Software Design Refinement
Using Design Patterns

Instructor: Dr. Hany H. Ammar

Dept. of Computer Science and
Electrical Engineering, WV U

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Class diagram refinement using design patterns
Design patterns examples

The Facade pattern

The Strategy Pattern

The State Pattern

The Command Pattern

The Observer Pattern

The Proxy Pattern

Design Patterns Tutorials

The Requirements, Analysis, Design, and
Desgin Refiement Models

Requirements Functional/ Use Case Diagrams/
Elicitation Nonfunctional | Seduence Diagrams
Process Requirements (the system level)

- Analysis Class Diagrams
- State Diagrams/
Refined Sequence

The Analysis Static Analysis

. Dynamic Analysis pjaorams (The object
level)
The Design Static Architectural | Design Class Diagrams
Process: Design * Design Sequence Diagram:
e Initial Design Dynamilc Design |
*Design Design Refinement| - Refined Design Class

Refinement Diagrams

Design Refinement

It 1s difficult to obtain a quality design from the
initial design

The 1nitial design 1s refined to enhance design
quality using the software design criteria of
modularity, information hiding, complexity,
testability, and reusability.

New components (or new classes) are defined and
existing components (or classes) structures are
refined to enhance design quality

The design refinement step 1s an essential step
before implementation and testing.

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Class diagram refinement using design patterns
Design patterns examples

The Facade pattern

The Strategy Pattern

The State Pattern

The Command Pattern

The Observer Pattern

The Proxy Pattern

Design Patterns Tutorials

Class Diagram Refinement
Using Design Patterns

Design Class Diagrams are further refined to enhance
design quality (1.e., reduce coupling, increase
cohesion, and reduce component complexity) using
design patterns

A design pattern 1s a documented good design
solution of a design problem

Repositories of design patterns were developed for
many application domains (communication software,
agent-based systems, web applications)

Many generic design patterns were defined and can
be used to enhance the design of systems in different
application domains

What 1s a Design Pattern

What is a Design Pattern?

A design pattern describes a design problem
which repeatedly occurred 1n previous designs,
and then describes the core of the solution to that
problem

Solutions are expressed 1n terms of classes of
objects and interfaces (object-oriented design
patterns)

A design pattern names, abstracts, and identifies
the key aspects of a high quality design structure
that make 1t useful for creating reusable object-
oriented designs

Defining a Design Pattern

Design Patterns are documented 1n the literature by a
template consisting of the following

A Design Pattern has 5 basic parts:

1. Name

2. Problem

3. Solution

4. Consequences and trade-of of application

5. Implementation: An architecture using a design class
diagram

Types of Design Patterns

The Gang of Four (GoF) Patterns (Gamma et al

1995)
Deésign Pattern Space
Purpose
Creational Structural Behavioral
g Factory Method Adapter (class) Interpreter
L Template Method
Q
o Abstract Factory Adapter (object) Chain of Responsibility
Q Builder Bridge Command
0 Prototype Composite lterator
O | 5 | Singleton Decorator Mediator
0 @ Flyweight Memento
a Facade Observer
®) Proxy State
Strategy

Visitor

2. Relation among patterns

Abstract
Factory | -

) % rlu ' ibiliry
|' J \\ "\\ i
i e =

1!
Visitor |41

: — B

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Class diagram refinement using design patterns
Design patterns examples

The Facade pattern

The Strategy Pattern

The State Pattern

The Command Pattern

The Observer Pattern

The Proxy Pattern

Design Patterns Tutorials

12

Example of Pattern Definition: The Facade Pattern Provides
An Interface To a Subsystem

Facade

subsystem classes

The Facade Pattern

The class Facade is introduced as an
interface to the whole subsystem.

Any client class needs a service from any of
the subsystem classes will send the request
to the facade class.

All the subsystem interfaces are combined
in one class

14

Example of Using the Design Pattern

Design Patterns produce quality designs by reducing coupling

Example of how a Facade Pattern reduces coupling

Client A

Ly

Database

Client A

Client B

Model

' Element

CHent B

r._l

L

Datsbase Facade

Before Facade

| Element

Model

Database

Using Facade

Figure 6-4 Facade reduces the number of objects for the client.

