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Abstract 

This paper  discvsses the principles of developing 
s o f t w a x  cornportents for real-time systems. T h e  proce- 
durx is bused o n  the fu~~dorrierital concept of U real-time 
ai.ciiitectwe rooted in the feedback contial puradigm of 
cor~t iv l  eiiyirieeiiiig. Genevic desi,qn pat tenis  f o r  r e d  
tirrie sof twwe coinponents are presented: valid for all 

The rest of this paper is structured as follows. First, 
we discuss a generic architecture of real-time software. 
Then: we develop a pattern for one type of applica- 
tion; a data acquisition system. Next, we present a 
case study of a sophisticated air traffic control system 
viewed as a data acquisition system, and finally outline 
the development of software components with the use 
of off-the-shelf design and implernentatiori tools. 

Ailoderri real-time systems can be all viewed as spe- 
cific instances of a general feedback control system pre- 

based desi,yn arid iiripleirientation is pesen ted ,  iriclud- 
1n.y i7ldusti~y-sti.erigth c o ~ n ~ n e r ~ i a l  off-the-shelf software. 

1 Introduction 

serited in Fig. 1. In the most general case, such system 
iiicludes all of the following elements: 

Developing software components for real-time systems 
teiids to be more difficult than for other domains: be- 
cause of a unique nature of each individual real-time 

Environrn. c l  

One approach to real-time software design is rooted 
in control engineering and seeiris to be fruitful for this 
purpose. It is based 011 a feedback control paradigm 
and has been mentioned in several papers, in the last 
one and a half decade [3]. The principles of this ap- 
proach have been summarized recently in [12] and are 
used here to develop real-time software components. It 
is argued that for all types of real-time systems it is 
possible to abstract a few representative architectural 
properties, which are expressive enough to allow the de- 
signers base the developnient on a few structural and 
behavioral patterns. 

Fig. 1. Illustration of a feedback control system. 
(1) Desired value; (2) Controller commands; 
(3) Controlled variables; (4) Other measured 

variables; (5) Environment interface. 

(1) Desired value; a reference for the Controller to  
make necessary adjustments of controlled vari- 
ables. 

(2) Controller commands; signals applied to the Plant 
(outputs from the Controller) in order to achieve 
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its desired behavior. 
Controlled variables; signals received from the 
Plant (inputs to  the Controller) whose values are 
being controlled. 
Other measured variables; auxiliary signals re- 
ceived from the plant (inputs to  tlie Controller) 
wliich are riot controlled but used in the deteririi- 
IiatioIi of tlie best values of Controller CoIriiriaIids. 
Eiivironriient interfaces - user iiiterface. mass stor- 
age interface. arid corrimuriication link to  computer 
network. 

Because of the timirig requireIiieIits (such as time 
coristarits) imposed OII tlie controller dynamics, it al- 
ways operates in real time. Since nowadays a controller 
is iiripleniented as a digital processor arid its furictioii- 
ality can be exterided iiiucli beyoIid that of a regulator 
fiuictiori: we can call it a real-time computer. 

It is also evident that in addition to a traditional 
iiiterface a controller has to the process (which includes 
seiisors arid actuators) ~ a modern real-time computer 
interacts with the eiiviroiiIrieiit in a ~iurriber of other 
ways. iriclucliIig iriterfaces with a plaiit operator, mass 
storage (database) ~ aiid computer network. -4 more 
detailed view of these interfaces is presented in a unified 
diagram shown iri Fig. 2 .  

q&p Computer 

Fig. 2 .  Real-time computer system. (1) User 
int.erface; (2) Process iiiterface; (3) Mass storage 

interface; (4) Coiiirriuriicatiori link. 

111 practice: a number of real-time systems exist that 
do riot represent a complete sys,teiri in a sense of Fig. 
1. but nevertheless fit very well into this concept. Re- 
spective examples iriclutle: 

0 data acquisition system: when the connection 2 in  
Fig. 1 is broken (there is no coutrol signals from 
the real-time computer.) 

0 prograrrirned controllers. when tlie feedback con- 
Iiectiori in Fig. 1: from the plant to the coritroller: 

is removed: with corinection from the controller t o  
the plant remaining intact 

0 reduced architecture, if both connections between 
a plant and a real-time computer are broken (what 
remains is only interfaces with the operator: the 
network and the database). 

