Software Design Patterns for TinyOS

David Gay Phil Levis David Culler
Intel Research, Berkeley University of California at Berkeley University of California at Berkeley
david.e.gay@intel.com pal@cs.berkeley.edu culler@cs.berkeley.edu
Abstract the challenges are quite different. These challenges inclide [2, Sec-

We present design patterns used by software components in thdion 2.1):

TinyOS sensor network operating system. They differ significantly ¢ Robustness: once deployed, a sensor network must run unat-
from traditional software design patterns due to the constraints tended for months or years.

of sensor networks and TinyOS’s focus on static allocation and
whole-program composition. We describe how nesC has evolved to
support these design patterns by including a few simple language
primitives and optimisations.

e Low resource usage: sensor network nodes include very little
RAM, and run off batteries.

¢ Diverse service implementations: applications should be able
to choose between multiple implementations of, e.g., multi-hop

Categories and Subject DescriptorsD.2.11 [Software Engineer- routing.

ing]: Software Architectures — Patterns e Hardware evolution: mote hardware is in constant evolution;

applications and most system services must be portable across

hardware generations.

Keywords Design Patterns, Embedded Systems, nesC, TinyOS e Adaptability to application requirements: applications have

very different requirements in terms of lifetime, communica-

tion, sensing, etc.

General Terms Languages

1. Introduction

TinyOS [1] is an OS for wireless network embedded systems, with ~ hesC [4] — TinyOS’s implementation language — was de-
an emphasis on reacting to external events and extremely low- Signed with these challenges in mind; it is a component-based lan-
power operation. Rather than a monolithic OS, TinyOS is a set of guage with an event-based execution model. nesC components have
components which are included as-needed in applications; a signif-Similarities to objects: they encapsulate state and interact through
icant challenge in TinyOS development is the creation of flexible, Well-defined interfaces. They also have significant differences: the
reusable components. Additionally, programming abstractions for Set of components and their interactions are fixed at compile-time
sensor networks, where TinyOS is the current OS-of-choice, are (to promote reliability and efficiency), rather than at run-time, as
still under investigation| 2] object-oriented references and instantiation do. Programmers can-
Writing solid, reusable software components is hard. Doing so Not easily apply idioms or patterns from object-oriented languages,
for sensor networks is even harder. Limited resources (e.g., 4kB of and when they do, the results are rarely effective. _
RAM) and strict energy budgets (e.g., averages below 1mW) lead Inthis paper, we present a preliminary set of five design patterns
developers to write application-specific versions of many services. Which show how nesC can be used to build components which ad-
While specialised software solutions enable developers to build ef- dress TinyOS’s challengBiThese patterns are based on our experi-
ficient systems, they are inherently at odds with reusable software. €nces designing and writing TinyOS components and applications,
Software design patterns are a well-accepted technique to pro-and on our examination of code written by others. These patterns
mote code re-usé[[3, p.1]: have driven, and continue to drive, the development of nesC. For
instance, th@niqueCount function was introduced in nesC version
1.1 to support the Servicelnstance pattern; nesC version 1.2 will
include generic components, which simplify expression of some of
Design patterns identify sets of common and recurring require- the patterns presented here (see Sefiion 4).
ments, and define a pattern of object interactions that meet these This paper contributes to embedded system programming in
requirements. However, these patterns are not directly applicablethree ways. First, these design patterns provide insight on how pro-
to TinyOS programming. Most design patterns focus on the prob- gramming network embedded systems is structurally different than
lems faced by large, object-oriented programs; in sensor networkstraditional software, and how these different factors motivate soft-
ware design. We believe that these patterns have applicability be-
yond the sensor network space: TinyOS's requirements seen above
are not radically different from those of other embedded systems.
Second, we explore how a few simple features of the nesC language
Permission to make digital or hard copies of all or part of this work for personal or a.nd Compll.er’. particularly parameterlseq mterface.s’.umque Iden.tl-
classroom use is granted without fee provided that copies are not made or distributedfi€rS and inlining, are necessary for concise and efficient expression
for profit or commercial advantage and that copies bear this notice and the full citation Of these patterns. Finally, this paper helps researchers working with

on the first page. To copy otherwise, to republish, to post on servers or to redistribute TinyOS write effective programs. The youth of TinyOS precludes
to lists, requires prior specific permission and/or a fee.