15

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Class diagram refinement using design patterns
Design patterns examples

The Facade pattern

The Strategy Pattern

The State Pattern

The Command Pattern

The Observer Pattern

The Proxy Pattern

Design Patterns Tutorials

16

Strategy
| Algorithminterface()

Contextinterface()

ConcreteStrat vA ConcreteStrategyis ICOncreteStrateqvc—l
eg

Another Example of Design Patterns

The Strategy Pattern: lets the algorithm vary
independently from clients that use it

Controller Class

Conlexl

Abstract Class

[:r_':rﬂeﬂlr”alerfaﬂﬁ{]

,::f rategy w Strateqy
Algorithminterface{} | Default control
Strategy
A
ConcreteStratagyA ConcreteStrategyB ConcreteStrategyC
Algonthminterfacs!) Algorithminarace|) Algorithminterfacel)

Control Strategy A

Control Strategy B Control Stratelgy C

The Strategy Pattern

The Strategy Pattern Context class has multiple
control strategies provided by the concrete

strategy classes, or by the abstract strategy (by
default)

The pattern lets us vary the algorithm that
implements a certain function during run time
depending on the conditions of the system

The Pattern reduces coupling by having the client
class be coupled only to the context class

19

Examples of Design Patterns
The Strategy Pattern

Example of using the pattern in JAVA
AWT GUI components lay out managers

Container

layoutManager LayoutManager

<

Pl AN

FlowLayout

BorderLayout

CardLayout

20

Examples of Design Patterns
The Strategy Pattern: another example

Situation: A GUI text component object
wants to decide at runtime what strategy 1t
should use to validate user input. Many
different validation strategies are possible:

numeric fields, alphanumeric fields,

telephone-number fields, etc.

TextComponent

validator

<>

Validator

AN

Numeric

Alphanumeric

TelNumber

21

«input device interfacey
BooleanInputDevicelnterface

i

wa3shisqng jo4107) astn. D 40f wviSmp Ssv]D 62’0z @inbiy

I 1
«input device interfacey «input device «input device
CruiseControl interfacey interfacey
LeverInterface BrakelInterface Enginelnterface
Notifies Notifies Notifies «timen»
4 Timer
«state dependent _ .
controby Triggers Triggers
CruiseControl Controls
StateMachine i e
«algorithmy i “;;S;g; Uses Eeunrrlcﬁ} Uses - «entity»
Acceleration Controls is
" Uses Speed Speed Distance
. «algorithm» 1\
«alg()r.lthm» o SpEEdCOHtr{}]
«state dependent Cruiser Algorithm Uses
control»
StateMachine «algorithm» Outputs to
Resumption 4 -
? «output device
interfacey
ThrottleInterface
«input device interfacex»
CalibrationButton
Interface
Notifies
«input device
«state dependent interface»
control» ShaftInterface
CalibrationControl
Example Q Contysls Updates
. / y
Of us 11’1g the Strategy «entity» Uses «entity» Uses
Calibration ShaftRotation <
Pattern: SpeedControl i Count 22

Is the Strategy class

Another example of using the
Strategy Pattern: A Job Application
System

The complexity of class JobApplication is reduced by moving

ApplicantRuleFactory JobApplicantForm

the validate() operation

+JOB MANAGER :int=1
h S P l ®getApplicantValidationRule() &JOB WAIT STAFF:int=2
. <JOB BUSSER :int=3
tO t e trategy attern C asses <JOB BARTENDER :int=4
<JOB HOSTER :int=5

&position - int

_ name : Stnn
FormValidator %ph one : Strmgg
(from patter ns) &email ‘-String

BoauccessMessage : String = "\nThank vou for submitting vour job application."

&yearsExp - Double
&reference1 : String

FHSEmMPpty() e
Pt S
basicValidation() (from common) ’ _
7 —_ &success: boolean = false ®legal : boolean = false
&resultMessage : String = null %4 egal()
®
$FormSuccesy) ‘%ttlbegil,o
ManagerValidator Busvalidator $issuccess) ~ge osition()
setPosition()
(from patterns) (from patterns) $setSuccess() ®getName()
$getResultMessage() *cetName()
Syalidate() ®yali ®setResultMessage)
alidate() ®getPhone()
®setPhone()
HostValidator BartenderValidator ®getEmail()
(from patterns) (from patterns) *setEman()
®getY earsExp()
Svalidate() %validate() ®setYearsExp()
JobApplicantClient %®getReference1()
WaitStaffValidator (from commen) “setReference()
(from patterns) ®getReference?()
®main() ®setReference?()
Svalidate() &runTest() ®getReference3()

$setReference3() 23
Syalidate()

