers.
. Choose an architectural pattern that satisfies
the architectural drivers.
. Instantiate modules and allocate functionality
from the use cases. Represent the results using multiple views.
d. Define intertfaces ot the child modules.
= Werity and refine the use cases and quality scenarios
and make them constraints for the child modules.
3. Repeat the abowve steps for the next module.
Input Artifacts: Resulting Artifacts:
- wvision [constraints] - software architecture document [decomposition
- architectural proof-of-concept ot the architecture expressed in module, concur-
[constraints] rency. and deplovment views]

use case model [functional requircments. quality
requirements|

supplementary specifications

[guality regquirements]

Tool Mentors: None

More Information: | Bass (3]

Workflow Details:

Analwsis and Design

- [Define a Candidate Aarchitecture

- Perform Architectural Syvnthesis

140

Figure 9: The ADD Method as a RUP Activity®

Updated ADD Steps

Functional
reguirements

Desigmn
constraints

Step 1: Confirm there is
sufficient recuireaments
imnforrmation

Step Z2: Choose an element ofthe systerm to
decompose

Step 3. ldentify candidate architectural
drivers

Step 4: Choose a design concept that
satisfies the architectural drivers

Step 5 Instantiate architectural elements
and allocate responsibilities

Step 6: Defimne interfaces for instantiated
elements

Step F: Verify and refine reqcquireaments and
make them constraints for instantiated
eleaments

Software
architecture
design

Quality atitribute
recquirements

A0 reguiremeaents are well-formed
and prioritized by stakeholders

ey
Imnputfoutput
artitact
Process
ste o

141

Step 1: Confirm There Is Sufficient
Requirements Information

WHAT DOES STEP 1 INVOLVE?

1. Make sure that the system’s stakeholders
have prioritized the requirements according
to business and mission goals.

2. You should also confirm that there 1s
sufficient information about the quality
attribute requirements to proceed.

142

Step 2: Choose an Element of the System to
Decompose

In this second step, you choose which element of the
system will be the design focus 1n subsequent steps.
You can arrive at this step 1n one of two ways:

1. You reach Step 2 for the first time. The only element you
can decompose 1s the system itself. By default, all
requirements are assigned to that system.

2. You are refining a partially designed system and have
visited Step 2 before.4 In this case, the system has been
partitioned 1nto two or more elements, and requirements
have been assigned to those elements. You must choose
one of these elements as the focus of subsequent steps.

143

Step 3: Identity Candidate Architectural
Drivers

WHAT DOES STEP 3 INVOLVE?

At this point, you have chosen an element of the system to decompose, and stakeholders
have prioritized any requirements that affect that element.

During this step, you’ll rank these same requirements a second time based on their
relative impact on the architecture.

This second ranking can be as simple as assigning “high impact,
“low impact” to each requirement.

Given that the stakeholders ranked the requirements initially, the second ranking
based on architecture impact has the effect of partially ordering the requirements
into a number of groups. If you use simple high/medium/low rankings, the groups
would be (H,H) (H.M) (H,L) (M,H) M,M) (M,L) (L,H) (L,M) (L,L)

29 ¢¢

medium impact,” or

The first letter in each group indicates the importance of requirements to stakeholders,
the second letter in each group indicates the potential impact of requirements on the
architecture.

From these pairs, you should choose several (five or six) high-priority requirements as
the focus for subsequent steps in the design process.

144

Step 4: Choose a Design Concept that
Satisfies the Architectural Drivers

In Step 4, you should choose the major types of
clements that will appear 1n the architecture and
the types of relationships among them.

Design constraints and quality attribute requirements
(which are candidate architectural drivers) are
used to determine the types of elements,
relationships, and their interactions.

The process uses architecture patterns or styles

145

Step 4: Choose a Design Concept that
Satisfies the Architectural Drivers (cont.)

Choose architecture patterns or styles that together
come closest to satisfying the architectural drivers

Fable I Structure of Matrix to Evaluate Candidate Patterns

Pattern 1 Pattern 2 .. Pattern n

Pros Cons Fros Cons Pros Cons

Architectural driver 1

Architectural driver 2

Architectural driver n

146

Step 4: Example

Mobile Robots example (to be discussed at the end)

Architecture Control Loop Layers Blackboard
Drivers

Task coordination +- . 4
Dealing with uncertainty - +- +
Fault tolerance e +- 1L
Safety - +- +
Performance +- . +
Flexibility : _ i

147

Step 4: Major Design Decisions

Decide on an overall design concept that includes
the major types of elements that will appear 1n the
architecture and the types of relationships among

them.

