
Developing Component-Based Software for Real-Time Systems

(2) + Controller - (1) jority. if not all: models and applications. Due to the

Janusz Zalewski
School of Electrical Engineering & Computer Science

University of Central Florida
Orlarido: FL 32816-2450: US.4

jzaC!ece.engr.ucf.edu

Plant

Abstract

This paper discvsses the principles of developing
s o f t w a x cornportents for real-time systems. T h e proce-
durx is bused o n the fu~~dorrierital concept of U real-time
ai.ciiitectwe rooted in the feedback contial puradigm of
cor~t iv l eiiyirieeiiiig. Genevic desi,qn pat tenis f o r r e d
tirrie sof twwe coinponents are presented: valid for all

The rest of this paper is structured as follows. First,
we discuss a generic architecture of real-time software.
Then: we develop a pattern for one type of applica-
tion; a data acquisition system. Next, we present a
case study of a sophisticated air traffic control system
viewed as a data acquisition system, and finally outline
the development of software components with the use
of off-the-shelf design and implernentatiori tools.

Ailoderri real-time systems can be all viewed as spe-
cific instances of a general feedback control system pre-

based desi,yn arid iiripleirientation is pesen ted , iriclud-
1n.y i7ldusti~y-sti.erigth c o ~ n ~ n e r ~ i a l off-the-shelf software.

1 Introduction

serited in Fig. 1. In the most general case, such system
iiicludes all of the following elements:

Developing software components for real-time systems
teiids to be more difficult than for other domains: be-
cause of a unique nature of each individual real-time

Environrn. c l

One approach to real-time software design is rooted
in control engineering and seeiris to be fruitful for this
purpose. It is based 011 a feedback control paradigm
and has been mentioned in several papers, in the last
one and a half decade [3]. The principles of this ap-
proach have been summarized recently in [12] and are
used here to develop real-time software components. It
is argued that for all types of real-time systems it is
possible to abstract a few representative architectural
properties, which are expressive enough to allow the de-
signers base the developnient on a few structural and
behavioral patterns.

Fig. 1. Illustration of a feedback control system.
(1) Desired value; (2) Controller commands;
(3) Controlled variables; (4) Other measured

variables; (5) Environment interface.

(1) Desired value; a reference for the Controller to
make necessary adjustments of controlled vari-
ables.

(2) Controller commands; signals applied to the Plant
(outputs from the Controller) in order to achieve

1089-6503/01$10.00 0 2001 IEEE 80

http://jzaC!ece.engr.ucf.edu

its desired behavior.
Controlled variables; signals received from the
Plant (inputs to the Controller) whose values are
being controlled.
Other measured variables; auxiliary signals re-
ceived from the plant (inputs to tlie Controller)
wliich are riot controlled but used in the deteririi-
IiatioIi of tlie best values of Controller CoIriiriaIids.
Eiivironriient interfaces - user iiiterface. mass stor-
age interface. arid corrimuriication link to computer
network.

Because of the timirig requireIiieIits (such as time
coristarits) imposed OII tlie controller dynamics, it al-
ways operates in real time. Since nowadays a controller
is iiripleniented as a digital processor arid its furictioii-
ality can be exterided iiiucli beyoIid that of a regulator
fiuictiori: we can call it a real-time computer.

It is also evident that in addition to a traditional
iiiterface a controller has to the process (which includes
seiisors arid actuators) ~ a modern real-time computer
interacts with the eiiviroiiIrieiit in a ~iurriber of other
ways. iriclucliIig iriterfaces with a plaiit operator, mass
storage (database) ~ aiid computer network. -4 more
detailed view of these interfaces is presented in a unified
diagram shown iri Fig. 2 .

q&p Computer

Fig. 2 . Real-time computer system. (1) User
int.erface; (2) Process iiiterface; (3) Mass storage

interface; (4) Coiiirriuriicatiori link.

111 practice: a number of real-time systems exist that
do riot represent a complete sys,teiri in a sense of Fig.
1. but nevertheless fit very well into this concept. Re-
spective examples iriclutle:

0 data acquisition system: when the connection 2 in
Fig. 1 is broken (there is no coutrol signals from
the real-time computer.)

0 prograrrirned controllers. when tlie feedback con-
Iiectiori in Fig. 1: from the plant to the coritroller:

is removed: with corinection from the controller t o
the plant remaining intact

0 reduced architecture, if both connections between
a plant and a real-time computer are broken (what
remains is only interfaces with the operator: the
network and the database).