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Class diagram refinement using design patterns
Design patterns examples

The Facade pattern

The Strategy Pattern

The State Pattern

The Command Pattern

The Observer Pattern

The Proxy Pattern

Design Patterns Tutorials

24

Examples of Design Patterns
The State Pattern

Similar 1n structure (static) to the Strategy
pattern but differs in dynamics

Events are handled based on the curren state

of the object
Context r:_;,tam ..| State
Request() 9 Handle()
|
I
I !
I z"“l . - .
state->Handle()

ConcreteStateA ConcreteStateB

Handle() Handle()

Examples of Design Patterns
The State Pattern

The State Pattern: 1s a solution to the problem of how to make

the behavior of an object depend on its state.

The
Context
Class

Context class

MultiStateOb

Ftate

Current State

<<Intertace>>

1 State

Abstract State

Class

+CreatelnitState()
Setstate()

r N

Lets a mutli state class divide its

responsibilities (Opr1(),0Opr2(),
and Oprn() on multiple state

classes.

For more Info, see

~huston2/dp/state.html

;Handle()

Changestate()Deletestate()

/\

ConcreteSta

N concrete state
classes

concreteState n

Handle(), Oprn()

26

Examples of Design Patterns
The State Pattern

The State pattern 1s a similar in structure to the Strategy Pattern but
with different behavior or dynamics. the state objects are active one
at a time depending on the actual state of the context object.

The structure 1s defined as follows:

Define a "context" class to present a single interface to the
outside world.

Define a State abstract base class.

Represent the different "states" of the state machine as derived
classes of the State base class.

Define state-specific behavior in the appropriate State derived
classes.

Maintain a pointer to the current "state" in the "context" class.

To change the state of the state machine, change the current
"state" pointer

State Transitions can be defined for each State class
To be discussed later at length in slides 10 on

27

Examples of Design Patterns

The context class Multistateob would create the
initial state object to provide the services of the
initial state (1t will set its current state to its initial
state)

The 1itial state object would sense the condition
for state transition to a new state, when this occurs
it would then create an object of the new state and
destroy itself

Each state object implements the transition,
actions, and activities in the state it represents

28

Examples of Design Patterns
The State Pattern

TCP connection example

TCPConnaction é‘am TCPSiare
Cpenfy O----—- Cpani)
Glose() | Ciose()
Acknowl adge]) | Acknowledge|)
|
|
; A
state—-=0Openi) =
TCPEstablished TCPListen TCPClosed
Opain j Open() Opean()
Closa() Clasel) Closel)
Acknowladne() Acknowledned Acknowiedge()

29

Examples of Design Patterns
The State Pattern

A Ceiling Fan Pull Chain Example :

(Gl S PMCuN | Sarsppen Copaey |
) CFR ot A]
a0 W CFPC)
ettt g/ . [i [
eessond gl () | \
—N ' i | .

D . Al dntbhb
\m._ﬂwwz?’/crfwwx

30

Consolidated Collaboration Diagram of the
ATM Client Subsystem

«subsystem»
: BankServer
ATMTransactions T \l/ Bank Responses
N Dispenser
«client subsystem
Card . ATM CI¥ : » «output device Output | “external
Reader A1 MUhent . . output
Input D interface» —_— devices
" ispense Cash . i
«external /O «l/O device P : £CashDisnenser : Cash
X — X] (Cash Details) Interface :
devicen interface» Card Inserted, Card Ejected, / Dispenser
. CardReader | € : CardReader Card Confiscated Cash
‘ Card Interface \ Withdrawal |
Reader - Ei / Amount Cash
Output Card c Jt_e_Cts . Cash Response
onfiscate
- Igput «state dependent Dispensed «entity»
ata
control» : ATMCash
Customer Events : ATMControl Start Up,
«entity» (Transaction /’ Closedown Cash
: ATMCard Details) Added Operator
- _ Update ‘L _ AN - Information
. Transaction «user interface» >
Status (Cash Details), | Print : tor
Card Card Update PIN Status Receint Interface <
Data Request Displa P ‘\ Operator : Operator
' Receipt Input
Prompts Printed
Customer Customer Information, Printer
Input - - wexternal
) ' Customer Selection] Data «output device Output output
—— «user interface» e «entity» — interface» —> d put.
. -— ; CustomerInterface -— LATM P — : ReceiptPrinter) va?»
ATM Display - Transaction Details Transaction Transaction Interface ﬁ‘?ﬂm
==—— Information Request rinter