Identify some of the functionality associated with
the different types of elements

Decide on the nature and type of communications
(synchronous/asynchronous) among the various
types of elements (both internal software elements
and external entities)

148

Step 5: Instantiate Architectural Elements
and Allocate Responsibilities

In Step 5, you instantiate the various types of software
elements you chose in the previous step. Instantiated
elements are assigned responsibilities from the
functional requirements (captured in use-cases)
according to their types

At the end of Step 5, every functional requirement (in
every use-case) associated with the parent element must
be represented by a sequence of responsibilities within
the child elements.

This exercise might reveal new responsibilities (e.g.,
resource management). In addition, you might discover
new element types and wish to create new instances of
them.

149

A Simple Example of Software

Architecture Using UML?2
EXAMPLE: SATELLITE CONTROL SYSTEM

Use-Case Diagram

SatelliteControlSystem

b

-

by
Fa
ccccccccccc P -:ﬁéxiend}_ <<yusecase>>
,
b

VerifyChecksum VerifyOriginator

.
P L3

-t:-t:g:-:tend:v:v .

Fa
,’ “=<Usecasa=>
e ProcessPositionMessage
-—‘_—_‘—\—n—
.!'Ir [

]

X—

UserEquipment

ccccccccccc

ProcessCommsMessage

i ——
|
EEEEEEEEEEE

MaintainPosition

Ground Station

Actuator

150

A Simple Example of Software
Architecture Using UML?2

SATELLITE CONTROL SYSTEM Architecture composition

. ControlSystem::SatelliteControlSystem

I |]
¥ PC db
cC

PowerController | DataBus

CommunicationsController

ac

AttitudeController

151

Step 6: Define Interfaces for Instantiated
Elements

WHAT DOES STEP 6 INVOLVE?

In step 6, you define the services and
properties required and provided by the
software elements in our design. In ADD,
these services and properties are referred to as
the element’s interface.

Interfaces describe the PROVIDES and
REQUIRES assumptions that software
elements make about one another.

152

A Simple Example of Software Architecture Using
UML2

SATELLITE CONTROL SYSTEM Architecture Structure

CompositeStructure active class SatelliteControlSystem {3/5}
lActuator _ IJ__I‘] ISensor
b r pc : PowerController ac : AttitudeController LI O
|ActuatorPaort IActuatorF’ort Bus Port Busp%tratnsorportl SensorPort

IReqPosition

Wlert, ICurrP os itig

n

IDataFromBus |DataFromB

DataPort
db : DataBus
D ataPort
IDataToBus

IDataFromBus

BusPort

cc . CommunicationsController

oL

(2>EIG-roundStationF’crt [GroundStationPort UserEqmpmentF’ortI UserEquipmentPort]<f_)

ICommsin

ICommsQOut

153

A Simple Example of Software

Architecture Using UML?2
SATELLITE CONTROL SYSTEM Architectural Behavior

sd Basic Cou rseJ

<=<gcfor>=>
"Ground Control'

oo CommunicationsController

requiredPosition I'I.ﬂeasage(ﬁbﬂ}‘ oD,

interaction ProcessPositionMessage {1/1}

db : DataBus

ac AttitudeController

checkCik = messageVerified(. BA;

alt[lcheckOk])

nak (1

[checkOik]

ack ()

Step 6: Major Design Decisions

Decisions will likely involve several of the
following:

The external interfaces to the system

The 1nterfaces between high-level system
partitions, or subsystems

The 1nterfaces between applications within high-
level system partitions

The 1nterfaces to the infrastructure (reusable
components or elements, middleware, run-time
environment, etc.)

155

Step 7: Verily and Refine Requirements and
Make Them Constraints for Instantiated
Elements

WHAT DOES STEP 7 INVOLVE?

In Step 7, you verify that the element
decomposition thus far meets functional
requirements, quality attribute requirements,
and design constraints. You also prepare child
elements for further decomposition.

Refine quality attribute requirements for
individual child elements as necessary (e.g.,
child elements that must have fault-tolerance,
high performance, high security, etc.)