While the examples of real-time systems in the first
two categories are intuitively clear: existence of the
last category may be less obvious. However, taking
a closer look at respective dataflows reveals that there
are several examples of that kind of real-time systems
in practice. Putting emphasis on the distribution arid
cornmunicatiori, with relatively less interest in GUI and
database access, brings us to a typical case of real-time
simulation. With a slightly different emphasis, con-
centrating 011 tlie database use a ~ i d GUI, one has a
real-time Iriultirriedia system.

3 Real-Time Design Patterns

Orice we have an understandiiig of the nature of a real-
time system architecture, we can focus 011 developing
its design arid shaping its software architecture. How-
ever. thus far: there lias been very little guidance 011

selecting real-time architectures: either in the engineer-
ing literature or in practice. When one takes a closer
look at Figures 1 and 2: with explanations (1)-(5) in the
previous section: there is little doubt that one can arid
should start desigiiirig the coiitroller from the context
diagram similar to that iri Fig. 3.

Real-Time
co1riputer

User
Teririirial

Output #1

I rriput #1 1
Fig. 3. The top level context diagram.

81

The role of a context diagram cannot be overesti-
mated. Even though it is a relatively old notational
vehicle, it's been well established in real-time software
design as the basis for architectural development. It is
a t the context diagram level, where the interfaces be-
tween the software and the external world need to be
defined and developed. For this very reason: the con-
cept of a context diagram is indispensable as a starting
point in designing a software architecture.

Fro~n Figure 3: it becomes immediately clear that
the software components must include units responsible
for the following interactioiis with all external elernerits:

inputs from and outputs to the plant

interaction with a user

possible comrriunicatiori with ot,her
controllers/ processors

iriteraction with storage devices

eiihariced by the processing (coiriputatiod) capability.
The time source is also irIiportaIit arid can be iIiterIial
or external tlepeiidiiig OII circumstances.

Fig. 4. Outliiie of a generic
data acquisition system.

,

Store

Collect

Timer G U1
D.4Q

Software

Sen-
sors

,411 example of a correspoIidiIig design, which can
be considered a basic arid generic design pattern for
real-time software, is presented in Fig. 4: for a data
acquisition application.

Respective software components need to cornply
with the principle of separation of concerns. They can
be considered as sequential modules or iIidividua1 con-
current tasks, and can run: respectively: on a single pro-
cessor, OII multiple processors: or even 011 a distributed
system or network.

This basic design pattern can be expanded further
into more corriprehensive architectures, depending on
the focus of a particular application, such as a dis-
tributed real-time system. DepeIidiIig on a pretlonii-
riaiit furictioii of a distributed system: oiie may pro-
duce a variety of its particular architectural instances.
One such example (Fig. 5) coIiies from the area of high-
energy physics, where multiple data collection arid con-
trol facilities are spread over a large area surrouriding
a11 elementary particle accelerator [5].

..........

.....
...........';..

:,. , I. '

.....

j Exueriirient Hardware Laver
Other

Devices eiisors
........

Fig. 5. Generic architecture of a distributed real-time
system.

Multiple software components can be created to ac-
cess various (maybe the same) sources arid destinations
of data and to exchange information among themselves.
.kIiY single corripoIient can perform individual functions
and communicate with every other component.

.4ddi1ig a new coIiipoIient or deleting one should
have 110 impact or Iriinirrial impact 011 the operation,
iIi a sense that 110 degradation of functionality should
occur due to such dynarriic changes. Communication
links caii operate individually or be lumped into a mid-

82

dleware layer [7], with program units communicating
partially or exclusively via this layer.

The primary advantage of having such a flexibility
is that a number of new components can be created
and the architecture expanded during the run of an ex-
periment or operation of a process. One such example
is a dynamic GUI creation [SI. If new experiments are
conceived which require including additional features
to the GUI, or new characteristics are explored which
need GUI reorganization, this can be done on-the-fly
without jeopardizing the operation of an ongoing ex-
periment or process.