LCTES’05, June 15-17, 2005, Chicago, lllinois, USA. -) o
Copyright(© 2005 ACM 1-59593-018-3/05/0006. . . $5.00. 1Because of space constraints, we have omitted four more specialised
patterns; these can be found on our website [5].

These patterns solve specific design problems and make object-
oriented designs more flexible, elegant, and ultimately reusable.

e :r s, command: sense() |
< AppC / Sensorsa \ AppM TenpM

(User) event: senseDone(val ue) (Provider)

<

Figure 2. Typical split-phase operation.

sor or sending a packet, are split-phase operations, where a com-
mand to start the operation returns immediately and a callback
event indicates when the operation completes (Fifjire 2). To pro-
mote reliability and analysability, nesC does not support dynamic
memory allocation or function pointers; all component interactions
are specified at compile-time.

I nit
Sensor 1>~~~ > LightM

Li ght [sensor

/ 2.1 Components and Interfaces
@Dum """" S n_esC programs are assemblies qf components, connectec_:l (“wired”)
Interface type Initiaisation nierface type Sensor via named interfaces that theyovideor use Figure[] graphically

depicts the assembly of six components connected via interfaces of
typesense andinitialise. Modules are components implemented
with C code, while configurations are components implemented
by wiring other components together. In the example figusen,
LightM, TempM, and AppM are modules whileippC and SensorsC

are configurations. The example shows that configuratigit
“wires” (i.e., connects)AppM’'s Sensori interface toSensorsC’s
Light interface, etc.

us from having a corpus of tens of millions of lines of code and “\odules and configurations have a name, specification and im-
decades of experience, as traditional design pattern researchers dgsjementation:

these patterns are an initial attempt to analyse and distill TinyOS
programming. module AppM {
Although prior work has explored object oriented design pat- provides interface Initialise as Init;
. . uses interface Sense as Sensorl;
terns for embedded and real-time devi¢es [6}[7,[8,19, 10], they deal ..< interface Sense as Sensor2:
with platforms that have orders of magnitude more resources (e.g., ?
a few MB of RAM), and correspondingly more traditional pro- implementation { ... }
glrl?)r:ar;}g]r? models, including threads, instantiation, and dynamic | declares thappy (from Figure[}) is a quule which pro-
An alternative approach to building reusable services for sensor Vides an interface namethit and uses two interfaces, named
networks is offered by SNACK [11]. A SNACK system is com- Ser.ls?rl.andSensorZ Each interface has a type, in thls_ case glther
posed of a library of configurable components; a SNACK program [nitialise Of Sense. A component name denotes a unique, single-
is a declarative specification of the components a program needston componeff references taain in different configurations (see
and their connections. SNACK relies on a compiler to figure out below)_all refer to the same component. '
which services should be instantiated (compatible components are AN interface type specifies the interaction between a provider
shared, e.g., two requests for a timer at the same rate), with whatComponent and a user component as a set of named functions:
parameters and exactly how they should be connected. Effectively, ;terface tnitialise { // component initialisation
SNACK aims to make it easy to build an application from an ex- command void init();
isting set of reusable services; our design patterns show ways of 1}
building services so that they are more reusable. interface Sense { // split-phase sensor read
Sectior] 2 provides background on the nesC language. SEtion 3 ™["°13 void sense()? P
presents five TinyOS design patterns, describing their motivation, event void senseDone(int value);
consequences, and representation in nesC, as well as listing several }
TinyOS components that use thBhSectior] 4 discusses the pat-
terns in the light of nesC and TinyOS development, and Seftion 5
concludes.

Figure 1. Sample Component Assembly. Solid rectangles are
modules, open rectangles are configurations. Triangles pointing
into a rectangle are provided interfaces, triangles pointing out are
used interfaces. Dotted lines are “wires” added by configuration
AppC, full lines are “wires” added by configuraticensorsc. Com-
ponent names are in bold.