While the examples of real-time systems in the first 
two categories are intuitively clear: existence of the 
last category may be less obvious. However, taking 
a closer look at respective dataflows reveals that there 
are several examples of that kind of real-time systems 
in practice. Putting emphasis on the distribution arid 
cornmunicatiori, with relatively less interest in GUI and 
database access, brings us to  a typical case of real-time 
simulation. With a slightly different emphasis, con- 
centrating 011 tlie database use a ~ i d  GUI, one has a 
real-time Iriultirriedia system. 

3 Real-Time Design Patterns 

Orice we have an understandiiig of the nature of a real- 
time system architecture, we can focus 011 developing 
its design arid shaping its software architecture. How- 
ever. thus far: there lias been very little guidance 011 

selecting real-time architectures: either in the engineer- 
ing literature or in practice. When one takes a closer 
look at  Figures 1 and 2: with explanations (1)-(5) in the 
previous section: there is little doubt that one can arid 
should start desigiiirig the coiitroller from the context 
diagram similar to  that iri Fig. 3. 

Real-Time 
co1riputer 

User 
Teririirial 

Output #1 

I rriput #1 1 
Fig. 3. The top level context diagram. 
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The role of a context diagram cannot be overesti- 
mated. Even though it is a relatively old notational 
vehicle, it's been well established in real-time software 
design as the basis for architectural development. It is 
a t  the context diagram level, where the interfaces be- 
tween the software and the external world need to be 
defined and developed. For this very reason: the con- 
cept of a context diagram is indispensable as a starting 
point in designing a software architecture. 

Fro~n Figure 3: it becomes immediately clear that 
the software components must include units responsible 
for the following interactioiis with all external elernerits: 

inputs from and outputs to the plant 

interaction with a user 

possible comrriunicatiori with ot,her 
controllers/ processors 

iriteraction with storage devices 

eiihariced by the processing (coiriputatiod) capability. 
The time source is also irIiportaIit arid can be iIiterIial 
or external tlepeiidiiig OII circumstances. 

Fig. 4. Outliiie of a generic 
data acquisition system. 

, 

Store 

Collect 

Timer G U1 
D.4Q 

Software 

Sen- 
sors 

,411 example of a correspoIidiIig design, which can 
be considered a basic arid generic design pattern for 
real-time software, is presented in Fig. 4: for a data 
acquisition application. 

Respective software components need to cornply 
with the principle of separation of concerns. They can 
be considered as sequential modules or iIidividua1 con- 
current tasks, and can run: respectively: on a single pro- 
cessor, OII multiple processors: or even 011  a distributed 
system or network. 

This basic design pattern can be expanded further 
into more corriprehensive architectures, depending on 
the focus of a particular application, such as a dis- 
tributed real-time system. DepeIidiIig on a pretlonii- 
riaiit furictioii of a distributed system: oiie may pro- 
duce a variety of its particular architectural instances. 
One such example (Fig. 5) coIiies from the area of high- 
energy physics, where multiple data collection arid con- 
trol facilities are spread over a large area surrouriding 
a11 elementary particle accelerator [5]. 

.......... 

..... . . . . . . . . . . . .  . .... 
........... ..... ..';.. .... 

:,. ...... . .  . ,  I. ........ ' 

..... 

j Exueriirient Hardware Laver . .... .... 
Other 

Devices eiisors 
........ 

Fig. 5. Generic architecture of a distributed real-time 
system. 

Multiple software components can be created to ac- 
cess various (maybe the same) sources arid destinations 
of data and to exchange information among themselves. 
.kIiY single corripoIient can perform individual functions 
and communicate with every other component. 

.4ddi1ig a new coIiipoIient or deleting one should 
have 110 impact or Iriinirrial impact 011 the operation, 
iIi a sense that 110 degradation of functionality should 
occur due to such dynarriic changes. Communication 
links caii operate individually or be lumped into a mid- 
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dleware layer [7], with program units communicating 
partially or exclusively via this layer. 

The primary advantage of having such a flexibility 
is that  a number of new components can be created 
and the architecture expanded during the run of an ex- 
periment or operation of a process. One such example 
is a dynamic GUI creation [SI. If new experiments are 
conceived which require including additional features 
to the GUI, or new characteristics are explored which 
need GUI reorganization, this can be done on-the-fly 
without jeopardizing the operation of an ongoing ex- 
periment or process. 