4 Detailed Design Level

For the concept of real-time design patterns: as pre-
sented in previous section, to work properly: one must
provide enough details at the desigil level, so that au-
tomatic tools could be used. The details mean: in the
first place: providing sufficient inforrriation about inter-
faces with the environment. The format involves the
following items:

0 signal iianie as a variable (that is; expressed in

0 its source and direction (input or output)
0 signal's detailed function

0 its detailed characteristics, including data type
(analog, binary, text: etc.) , range of valid values,
length, shape, frequency, etc. (whatever applica-
ble)

0 necessary action in case of invalid value, whicli ef-
fectively means an error handling function.

acceptable textual format)

To illustrate principles of creating detailed designs:
starting with such interface description, we will use an
example of instrumentatiori software for testing printed
circuit boards (PCB). Let's assume that a PCB stand is
interfaced to the following three instruInents necessary
to operate the board and take respective measurements
t o test it: power supply: spectrum analyzer and data
acquisition box.

-4 context diagram for the iristrurnentatiori software
is shown in Fig. 6, limited to the signals exchanged
with the above instruments (a plant, in terminology of
Fig. 1). -4 sample list of signal interfaces, exchanged
with the plant, is presented in Table 1, following the
description format above.

Once the exact description of input and oputput sig-
nals is known: a detailed and complete list of actions in
terms of operations ori all signals has to be developed.

I

IInstrumentation Software

Fig. 6. PSB test system context tliagrarri.

This list can be obtained from the require~rierits spec-
ification document. .4 sample reyuirerrierit related to
the value of SuPPLY-1 is presented below. but the full
list of actions had to be omitted from this article due
to space restrictions.

Table 1. Detailed signal description
(notes are too long to fit in the table).

Reyui~ement X. Y.Z. If SUPPLY-1 current exceeds the
value specified in Note 2, then the testing prograrri shall
do the following:

0 turn the power supply voltage B+ off

83

0 display the value of SUPPLY-1 in the message win-
dow as follows: "SUPPLY-I too high: value"

0 append the value of SUPPLY-I to the file
results. txt, and

0 stop the operation;

otherwise it shall continue. End X . Y .2
Even though we are using such a simple example

and have deliberately limited interface description to
the plant interface only: leaving out information on the
remaining three interfaces from Fig. 2, for the sake
of brevity: this single requirement contains references
both to the GUI (talking about the message window)
arid to the database (talking about appending value to
the file).

At this point, we are ready to define the structure
arid behavior of tlie software: in our example, the in-
strumentation software. Because testing printed circuit
hoards is a process sequential by nature, tlie structure
of the iristruirieritatioii software is also sequential. Fol-
lowing the generic architectural pattern from Fig. 4, we
need to distiiiguish the following sequential modules in
our design corripoiient: .4cquisition arid Control, GUI,
Storage Haridler, and hlaiii Computation. Knowing
that there are three separate external devices in the
plant connected to the real-time computer, we'll need
to create three correspoiiding instances of the Acqui-
sition arid Control module: Power Supply: Spectrum
Analyzer, and Data .4cquisitiori Box.

For completeness, we have to inention two things re-
garding the generic pattern froin Fig. 4. There is 110

need for us to have a Comrriuiiicatiori Link, because
our testing system is starid-alone. We will most likely
be using time orily locally, so the Timer module is not
needed either. .4s a result, our componerit will have
a relatively simple structure and can be easily repre-
sented as a class diagram, with objects listed in the
previous paragraph. However, we riiust be aware that
in general, the developer would have to design con-
current modules, according to the generic pattern from
Fig. 4, and define precisely respective interfaces among
these modules. For a large systerri, this is likely to be-
come a daunting task and will be illustrated briefly in
the next section.

One last thing, which the designer has to do is defin-
ing each Iriodule's behavior. For a sequential system
like our iristrumentatioIi software, the behavior can be
easily derived from the list of actions produced above
in terms of operations on respective signals, and rep-
resented as a sequence diagram. For more complex
systems with concurrent niodules, this has to be done
formally using statecharts.

Air Traffi

5 Case Study:
Air Traffic Control System

Let us consider the design of software for an air traffic
control system (-4TCS) conceived as a data acquisition
system [9]. It is not: in fact, an automatic control sys-
tem, because there is no direct connection between the
real-time computer and the plant. ,411 commands are
executed by the pilot who is receiving respective mes-
sages from an air-traffic controller (Fig. 7).

Fig. 7. .4ir traffic control system as a data acquisition
system.

411 example of the context diagram for the air traf-
fic control system is presented in Fig. 8. It is fully
compatible with the general model (Fig. 3).

External

.4TCS Software

Wk, Database

I Sources J

Fig. 8. The top level context diagram for an air traffic
control system.