Customer

Figure 12.5 Example of consolidated collaboration diagram: ATM Client subsystem

31

Example: How can we apply
The State Pattern to the
ATM system using

\
3 S ‘ Closed Down
Y,

Insufficient Cash

After (Elapsed Time)

. Closadown [Closedown Was Requested]
This ATM controller ... Startup)
Inserted After (Elapsed Time) [Closedown Not Requested
StateCharts ? { it JL L)L]
P N
See Processing 3 Terminating Transaction)
Customer
nput
NeXt Inp
Shdes Waiting (i s
Ay Terminating
O for PIN ,k
n - Cancel
Staten PIN Entered Invalid PIN Card | Confiscated \ Card Ejec[ed
Third Invalid, Stolen (
Chall'ts [Validating PIN J }L Confiscating J [Ejecting]
Pattern _ Processing) _ .
Valid PIN Transaction Rejected Receipt
\ Printed
Waiting for > \ '\f
Customer Choice \r Processing .
J Transfer Transfer J Transfer OK Printing
i </ Selected
\ Query OK
f Processing Cash
Query ,L Query J Dispensed
Selected w
~ Withdrawal OK x(Dispensing J
s Processing L A ¥
Withdrawal ,L Withdrawal
Selected \ Y.
32

Figure 10.14 Example of hierarchical statechart

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Class diagram refinement using design patterns
Design patterns examples

The Facade pattern

The Strategy Pattern

The State Pattern

The Command Pattern

The Observer Pattern

The Proxy Pattern

Design Patterns Tutorials

33

Examples of Behavioral Design Patterns

The Command Pattern: operator commands or user or
customer requests are treated as a class of objects

Command object behaviore

Intent
encapsulate the request for a service

Applicability
+ to parameterize objects with an action to perform
+ to specify, queue, and execute requests at different times
« for a history of requests
+ for multilevel undo/redo

Structure

Client Invoker e e % e T

axaouta()

A

L m Target
action(g—— 1 ConcreteCommand

cxacitel) = ——————p————— target.action()

1
T =i stote 34

The Command Pattern

Example of using the Command Pattern in a Menu

driven graphics application

Glyph

T
rawyiinagow)

araw
I command

- Commarnd

Menuitem b

licked)
CHCE2)

axacuia)

A

CopyCommand

PasteCommand

execute)

exscute])

35

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Class diagram refinement using design patterns
Design patterns examples

The Facade pattern

The Strategy Pattern

The State Pattern

The Command Pattern

The Observer Pattern

The Proxy Pattern

Design Patterns Tutorials

36

Examples of Behavioral Design Patterns

The Observer Pattern: Multiple observer objects are
notified when changes of states subjects occur

Observer object behavioral

Intent

define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically

Applicability

+ Wwhen an abstraction has two aspects, one dependent on the other

+ when a change to one object requires changing others, and you don't know
how many objects need 1o be changed

+ when an object should notify other objects without making assumptions
about who these objects are

Structure
Subject obsewvers -.J Chserver
attach{Observer) updafe()
detachi{Observer) for all o in ohserers {'h.,
Notify(] Q= —- - = 1 o.updatel)
h
¢ ConcreteObserver
subi Ty
ConcreteSubject | subject update) el ik thﬁajﬁ?jﬁatﬂ]
getState() o--- . T bserverState
. et retum subjectState - e

subjectState 37

The Observer Pattern

Example: Observer

observers
| window se— (||] Window se— |]|
a b c
x| 601 301 10
y| 50 | 30 | 20
z| 80| 10| 10
- a C
N
N

— Cchange notification
— —— - requests, modifications

subject 38

The Observer Pattern

+addEventListener()
+removeEventListener()
+notify()

+handleEvent ()

1

T

-state

+notify{)
+getState()
+setState()

-state

+handleEvent ()

Class diagram for event-
based implicit invocation
architecture

39

Model-View-Controller Architecture Style

1s based on the Observer pattern

initialize(), register()L
initialize() N
J register()
g update() -
- notify()
equence diagram for MVC
|| L - architecture

40

Digital Sound Recorder:
A Complete Example

* A Scheduler subsystem 1s added to provide interrupt Handling
for timer nterrupts to alert observers for synchronous tasks
 Uses the observer design pattern (to be discussed later)

Scheduler Tasks Observer
Timer X
| —< %attach() 0..
%detach()
isr()
AlarmClock Keyboard

Figure 6.1: Scheduler class diagram

Digital Sound Recorder:
A Complete Example: The Dynamic model

Interactions are shown using a UML collaboration
diagram. Timer interrupt update scenario

Notice an
EventProxy
Class 1s added
For posting
Events.