4 Detailed Design Level 

For the concept of real-time design patterns: as pre- 
sented in previous section, to work properly: one must 
provide enough details at the desigil level, so that au- 
tomatic tools could be used. The details mean: in the 
first place: providing sufficient inforrriation about inter- 
faces with the environment. The format involves the 
following items: 

0 signal iianie as a variable (that is; expressed in 

0 its source and direction (input or output) 
0 signal's detailed function 

0 its detailed characteristics, including data type 
(analog, binary, text: etc.) , range of valid values, 
length, shape, frequency, etc. (whatever applica- 
ble) 

0 necessary action in case of invalid value, whicli ef- 
fectively means an error handling function. 

acceptable textual format) 

To illustrate principles of creating detailed designs: 
starting with such interface description, we will use an 
example of instrumentatiori software for testing printed 
circuit boards (PCB). Let's assume that a PCB stand is 
interfaced to the following three instruInents necessary 
to  operate the board and take respective measurements 
t o  test it: power supply: spectrum analyzer and data 
acquisition box. 

-4 context diagram for the iristrurnentatiori software 
is shown in Fig. 6, limited to the signals exchanged 
with the above instruments (a plant, in terminology of 
Fig. 1). -4 sample list of signal interfaces, exchanged 
with the plant, is presented in Table 1, following the 
description format above. 

Once the exact description of input and oputput sig- 
nals is known: a detailed and complete list of actions in 
terms of operations ori all signals has to be developed. 

I 

IInstrumentation Software 

Fig. 6. PSB test system context tliagrarri. 

This list can be obtained from the require~rierits spec- 
ification document. .4 sample reyuirerrierit related to 
the value of SuPPLY-1 is presented below. but the full 
list of actions had to be omitted from this article due 
to space restrictions. 

Table 1. Detailed signal description 
(notes are too long to fit in the table). 

Reyui~ement  X. Y.Z. If SUPPLY-1 current exceeds the 
value specified in Note 2, then the testing prograrri shall 
do the following: 

0 turn the power supply voltage B+ off 
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0 display the value of SUPPLY-1 in the message win- 
dow as follows: "SUPPLY-I too high: value" 

0 append the value of SUPPLY-I to the file 
results. txt, and 

0 stop the operation; 

otherwise it shall continue. End X .  Y .2  
Even though we are using such a simple example 

and have deliberately limited interface description to 
the plant interface only: leaving out information on the 
remaining three interfaces from Fig. 2, for the sake 
of brevity: this single requirement contains references 
both to the GUI (talking about the message window) 
arid to the database (talking about appending value to  
the file). 

At this point, we are ready to define the structure 
arid behavior of tlie software: in our example, the in- 
strumentation software. Because testing printed circuit 
hoards is a process sequential by nature, tlie structure 
of the iristruirieritatioii software is also sequential. Fol- 
lowing the generic architectural pattern from Fig. 4, we 
need to distiiiguish the following sequential modules in 
our design corripoiient: .4cquisition arid Control, GUI, 
Storage Haridler, and hlaiii Computation. Knowing 
that there are three separate external devices in the 
plant connected to the real-time computer, we'll need 
to create three correspoiiding instances of the Acqui- 
sition arid Control module: Power Supply: Spectrum 
Analyzer, and Data .4cquisitiori Box. 

For completeness, we have to inention two  things re- 
garding the generic pattern froin Fig. 4. There is 110 

need for us to  have a Comrriuiiicatiori Link, because 
our testing system is starid-alone. We will most likely 
be using time orily locally, so the Timer module is not 
needed either. .4s a result, our componerit will have 
a relatively simple structure and can be easily repre- 
sented as a class diagram, with objects listed in the 
previous paragraph. However, we riiust be aware that 
in general, the developer would have to  design con- 
current modules, according to the generic pattern from 
Fig. 4, and define precisely respective interfaces among 
these modules. For a large systerri, this is likely to be- 
come a daunting task and will be illustrated briefly in 
the next section. 