84

A component-based software architecture derived
from this context diagram is presented in Fig. 9. Indi-
vidual boxes represent software modules interfacing to
the external devices and performing respective func-
tions. The architecture is also compatible with the
software design pattern shown in Fig. 4 arid includes
modules responsible for handling:

three sources of data (radars: GPS arid time

0 a user interface to controller displays
0 two functionally different mass storage interfaces

(for flight plans and event recording)
two furictionally different network interfaces (for
e n i ~ v u t e centers and weather services)

0 coinputatio~ial function, which in this case is orily
collisioIi detection but may iiiclucle altitude warii-
iiigs, proximity wariiiiigs: etc.

source; the latter is not shown)

GPS

Network connectivity via middleware s/w bus

t i t
Radar

Fig. 9. ATCS software compoiieiits coiruriuiiicatirig
via iriiddleware.

Since tlie nature of the system is highly distributed:
we use Iiiiddleware for coiiriectiIig all the coniporierits.
This gives the tlesigiiers the highest flexibility in orga-
riiziiig individual corriporierits and shaping their co111-
inunicatioii structure.

6 Components Development:
Design Aspect

Developing software coIripoIielits for the presented
.4TCS arcliitecture or other contemporary real-time ap-
plications, such as the one described in (51 is too coni-
plex to be done rria~iually by a single iiidividual. There-
fore autoriiatic tools are needed to assist in the devel-
ojmierit process.

It must be stressed that tools are orily a part of a
complete design methodology which must include the

Fig. 10. Sample object diagram in a high-level design
tool Rhapsody.

following three elenieiits: inetliod (a grapliical notation
to express properties of an architecture) , techniques
(traiisfomiatioIis applied to the notation) ~ and software
tools support,irig the traIisforrriatioii techniques.

To be useful in tlie development of software co~ripo-
iierits we require the automatic tools to provide support
in the following dirrieiisioIis [12]:

0 iutcriial, to express real-time models via the spe-
cific notation and respective traIisformatioIis to
create real-time coiiipoiieiits

0 horizontal, related to means of coIIiiriuiiicatioii

0 vertical, related to the next and previous phases

0 diagorial, related to tlie use of architectural com-

with other components arid other tools

of the developirieiit process

ponents in Jiffererit projects/processes.

111 a language of software colriporielits this means we
have to be able to create, connect, model: a ~ i d reuse
corriporieiits a t the design level.

Several software tools with this concept iIi ~iiiiid,
which operate iii the coniiriercial marketplace, were an-
alyzed [l]. For practical reasoris: we focused on those,
which have solid methodological foundatioiis: based on
00 approaches: ROOM [lo] arid UML [4].

The selected tools offer extensive services in the in-
ternal dimension to model both structural and behav-
ioral patterns of distributed real-time software. The
structure arid behavior of a comporieiit such as the
Conini Link from Fig. 9 can be easily expressed as
an object diagram arid a statechart, respectively (Fig.
10 arid 11). In the horizontal diirieiisiori, a capability
of interacting with externally created corriporieiits is

85

Fig. 11. Statechart for a sample COIIIIII Link module
iri Rhapsody.

Fig. 12. hiIodehg corriiriuIiicatiori with exter~ial
coIripoIients in ObjecTirrie.

provided for most tools via standard TCP/IP protocol
(Fig. 12).

Iri the vertical dirneiisiori, tools usually have the ca-
pability of generating code for specific real-time keriiels,
however, they lack the capability to perform timirig
analysis at the design level. They also lack adequate
iiieaiis of importing design compoiients from other tools
(diagonal dimerision).

7 Components Development:
Implementation Aspect

At the irriplemeiitatiori level: the design tools should
allow timing and scheduling analysis: then correcting
the design, arid fiiialy code generation. With current
tools, timing analysis is only possible after the code has
been generated.

For this reason: when developing the basic ATCS
structural components and defining their behaviors: it

Fig. 13. HaIidlirig load stress by MPI, R/lPI/RT,
CORB.4 arid RT-CORBA.

turns out that a rriuch more rigid coIniIiuiiication struc-
ture is necessary for the whole design, to ensure timeli-
ness axid predictability. Traditionally, coiriinuiiicatioIi
in distributed applications is doiie via sockets or remote
procedure calls (method invocation). This is very iri-
adequate for distributed real-time applications.

