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Abstract

This paper discusses the principles of developing
software components for real-time systems. The proce-
dure is based on the fundamental concept of a real-time
architecture rooted in the feedback control paradigm of
control engineering. Generic design patterns for real-
titne software components are presented, valid for all
relevant real-titne architectures. Finally, a case study
of an air traffic control system based on the CORBA
framework is discussed. Tool support for component-
based design and implementation is presented, includ-
ing industry-strength cornmercial off-the-shelf software.

1

Introduction

Developing software components for real-time systems
tends to be more difficult than for other domains, be-
cause of a unique nature of each individual real-time
application. The primary difficulty lies in developing a
generic software architecture and abstracting its mean-
ingful components, which are shared among the ma-
jority, if not all, models and applications. Due to the
uniqueness of real-time problemms it is hard to find such
distinctive templates and generalize them justifiably to
produce reusable real-time software components [2, 6].

One approach to real-time software design is rooted
in control engineering and seems to be fruitful for this
purpose. It is based on a feedback control paradigm
and has been mentioned in several papers, in the last
one and a half decade [3]. The principles of this ap-
proach have been summarized recently in {12] and are
used here to develop real-time software components. It
is argued that for all types of real-time systems it is
possible to abstract a few representative architectural
properties, which are expressive enough to allow the de-
signers base the development on a few structural and
behavioral patterns.
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The rest of this paper is structured as follows. First,
we discuss a generic architecture of real-time software.
Then, we develop a pattern for one type of applica-
tion, a data acquisition system. Next, we present a
case study of a sophisticated air traffic control system
viewed as a data acquisition system, and finally outline
the development of software components with the use
of off-the-shelf design and implementation tools.

2 Generic Architecture

Modern real-time systems can be all viewed as spe-
cific instances of a general feedback control system pre-
sented in Fig. 1. In the most general case, such system
includes all of the following elements:
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Fig. 1. Illustration of a feedback control system.
(1) Desired value; (2) Controller commands;
(3) Controlled variables; (4) Other measured

variables; (5) Environment interface.

(1) Desired value; a reference for the Controller to
make necessary adjustments of controlled vari-
ables.

(2) Controller commands; signals applied to the Plant
(outputs from the Controller) in order to achieve
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its desired behavior.

Controlled variables; signals received from the
Plant (inputs to the Controller), whose values are
being controlled.

Other measured variables; auxiliary signals re-
ceived from the plant (inputs to the Controller)
which are not controlled but used in the determi-
nation of the best values of Controller commands.

Environment interfaces — user interface, mass stor-
age interface, and communication link to computer
network.

Because of the timing requirements (such as time
constants) imposed on the controller dynamics, it al-
ways operates in real time. Since nowadays a controller
is implemented as a digital processor and its function-
ality can be extended much beyond that of a regulator
function, we can call it a real-time computer.

It is also evident that in addition to a traditional
interface a controller has to the process (which includes
sensors and actuators), a modern real-tiine computer
interacts with the environment in a number of other
ways, including interfaces with a plant operator, mass
storage (database), and computer network. A more
detailed view of these interfaces is presented in a unified
diagram shown in Fig. 2.

(4)

Real-Time| ~~5,
Computer

(3)

Fig. 2. Real-time computer system. (1) User
interface; (2) Process interface; (3) Mass storage
interface; (4) Communication link.

In practice, a number of real-time systemns exist that
do not represent a complete system in a sense of Fig.
1, but nevertheless fit very well into this concept. Re-
spective examples include:

o data acquisition systems, when the connection 2 in
Fig. 1 is broken (there is no control signals from
the real-time computer)

e programmed controllers, when the feedback con-
nection in Fig. 1, from the plant to the coutroller,
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is removed, with connection from the controller to
the plant remaining intact

e reduced architecture, if both connections between
a plant and a real-time computer are broken (what
remains is only interfaces with the operator, the
network and the database).

While the examples of real-time systems in the first
two categories are intuitively clear, existence of the
last category may be less obvious. However, taking
a closer look at respective dataflows reveals that there
are several examples of that kind of real-time systeins
in practice. Putting emphasis on the distribution and
cominunication, with relatively less interest in GUI and
database access, brings us to a typical case of real-time
simulation. With a slightly different emphasis, con-
centrating on the database use and GUI, one has a
real-time multimedia system.