One last thing, which the designer has to do is defin- 
ing each Iriodule's behavior. For a sequential system 
like our iristrumentatioIi software, the behavior can be 
easily derived from the list of actions produced above 
in terms of operations on respective signals, and rep- 
resented as a sequence diagram. For more complex 
systems with concurrent niodules, this has to  be done 
formally using statecharts. 

Air Traffi 

5 Case Study: 
Air Traffic Control System 

Let us consider the design of software for an air traffic 
control system (-4TCS) conceived as a data acquisition 
system [9]. It is not: in fact, an automatic control sys- 
tem, because there is no direct connection between the 
real-time computer and the plant. ,411 commands are 
executed by the pilot who is receiving respective mes- 
sages from an air-traffic controller (Fig. 7). 

Fig. 7. .4ir traffic control system as a data acquisition 
system. 

411 example of the context diagram for the air traf- 
fic control system is presented in Fig. 8. It  is fully 
compatible with the general model (Fig. 3). 

External 

.4TCS Software 

Wk, Database 

I Sources J 

Fig. 8. The top level context diagram for an air traffic 
control system. 
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A component-based software architecture derived 
from this context diagram is presented in Fig. 9. Indi- 
vidual boxes represent software modules interfacing to 
the external devices and performing respective func- 
tions. The architecture is also compatible with the 
software design pattern shown in Fig. 4 arid includes 
modules responsible for handling: 

three sources of data (radars: GPS arid time 

0 a user interface to  controller displays 
0 two functionally different mass storage interfaces 

(for flight plans and event recording) 
two furictionally different network interfaces (for 
e n  i ~ v u t e  centers and weather services) 

0 coinputatio~ial function, which in this case is orily 
collisioIi detection but may iiiclucle altitude warii- 
iiigs, proximity wariiiiigs: etc. 

source; the latter is not shown) 

GPS 

Network connectivity via middleware s/w bus 

t i t  
Radar 

Fig. 9. ATCS software compoiieiits coiruriuiiicatirig 
via iriiddleware. 

Since tlie nature of the system is highly distributed: 
we use Iiiiddleware for coiiriectiIig all the coniporierits. 
This gives the tlesigiiers the highest flexibility in orga- 
riiziiig individual corriporierits and shaping their co111- 
inunicatioii structure. 

6 Components Development: 
Design Aspect 

Developing software coIripoIielits for the presented 
.4TCS arcliitecture or other contemporary real-time ap- 
plications, such as the one described in (51 is too coni- 
plex to be done rria~iually by a single iiidividual. There- 
fore autoriiatic tools are needed to assist in the devel- 
ojmierit process. 

It must be stressed that tools are orily a part of a 
complete design methodology which must include the 

Fig. 10. Sample object diagram in a high-level design 
tool Rhapsody. 

following three elenieiits: inetliod (a  grapliical notation 
to express properties of an architecture) , techniques 
(traiisfomiatioIis applied to the notation) ~ and software 
tools support,irig the traIisforrriatioii techniques. 

To be useful in tlie development of software co~ripo- 
iierits we require the automatic tools to  provide support 
in the following dirrieiisioIis [12]: 

0 iutcriial, to express real-time models via the spe- 
cific notation and respective traIisformatioIis to  
create real-time coiiipoiieiits 

0 horizontal, related to  means of coIIiiriuiiicatioii 

0 vertical, related to  the next and previous phases 

0 diagorial, related to tlie use of architectural com- 

with other components arid other tools 

of the developirieiit process 

ponents in Jiffererit projects/processes. 

111 a language of software colriporielits this means we 
have to be able to create, connect, model: a ~ i d  reuse 
corriporieiits a t  the design level. 

Several software tools with this concept iIi ~iiiiid, 
which operate iii the coniiriercial marketplace, were an- 
alyzed [l]. For practical reasoris: we focused on those, 
which have solid methodological foundatioiis: based on 
00 approaches: ROOM [lo] arid UML [4]. 

The selected tools offer extensive services in the in- 
ternal dimension to  model both structural and behav- 
ioral patterns of distributed real-time software. The 
structure arid behavior of a comporieiit such as the 
Conini Link from Fig. 9 can be easily expressed as 
an object diagram arid a statechart, respectively (Fig. 
10 arid 11). In the horizontal diirieiisiori, a capability 
of interacting with externally created corriporieiits is 
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Fig. 11. Statechart for a sample COIIIIII Link module 
iri Rhapsody. 