Therefore two iIIipleIrieIitatiori level standards for
distributed real-time coiriIiiuIiicatioii were studied:
MPI/RT and Real-Time CORB.4. simple real-time
betichrriark: to haiidle load stress from the sensors,
was designed and ruii under four stardards: MPI
(iripich) : CORBA4 (Visibroker): i\IPI/RT (from Missis-
sippi State) and RT-CORBA/T.%O (Wasliirigtou Uriiv.,
St. Louis). Perforniance results for 1iandliIig IiiaxiIiiuIIi
corriIriuiiicatioii load by these tools are presented in Fig.
13 [ll] (for a network of Sun U l k a 2's ruIiiiirig Solaris
2.6). It is evident that MPI shows geiieral perfoririaiice
superiority over CORBA4, however: with much less flex-
ibility for coiripoIieIits creation.

,411 additional study with the same beiichiiiark was
done to investigate meeting deadlines. VLr1ieIi a task is
busy with collecting data frorn :sensors: it may riot be
able to respond on time to other needs for computation.
This situation was simulated by requesting a collecting
task work in 5 sec. intervals to gather 100 sensor data
items (reasonable for -4TCS) and record the followiiig
(Table 1):

Table 2. Comparison of deadline behavior.

Java sockets 1098 111s
427 111s

4 Ills

\'genic CORBA 778 111s
494 111s

0 the riumber of times a 5.1 sec. soft deadline was

86

missed (SD misses) References
0 the total amount of time a hard 5.0 sec. deadline

was missed (HD misses).

All experiments were run in Java under Solaris 2.6 (on
Ethernet), except of C sockets, which were run for Vx-
Works.

In summary, the results of experiments prove that
for real-time components to work properly the design
phase has to take into consideration the real-time im-
plementation standards (such as MPI/RT and RT-
CORBA) for the distributed target platforms. Includ-
ing implementation related design patterns into design-
level description will greatly simplify the process of de-
signing real-time components.

8 Conclusion

We tried to provide evidence that there is a clear
template for real-time software architectures arid de-
sign patterns, historically rooted in control erigirieer-
ing, that allows designers to build software components
for complicated real-time systems using conirriercial off-
the-shelf tools.

The development process consists of several steps,
including: the precise definition of signals interfacing
with the environment, description of required actions
011 all these signals: and building respective structural
and behavioral diagrams, with the use of automatic
tools, if necessary.

Applying these concepts and tools to a complicated
air traffic control system confirmed this view arid re-
vealed ‘the directions of additional work needed to
enhance timing analysis at the design level arid al-
low importing design components. Nevertheless, ex-
isting principles arm the developers of real-time soft-
ware components in a set of invariants that they can
successfully use in their development practice.

A.H.M. AlMazid, Engineering Analysis of Object-
Oriented Software Development TooJs for Distributed
Real-Time Systems, hl.Sc. Thesis, Univ. of Central
Florida, Orlando, Fla., 2000

L. Bass, P. Clements, R. Kazman, Software Archi-
tecture in Practice, Addison Wesley, Reading, hlass.,
1998

hl. Boasson, Control Systems Software, IEEE Trans.
on Automatic Control, 38(7):1094-1106, July 1993

B.P. Douglass, Doing Hard Time: Developing Real-
Time Systems with UML, Addison-Wesley, Reading,
Mass., 1999

K. Gaspar, B. Franek, J. Schwarz, Architecture of a
Distributed Real-Time System to Control Large High-
Energy Physics Experiments, Parallel and Distributed
Computing Practices, 2(1):103-114, March 1999

G.T. Heineman, W.T. Council1 (Eds.), Components-
Based Software Engineering, Addison-JVeslev, Boston,
hlass., 2001

C. hlufioz, J . Zalewski, Architecture and Performance
of Java-Based Distributed Object Models, Real- Time
Systems Journal, 21(1/2):43-76, July 2001

H. Pedroza, GUI Builder for Real- T ime Dastributed
Object Models, hl.Sc. Thesis, University of Central
Florida, Orlando, Fla., 1999

hl.T. Pozesky, M.K. hlann, The US .4ir Traffic Control
System .4rchitecture, Proc. of the IEEE, 77(11):1605-
1617, November 1989

B. Selic, G. Gullekson, P.T. W a d , Real-Time Object-
Oriented Modeling, John Wiley and Sons, New York,
1994

S Su, Benchmarking Distributed Real- Time Applica-
tions, hl.Sc. Thesis, University of Central Florida, Or-
lando, Fla., 2000

J. Zalewski, Real-Time Software .4rchitectures and
Design Patterns: Fundamental Concepts and Their
Consequences, Annual Reviews in Control, 25(1):133-
146, July 2001

87