3 Real-Time Design Patterns

Once we have an understanding of the nature of a real-
time system architecture, we can focus on developing
its design and shaping its software architecture. How-
ever, thus far, there has been very little guidance on
selecting real-time architectures, either in the engineer-
ing literature or in practice. When one takes a closer
look at Figures 1 and 2. with explanations (1)-(5) in the
previous section, there is little doubt that one can and
should start designing the coutroller from the context
diagram similar to that in Fig. 3.
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Fig. 3. The top level context diagram.
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The role of a context diagram cannot be overesti-
mated. Even though it is a relatively old notational
vehicle, it’s been well established in real-time software
design as the basis for architectural development. It is
at the context diagram level, where the interfaces be-
tween the software and the external world need to be
defined and developed. For this very reason, the con-
cept of a context diagram is indispensable as a starting
point in designing a software architecture.

From Figure 3, it becomes immediately clear that
the software components must include units responsible
for the following interactions with all external elements:

e inputs from and outputs to the plant
e interaction with a user

e possible communication with other

controllers/processors

e interaction with storage devices

enhanced by the processing (computational) capability.
The time source is also important and can be internal
or external depending on circumstances.
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Fig. 4. Outline of a generic
data acquisition system.
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An example of a corresponding design, which can
be considered a basic and geuneric design pattern for
real-time software, is presented in Fig. 4, for a data
acquisition application.

Respective software components need to comply
with the principle of separation of concerns. They can
be considered as sequential modules or individual con-
current tasks, and can run, respectively, on a single pro-
cessor, on multiple processors, or even on a distributed
system or network.

This basic design pattern can be expanded further
into more comprehensive architectures, depending on
the focus of a particular application, such as a dis-
tributed real-time system. Depending on a predomi-
nant function of a distributed system, one may pro-
duce a variety of its particular architectural instances.
One such example (Fig. 5) comes from the area of high-
energy physics, where multiple data collection and con-
trol facilities are spread over a large area surrounding
an elementary particle accelerator [5].
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Fig. 5. Generic architecture of a distributed real-time
systemn.

Multiple software components can be created to ac-
cess various (maybe the same) sources and destinations
of data and to exchange information among themselves.
Any single component can perform individual functions
and communicate with every other component.

Adding a new component or deleting one should
have no impact or minimal impact on the operation,
in a sense that no degradation of functionality should
occur due to such dynamic changes. Cominunication
links can operate individually or be lumped into a mid-



dleware layer (7], with program units communicating
partially or exclusively via this layer.

The primary advantage of having such a flexibility
is that a number of new components can be created
and the architecture expanded during the run of an ex-
periment or operation of a process. One such example
is a dynamic GUI creation [8]. If new experiments are
conceived which require including additional features
to the GUI, or new characteristics are explored which
need GUI reorganization, this can be done on-the-fly
without jeopardizing the operation of an ongoing ex-
periment or process.

4 Detailed Design Level

For the concept of real-time design patterns, as pre-
sented in previous section, to work properly, one must
provide enough details at the design level, so that au-
tomatic tools could be used. The details mean, in the
first place, providing sufficient information about inter-
faces with the environment. The format involves the
following items:

e signal name as a variable (that is, expressed in
acceptable textual format)

e its source and direction (input or output)
e signal’s detailed function

e its detailed characteristics, including data type
(analog, binary. text, etc.), range of valid values,
length, shape, frequency, etc. (whatever applica-
ble)

e necessary action in case of invalid value, which ef-
fectively means an error handling function.

To illustrate principles of creating detailed designs,
starting with such interface description, we will use an
example of instrumentation software for testing printed
circuit boards (PCB). Let’s assume that a PCB stand is
interfaced to the following three instruments necessary
to operate the board and take respective measurements
to test it: power supply, spectrum analyzer and data
acquisition box.

A context diagram for the instrumentation software
is shown in Fig. 6, limited to the signals exchanged
with the above instruments (a plant, in terminology of
Fig. 1). A sample list of signal interfaces, exchanged
with the plant, is presented in Table 1, following the
description format above.

Once the exact description of input and oputput sig-
nals is known, a detailed and complete list of actions in
terms of operations on all signals has to be developed.
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Fig. 6. PSB test system context diagram.

This list can be obtained from the requirements spec-
ification document. A sample requirement related to
the value of SUPPLY_I is presented below, but the full
list of actions had to be omitted from this article due
to space restrictions.

Table 1. Detailed signal description
(notes are too long to fit in the table).

Signal Direction/func. Valid values
B+ OU supply voltage 15 +/- 10mV
OSC+VE | IN regulated supply | 11 +/- 0.2V
OVEN+VE | IN regulated supply | 12.1 +/-0.2V |
F.OUT2 OU from multiplier | 10 +/1 1dBm
RF.OUT | IN from oscillator 13 +/- 1dBm
V.COURSE | IN course frequency | 2/3 of B+
V.FINE | IN fine frequency 1/3 of B+
V.REF_EN | OU enable RF.OU | On or Off
V.REF_.OU | IN check connection | B+ or < 0.4V
X1 IN mid point heater | 7.5 +/- 1V
X2 IN bridge amplifier | Note 1.
X3 OU temp sensor 5.5V or 6.5V |
SUPPLY.I | IN supply current Note 2
Probe IN monitoring Note 3.