Fig. 12. hiIodehg corriiriuIiicatiori with exter~ial 
coIripoIients in ObjecTirrie. 

provided for most tools via standard TCP/IP protocol 
(Fig. 12). 

Iri the vertical dirneiisiori, tools usually have the ca- 
pability of generating code for specific real-time keriiels, 
however, they lack the capability to perform timirig 
analysis at the design level. They also lack adequate 
iiieaiis of importing design compoiients from other tools 
(diagonal dimerision). 

7 Components Development: 
Implementation Aspect 

At the irriplemeiitatiori level: the design tools should 
allow timing and scheduling analysis: then correcting 
the design, arid fiiialy code generation. With current 
tools, timing analysis is only possible after the code has 
been generated. 

For this reason: when developing the basic ATCS 
structural components and defining their behaviors: it 

Fig. 13. HaIidlirig load stress by MPI, R/lPI/RT, 
CORB.4 arid RT-CORBA. 

turns out that a rriuch more rigid coIniIiuiiication struc- 
ture is necessary for the whole design, to ensure timeli- 
ness axid predictability. Traditionally, coiriinuiiicatioIi 
in distributed applications is doiie via sockets or remote 
procedure calls (method invocation). This is very iri- 
adequate for distributed real-time applications. 

Therefore two iIIipleIrieIitatiori level standards for 
distributed real-time coiriIiiuIiicatioii were studied: 
MPI/RT and Real-Time CORB.4. simple real-time 
betichrriark: to haiidle load stress from the sensors, 
was designed and ruii under four stardards: MPI 
(iripich) : CORBA4 (Visibroker): i\IPI/RT (from Missis- 
sippi State) and RT-CORBA/T.%O (Wasliirigtou Uriiv., 
St. Louis). Perforniance results for 1iandliIig IiiaxiIiiuIIi 
corriIriuiiicatioii load by these tools are presented in Fig. 
13 [ll] (for a network of Sun U l k a  2's ruIiiiirig Solaris 
2.6). It is evident that MPI shows geiieral perfoririaiice 
superiority over CORBA4, however: with much less flex- 
ibility for coiripoIieIits creation. 

,411 additional study with the same beiichiiiark was 
done to investigate meeting deadlines. VLr1ieIi a task is 
busy with collecting data frorn :sensors: it may riot be 
able to respond on time to other needs for computation. 
This situation was simulated by requesting a collecting 
task work in 5 sec. intervals to gather 100 sensor data 
items (reasonable for -4TCS) and record the followiiig 
(Table 1): 

Table 2. Comparison of deadline behavior. 

Java sockets 1098 111s 
427 111s 

4 Ills 

\'genic CORBA 778 111s 
494 111s 

0 the riumber of times a 5.1 sec. soft deadline was 
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missed (SD misses) References 
0 the total amount of time a hard 5.0 sec. deadline 

was missed (HD misses). 

All experiments were run in Java under Solaris 2.6 (on 
Ethernet), except of C sockets, which were run for Vx- 
Works. 

In summary, the results of experiments prove that 
for real-time components to work properly the design 
phase has to take into consideration the real-time im- 
plementation standards (such as MPI/RT and RT- 
CORBA) for the distributed target platforms. Includ- 
ing implementation related design patterns into design- 
level description will greatly simplify the process of de- 
signing real-time components. 

8 Conclusion 

We tried to provide evidence that there is a clear 
template for real-time software architectures arid de- 
sign patterns, historically rooted in control erigirieer- 
ing, that allows designers to build software components 
for complicated real-time systems using conirriercial off- 
the-shelf tools. 

The development process consists of several steps, 
including: the precise definition of signals interfacing 
with the environment, description of required actions 
011 all these signals: and building respective structural 
and behavioral diagrams, with the use of automatic 
tools, if necessary. 

Applying these concepts and tools to a complicated 
air traffic control system confirmed this view arid re- 
vealed ‘the directions of additional work needed to 
enhance timing analysis at the design level arid al- 
low importing design components. Nevertheless, ex- 
isting principles arm the developers of real-time soft- 
ware components in a set of invariants that they can 
successfully use in their development practice. 
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