This interaction is bi-directionalcommandsare invocations
from the user to the provider, whikeventsare from the provider
to the user. Interface typsense represents a typical split-phase
operation: providers must implement thense command, which
2. BaCkground represents a request to read a sensor; users must implement the
Using a running example of an application component that samplessenseDone event which the provider signals when the sensor read
two sensors, we describe the aspects of nesC relevant to the patterngéompletes. Figurg]2 shows this relationship fgpM and TempM.
we present in Sectidr 3. To make the two directions syntactically explicit, nesC events are
nesC|[4] is a C-based language with two distinguishing features: signalled while commands arealled In both cases, the actual
a programming model where components interact via interfaces, interaction is a function call.
and an event-based concurrency model with run-to-completion ~ As @ moduleAppM must provide C implementations of com-
tasks and interrupt handlers. The run-to-completion model pre- mands in its provided interfaces and of events in its used interfaces.
cludes blocking calls: all system services, such as sampling a sen-lt can call or signal any of its commands or events:

2These components can be found in the TinyOS distributions, available 3We discuss in Sectich_—”] 4 how the next version of nesC changes this, and its
fromhttp://www.tinyos.net. effect on design patterns.

module AppM { ... } In a module, commands and events of parameterised interfaces

implementation { have an extra argument:
int sum = 0;
command void Init.init() { command void Inits.init[int id1]1() {
call Sensorl.sense(); call Sensors.sense[id1]();
} }
event void Sensorl.senseDone(int val) { event void Sensors.senseDonel[int i](int v) {
sum += val; X
call Sensor2.sense(); e .
3 A configuration can wire a single interface by specifying its
event void Sensor2.senseDone(int val) { index:
sum += val;
} configuration ExampleC {
} y .
implementation {
As this example shows, a command or evérdf an interface components Main, Example;
I is named!.f and is similar to a C function except for the components Templl, Light!t;
extra syntactic elements suchdsmand, event andcall. Modules Main.Init -> Example.Inits[42];
encapsulate their state: all of their variables (es) are private. Example.Sensors[42] -> TempM.Sensor;
Example.Sensors[43] -> LightM.Sensor;
2.2 Configurations 3
A configuration implements its specification by wiring other com- WhenMain's Init.init cOmmand is calledixample’s Inits.init

ponents together, anequatingits own interfaces with interfaces ~ command will be executed wittd = 42. This will causeExample

of those components. Two components can interact only if some to call Sensor [42] . sense, Which connects t@empM. sense.

configuration has wired them together: A configuration can wire or equate a parameterised interface to
another parameterised interface. This equetesple . Sensors [i]

configuration SensorsC { to apc[:] for all values ofi:

provides interface Sense as Light;
provides interface Sense as Temp;
}
implementation {
components Main, LightM, TempM;

provides interface Sense as ADC[int id];

Example.Sensors = ADC;

Main.Init -> LightM.Init; 2.4 unique and uniqueCount

Main.Init -> TempM.Init; In many cases, a programmer wants to use a single element of a
Light = Li . parameterised interface, and does not care which one as long as no
ight = LightM.Sensor; . . . o s
Temp = TempM.Sensor; one else uses it. This functionality is supported by nes@igue
} construction:
SensorsC “assembles” componentsghtM andTempM into a single AppM.Timerl -> TimerC.Timer [unique("Timer")];
component providing an interface for each sensatp is equated AppM.Timer2 -> TimerC.Timer [unique("Timer")];

t0 TempM'sS Sensor interface Light with LightM'S Sensor interface.
Additionally, SensorsC wires the system’s initialisation interface
(Main.Init) to the initialisation interfaces afightM andTempM.
Finally, Appc, the configuration for the whole application, wires
moduleappM (Which uses two sensors)tensorsc (Which provides
two sensors), and ensures thapM is initialised by wiring it to
Main.Init: timer_t timers[uniqueCount ("Timer")];

All uses ofunique with the same argument string (a constant)
return different values, from a contiguous sequence starting at 0. It
is also often useful to know the number of different values returned
by unique (€.g., a service may wish to know how many clients it
has). This number is returned by theiqueCount construction:

configuration AppC { } :
implementation { 3. DeS|gn Patterns

components Main, AppM, SensorsC; We present five TinyOS design patterns: two behavioural (relat-