156

Example 1 Mobile Robotics System

Overview

— controls manned, partially-manned, or
unmanned vehicle--car, submarine, space
vehicle, etc.

— System performs tasks that involve planning
and dealing with obstacles and other external
factors.

— System has sensors and actuators and real-time
performance constraints.

157

Mobile Robotics System Requirements
(Candidate Architecture Drivers)

Req 1: System must provide both
deliberative and reactive behavior.

Req 2: System must deal with uncertainty.

Req. 3 System must deal with dangers in
robot’s operation and environment.

Req. 4: System must be flexible with respect
to experimentation and reconfiguration of

robot and modification of tasks.

158

Mobile Robots--Control Loop
Architecture

Control Loop Architecture

Evaluate Control Loop Architecture--Strengths and
Weaknesses w.r.t candidate architecture drivers

- Req 1--deliberative and reactive behavior

— advantage-simplicity

— drawback-dealing with unpredictability
» feedback loops assumes continuous changes in

environment and continuous reaction

* robots are often confronted with disparate, discrete
events that require very different modes of reactive
behavior.

— drawback-architecture provides no leverage for

decomposing complex tasks into cooperating components.

160

Control Loop Architecture

Control Loop Architecture--Continued
* Req 2--dealing with uncertainty

— disadvantage-biased toward one way of dealing with
uncertainty, namely iteration via closed loop feedback.

* Req 3--safety and fault-tolerance
— advantage-simplicity
— advantage-easy to implement duplication (redundancy).
— disadvantage-reaction to sudden, discrete events.
» Req 4--flexibility
— drawback--architecture does not exhibit a modular component
structure
* Overall Assessment: architecture may be appropriate for
— simple systems
— small number of external events

— tasks that do not require complex decomposition,
161

Choose another architecture style
Mobile Robots--Layered Architecture

Supervisor Level 8
Global planning
Confrol
Navigation
Real-world modeling
Sensor integration
Sensor interpretation

Robot control Level 1

L1

—— ___‘-\—__

\ EIlTiTGﬂlHEﬂT >
— I 162

Layered Architecture

Evaluate Layered Architecture--Strengths and
Weaknesses
* Req 1--deliberative and reactive behavior
— advantage-architecture defines clear abstraction
levels to guide design
— drawback-architectural structure does not
reflect actual data and control-flow patterns
— drawback-data hierarchy and control hierarchy
are not separated.

163

Layered Architecture

Layered Architecture--Continued
* Req 2--dealing with uncertainty
— advantage-layers of abstraction should provide
a good basis for resolving uncertainties.

* Req 3--safety and fault-tolerance
— advantage-layers of abstraction should also help
(security and fault-tolerance elements in each layer)
— drawback-emergency behavior may require

short-circuiting of strict layering for faster
recovery when failures occur. 164

Layered Architecture

Layered Architecture--Continued
* Req 4--flexibility
— drawback-changes to configuration and/or
behavior may involve several or all layers

* Overall Assessment
— layered model 1s useful for understanding and
organizing system functionality
— strict layered architecture may break down with

respect to implementation and flexibility.
165

Blackboard Architecture

Mobile Robotics--Blackboard
Architecture

Lookout

Captain

Navigator

Pilot

/

> v

Blackboard

v A

/ i

N »\

P

N\

Perception subsystem

166

Blackboard Architecture

Evaluate Blackboard Architecture--Strengths
and Weaknesses
* Reql-- Deliberative and reactive behavior
— advantage: Easy to integrate disparate,
autonomous subsystems
— drawback: blackboard may be cumbersome in
circumstances where direct interaction among
components would be more natural.
* Req 2--Dealing with uncertainty
— advantage: blackboard 1s well-suited for

resolving conflicts and uncertainties.
167

Blackboard Architecture

Blackboard Strengths and Weaknesses--Continued

* Req3--safety and fault-tolerance
— advantage: subsystems can monitor blackboard
for potential trouble conditions

— disadvantage: blackboard 1s critical resource
(this can be addressed using a back up)

* Reg4--flexibility
— advantage: blackboard 1s inherently flexible
since subsystems retain autonomy.

168

Architecture Comparison

Mobile Robotics--Summary of

Architectural Control Loop Layers Blackboard
Tradeoffs

Task coordination +- - 4
Dealing with uncertainty - +- +
Fault tolerance e +- o
Safety +- +- 4
Performance - . +

|

Flexibility i :

169