Uses the Proxy
Desgin pattern

: Timer
N
4:isr ()
\{
5: update ()
. Scheduler —> — Keyboard
<
1: attach ()
6: update () 7: nextSecond ()
- - . AlarmClock —> Now : Time
-
2: attach ()
8: update () 9: postEvent ()
> : Battery > : EventProxy
-~

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Class diagram refinement using design patterns
Design patterns examples

The Facade pattern

The Strategy Pattern

The State Pattern

The Command Pattern

The Observer Pattern

The Composite Pattern

The Proxy Pattern

Design Patterns Tutorials

43

Examples of Structural Design Patterns
The Composite Pattern

Composite object structural

Intent
treat individual objects and multiple, recursively-composed objects uniformly

Applicability

objects must be composed recursively,
and there should be no distinction between individual and composed elements,

and objects in the structure can be treated uniformly

Structure

Component

operafiion)
add{Component) |
removelComponent)
getChildying)

A

children
Leaf Composite I'C—‘
operation() operation(] @F=====f==m=m=aa--- f':'r*_-'” J'Lr' ':E_hil'j_r_e” =
addi{Component) g-operationi;
remove(Componant) 44
getChild{int)

Examples of Design Patterns
The Composite Pattern :File System Structure

Mapping CoMPOSITE participants to file system classes:

e Leaf, for objects that have no children
— File, the file object

e« Composite, for objects that have children
— Directory, the directory object

e« Component, the uniform interface

Node F‘

childre
File Directory I&

—+ Node

45

Outline

The Requirements, Analysis, Design, and Design Refinement Models
Class diagram refinement using design patterns
Design patterns examples

The Facade pattern

The Strategy Pattern

The State Pattern

The Command Pattern

The Observer Pattern

The Proxy Pattern

Design Patterns Tutorials

46

Examples of Structural Design Patterns

The Proxy Pattern (used heavily in
communication software, CORBA, SOA)

PRroOXY structure

Subject

request()
RealSubject | realSubject Proxy
request() request()

e Proxy is a stand-in for RealSubject

e Proxy must match Subject interface

realSubject->request(};

T

47

Broker Architecture Style

1s based on the Proxy pattern

R

Brokers gets requests from client proxies and manages them by forwarding
to server Proxies or dispatches them to other connected brokers

m&;z.ﬁwggq{fﬂa,‘u- sscaseRsRaReREREEE

48

Broker Architecture Style

Transfers
messages

Y

+pack data()
+unpack_dataf()
+send_request ()
+return{)

A

+call_server()
+start_task()
+use_Broker API()

—ilf—

Transfers
messages

Y

Uses
API

+main_event Toop{)
+update repository(}
+register_service()
+acknowledgement ()
+find_server()
+forward_request()
+forward_response()

—_—

Calls

+pack_dataf()
+unpack_data()
+forward_message()
+transmit_message()

A

Uses
API

-

+pack _data()
+unpack_data()
+call_service()
+send_response()

Calls

o W oy . —

+initialize()
+enter main_loop(}
+run_service(}
+use_Broker_ API()

49

Broker Architecture Style

f Se

¥

N

-
I
]
]
i
t

’——‘ callServer(}

—

-

o

r service()

packData() 1

I iﬂ

<

update repository()

acknowledgement

sendRequest()

i

_forwargRequest()

- -
- -

~eeT
A

| resuit |

Client-side

I

i findServer()
r

g

I

i

]

£

1

i

i

'

' .
 Yegiste
- .

i

]

r

1

I 3

I

1

1

1
Ca115ervice()

unpackbata{)

I"""‘"-!—-'u.-

-

forwardResponse()

runService(}

e

IS

s
—

A

~ return()

< U
unpackData{)}

I

'

‘-HH--_“‘I

-

findClient() L packbata()
I
i
1
!
i
i
i
r
b
I
i
I
]
t
I

ﬂ-ﬁ--—hh--’-~

Server-side

-

-y o .

h‘-ﬁlq'l--ﬂ-l-l-lﬂhl—-hl-li—!
—

50

Design Patterns Examples and Tutorials

(important)
Two tutorials by John Vlissides

Also on the design patterns CD by Gama et al

51