Main.Init -> AppM.Init; ing to component interaction): Dispatcher and Decorator, and three
AppM.Sensorl -> SensorsC.Light; structural (relating to how applications are structured): Service In-
AppM.Sensor2 -> SensorsC.Temp; stance, Placeholder and Facade. A more in-depth presentation of
¥ these and other patterns can be found on our website [5]; in par-
In this application, interfaceain.Init is multiply wired ticular we do not include any namespace (management of iden-
AppC CONNeCts it toApp. Init, while Sensorsc connects it to fifiers such as message types) patterns here. We follow the basic
LightM.Init and TempM.Init. The call Init.init() in module format used irDesign Patterng3], abbreviated to fit in a research
Main compiles to an invocation of all thra@it () commandg] paper. Each pattern has &rtent which briefly describes its pur-
pose. A more in-deptMotivation follows, providing an example
2.3 Parameterised Interfaces drawn from TinyOS Applicable Wherprovides a succinct list of

conditions for use and a component diagram showsSthecture
of how components in the pattern interact. This diagram follows
the same format as Figuré 1, with the addition of a folded sub-box
module Example { for showing source code (a floating folded box represents source
provides interface Initialise as Inits[int id]; code in some other, unnamed, compone®timple Codshows an
y e interface Sense as Sensors(int id]; example nesC implementatio@onsequencedescribes how the
o pattern achieves its goals, and notes issues to consider when using
4|f a multiply wired function has non-void result, nesC combines the results it- Related Patternsompares to other relevant patterns.
via a programmer-specified function| [4]

A parameterised interface is an interface array. For example, this
module has a separate instance of interfafr each value ofd:

3.1 Behavioural: Dispatcher

Intent: Dynamically select between a set of operations based on an
identifier. Provides a way to easily extend or modify a system by
adding or changing operations.

Motivation: At a high level, sensor network applications execute

operations in response to environmental input such as sensor read-

ings or network packets. The operation’s details are not important

to the component that presents the input. We need to be able to eas-

ily extend and modify what inputs an application cares about, as
well as the operation associated with an input.
For example, a node can receive many kinds of active mes-

Sample Code:AMStandard is the radio stack component that dis-
patches received messages:

module AMStandard {
// Dispatcher interface for messages
uses interface ReceiveMsg as Recv[uint8_t id];
}
implementation {
TOS_MsgPtr received(TOS_MsgPtr packet) {
return signal Recv.receive[packet->typel] (packet);

}

and theapp configuration registersppM to handle two kinds of

sages (packets). Active messages (AM) have an 8-bit type field, messages:

to distinguish between protocols. A flooding protocol uses one AM
type, while an ad-hoc routing protocol uses anothestandard,

the component that signals the arrival of a packet, should not need
to know what processing a protocol performs or whether an appli-
cation supports a protocalMstandard just delivers packets, and
the application responds to those it cares about.

configuration App {}

implementation {
components AppM, AMStandard;
AppM.ClearIdMsg -> AMStandard.Receive [AM_CLEARIDMSG];
AppM.SetIdMsg -> AMStandard.Receive [AM_SETIDMSG] ;

The traditional approach to this problem is to use function point- ConsequencesBy leaving operation selection to nesC wirings, the
ers or objects, which are dynamically registered as callbacks. In gispatcher's implementation remains independent of what an appli-
many cases, even though registered at run time, the set of operationgation supports. However, finding the full set of supported opera-
is known at compile time. Thus these callbacks can be replaced bytions can require looking at many files. Sloppy operation identifier
a dispatch table Compiled into the executable, with two benefits. management can lead to dispatch pr0b|ems: if two Operations are

First, this allows better cross-function analysis and optimization, wired with the same identifier, then a dispatch will call both, which
and secondly it conserves RAM, as no pointers or callback struc- may cause problems.

tures need to be stored.

Such a dispatch table could be built for the active message
example by using awitch Statement inAMStandard. But this is
very inflexible: any change to the protocols used in an application
requires a change in a system component.

A better approach in TinyOS is to use the Dispatcher pattern.
A Dispatcher invokes operations using a parameterised interface,
based on a data identifier. In the casedtandard, the interface
is ReceiveMsg and the identifier is the active message type field.
AMStandard is independent of what messages the application han-
dles, or what processing those handlers perform. Adding a new han-
dler requires a single wiring taMStandard. If an application does
not wire a receive handler for a certain typ@standard defaults
to a null operation.