Requirement X.Y.Z. If SUPPLY_I current exceeds the
value specified in Note 2, then the testing program shall
do the following:

e turn the power supply voltage B+ off



e display the value of SUPPLY_I in the message win-
dow as follows: "SUPPLY_I too high: wvalue”

e append the value of SUPPLY.I to the file
results.txt, and

e stop the operation;

otherwise it shall continue. End X.Y.Z

Even though we are using such a simple example
and have deliberately limited interface description to
the plant interface only, leaving out information on the
remaining three interfaces from Fig. 2. for the sake
of brevity, this single requirement contains references
both to the GUI (talking about the message window)
and to the database (talking about appending value to
the file).

At this point, we are ready to define the structure
and behavior of the software, in our example, the in-
strumentation software. Because testing printed circuit
boards is a process sequential by nature, the structure
of the instrumentation software is also sequential. Fol-
lowing the generic architectural pattern from Fig. 4, we
need to distinguish the following sequential modules in
our design component: Acquisition and Control, GUI,
Storage Handler, and Main Computation. Knowing
that there are three separate external devices in the
plant connected to the real-time computer, we’ll need
to create three corresponding instances of the Acqui-
sition and Control module: Power Supply, Spectrum
Analyzer, and Data Acquisition Box.

For completeness, we have to mention two things re-
garding the generic pattern from Fig. 4. There is no
need for us to have a Communication Link, because
our testing systemn is stand-alone. We will most likely
be using time only locally, so the Timer module is not
needed either. As a result, our component will have
a relatively simple structure and can be easily repre-
sented as a class diagram, with objects listed in the
previous paragraph. However, we must be aware that
in general, the developer would have to design con-
current modules, according to the generic pattern from
Fig. 4, and define precisely respective interfaces among
these modules. For a large system, this is likely to be-
come a daunting task and will be illustrated briefly in
the next section.

One last thing, which the designer has to do is defin-
ing each module’s behavior. For a sequential system
like our instrumentation software, the behavior can be
easily derived from the list of actions produced above
in terms of operations on respective signals, and rep-
resented as a sequence diagram. For more complex
systems with concurrent modules, this has to be done
formally using statecharts.
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5 Case Study:
Air Traffic Control System

Let us consider the design of software for an air traffic
control system (ATCS) conceived as a data acquisition
system [9]. It is not, in fact, an automatic control sys-
tem, because there is no direct connection between the
real-time computer and the plant. All commands are
executed by the pilot who is receiving respective mes-
sages from an air-traffic controller (Fig. 7).
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Fig. 7. Air traffic control system as a data acquisition
system.

An example of the context diagram for the air traf-
fic control system is presented in Fig. 8. It is fully
compatible with the general model (Fig. 3).
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Fig. 8. The top level context diagram for an air traffic
control system.




A component-based software architecture derived
from this context diagram is presented in Fig. 9. Indi-
vidual boxes represent software modules interfacing to
the external devices and performing respective func-
tions. The architecture is also compatible with the
software design pattern shown in Fig. 4 and includes
modules respounsible for handling:

e three sources of data (radars, GPS and time

source; the latter is not shown)
e a user interface to controller displays

o two functionally different mass storage interfaces
(for flight plans and event recording)

e two functionally different network interfaces (for
en route centers and weather services)

e computational function, which in this case is only
collision detection but may include altitude warn-
ings, proximity warnings. etc.

Event w \/Veathm) Collisn
[Recoxd [ Server E etecD [ GPS j
A

} \ \
V 4 4
Network connectivity via middleware s/w bus >
1 v i v A v A

Fligh Commw GUI
[ Radar j( )asej[ Link [Dlspl

Fig. 9. ATCS software components communicating
via middleware.

Since the nature of the system is highly distributed,
we use middleware for connecting all the components.
This gives the designers the highest flexibility in orga-
nizing individual components and shaping their com-
munication structure.

6 Components Development:
Design Aspect

Developing software compouents for the presented
ATCS architecture or other contemporary real-time ap-
plications, such as the one described in {5] is too com-
plex to be done manually by a single individual. There-
fore automatic tools are needed to assist in the devel-
opment process.

It must be stressed that tools are only a part of a
complete design methodology which must include the
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Fig. 10. Sample object diagram in a high-level design
tool Rhapsody.

following three elements: method (a graphical notation
to express properties of an architecture), techniques
(transformations applied to the notation), and software
tools supporting the transformation techniques.

To be useful in the development of software compo-
nents we require the automatic tools to provide support
in the following dimensions [12]:

e internal, to express real-timme models via the spe-
cific notation and respective transformations to
create real-time components

e horizontal, related to means of communication
with other components and other tools

e vertical, related to the next and previous phases
of the development process

e diagonal, related to the use of architectural com-
ponents in different projects/processes.

In a language of software components this means we
have to be able to create, connect, model, and reuse
components at the design level.

Several software tools with this concept in mind,
which operate i the commercial marketplace, were an-
alyzed [1]. For practical reasons, we focused on those,
which have solid methodological foundations, based on
0O approaches: ROOM [10] and UML [4].

The selected tools offer extensive services in the in-
ternal dimension to model both structural and behav-
ioral patterns of distributed real-time software. The
structure and behavior of a component such as the
Comm Link from Fig. 9 can be easily expressed as
an object diagram and a statechart, respectively (Fig.
10 and 11). In the horizontal dimension, a capability
of interacting with externally created components is
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Fig. 11. Statechart for a sample Comm Link module
in Rhapsody.

Fig. 12. Modeling communication with external
components in ObjecTime.

provided for most tools via standard TCP /IP protocol
(Fig. 12).

In the vertical dimension, tools usually have the ca-
pability of generating code for specific real-time kernels,
however, they lack the capability to perform timing
analysis at the design level. They also lack adequate
means of importing design components from other tools
(diagonal dimension).

7 Components Development:
Implementation Aspect

At the implementation level, the design tools should
allow timing and scheduling analysis, then correcting
the design, and finaly code generation. With current
tools, timing analysis is only possible after the code has
been generated.

For this reason, when developing the basic ATCS
structural components and defining their behaviors, it
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Fig. 13. Handling load stress by MPI, MPI/RT,
CORBA and RT-CORBA.

turns out that a much more rigid communication struc-
ture is necessary for the whole design, to ensure timeli-
ness and predictability. Traditionally, communication
in distributed applications is done via sockets or remote
procedure calls (method invocation). This is very in-
adequate for distributed real-timme applications.

Therefore two implementation level standards for
distributed real-time communication were studied:
MPI/RT and Real-Time CORBA. A simple real-time
benchmark, to handle load stress from the sensors,
was designed and run under four stardards: MPI
(mpich), CORBA (Visibroker), MPI/RT (from Missis-
sippi State) and RT-CORBA/TAO (Washington Univ.,
St. Louis). Performance results for handling maximum
communication load by these tools are presented in Fig.
13 [11] (for a network of Sun Ultra 2’s running Solaris
2.6). It is evident that MPI shows general performance
superiority over CORBA, however, with mnuch less flex-
ibility for components creation.

An additional study with the same benchmark was
done to investigate meeting deadlines. When a task is
busy with collecting data from sensors, it may not be
able to respond on time to other needs for computation.
This situation was simulated by requesting a collecting
task work in 5 sec. intervals to gather 100 sensor data
items (reasonable for ATCS) and record the following
(Table 1):

Table 2. Comparison of deadline behavior.

Platform SD misses | HD misses
Java sockets 4 1098 ms
C sockets 2 427 ms
CORBA/TAO 0 4 ms
Vgenic CORBA 1 778 ms
CORBA/IIOP 4 494 s

e the number of times a 5.1 sec. soft deadline was



missed (SD misses)

e the total amount of time a hard 5.0 sec. deadline
was missed (HD misses).

All experiments were run in Java under Solaris 2.6 (on
Ethernet), except of C sockets, which were run for Vx-
Works.

In summary, the results of experiments prove that
for real-time components to work properly the design
phase has to take into consideration the real-time im-
plementation standards (such as MPI/RT and RT-
CORBA) for the distributed target platforms. Includ-
ing implementation related design patterns into design-
level description will greatly simplify the process of de-
signing real-time components.

8 Conclusion

We tried to provide evidence that there is a clear
template for real-time software architectures and de-
sign patterns, historically rooted in control engineer-
ing, that allows designers to build software components
for complicated real-time systems using comimercial off-
the-shelf tools.

The development process consists of several steps,
including: the precise definition of signals interfacing
with the environment, description of required actions
on all these signals, and building respective structural
and behavioral diagrams, with the use of automatic
tools, if necessary.

Applying these concepts and tools to a complicated
air traffic control system confirmed this view and re-
vealed the directions of additional work needed to
enhance timing analysis at the design level and al-
low importing design components. Nevertheless, ex-
isting principles arm the developers of real-time soft-
ware components in a set of invariants that they can
successfully use in their development practice.
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