Another example of a Dispatcher is the scheduler of theeMat
virtual machine. Each instruction is a separate component that
provides theMateBytecode interface. The scheduler executes a
particular bytecode by dispatching to the instruction component
using a parameterisethteBytecode interface. The instruction set
can be easily changed by altering the wiring of the scheduler.

Applicable When:

The key aspects of the dispatcher pattern are:

e It allows you to easily extend or modify the functionality an ap-
plication supports: adding an operation requires a single wiring.

¢ It allows the elements of functionality to be independently im-
plemented and re-used. Because each operation is implemented
in a component, it can be easily included in many applications.
Keeping implementations separate can also simplify testing, as
the components will be smaller, simpler, and easier to pinpoint
faults in. The nesC compiler will automatically inline small op-
erations, or you can explicitly request inlining; thus this decom-
position has no performance cost.

e It requires the individual operations to follow a uniform inter-
face. The dispatcher is usually not well suited to operations that
have a wide range of semantics. As all implementations have to
meet the same interface, broad semantics leads to the interface
being overly general, pushing error checks from compile-time
to run-time. An implementor forgetting a run-time parameter
check can cause a hard to diagnose system failure.

The compile-time binding of the operation simplifies program

analysis and puts dispatch tables in the compiled code, saving

e A component needs to support an externally customisable setRAM. Dispatching provides a simple way to develop programs that

of operations.

¢ A primitive integer type can identify which operation to per-
form.

e The operations can all be implemented in terms of a single
interface.

Structure

Dispatcher

Operations[id]

Op1
Op
Op2
Op
components Dispatcher, Op2;
Dispatcher.Operations[KEY2] -> Op2.0p; > interface Operation

execute in reaction to their environment.
Related Patterns

e Service Instance: a service instance creates many instances of
an implementation of an interface, while a dispatcher selects
between different implementations of an interface.

¢ Placeholder: a placeholder allows an application to select an
implementation at compile-time, while a dispatcher allows it to
select an implementation at runtime.

3.2 Structural: Service Instance Sample Code:TimerC wires TimerM, which contains the actual
timer logic, to an underlying hardware clock and exports its Timer

Intent: Allows multiple users to have separate instances of a par- interfaces:

ticular service, where the instances can collaborate efficiently.

Motivation: Sometimes many components or subsystems need to
use a system abstraction, but each user wants a separate instance ofy
that service. We don’t know how many users there will be until we implementation {
build a complete application. Each instance requires maintaining components TimerM, ClockC;
some state, and the service implementation needs to access all of [, = _ TimerM.Timer;
this state to make decisions. TimerM.Clock -> ClockC.Clock;
For example, a wide range of TinyOS components need timers, }
for everything from network timeouts to sensor sampling. Each
timer appears independent, but they all operate on top of a singleto
hardware clock. An efficient implementation thus requires knowing
the state of all of the timers. If the implementation can easily deter- m°dii§igizeﬁt§rface Timer [aint6_t clientidl:
mine which timer has to fire next, then it can schedule the underly- Pos interface Clock: - ’
ing clock resource to fire as few interrupts as possible to meet this 3
lowest timer's requirement. Firing fewer interrupts reduces CPU implementation {
load on the system and can allow it to sleep longer, saving energy. // per-client state —
The traditional object-oriented approach to this problem is to ~ timer-* timersluniqueCount ("Timer")J;
instantiate an object representing the service and use another class command result_t Timer.start[uint8_t clientId](...) {
to coordinate state. This approach is not applicable in nesC as we if (timers[clientId].busy)
cannot have multiple copies of componEhtand requires either
sharing state across objects, which is contrary to encapsulation, or ,
state copying, which uses additional RAM.))))) .
Implementing each timer in a separate module leads to dupli- Clients wanting a timer wire using unique:
cated code and requires inter-module coordination in order to fig-
ure out how to set the underlying hardware clock. Just setting it at
a fixed rate and maintaining a counter for each Timer is inefficient: ConsequencesThe key aspects of the Service Instance pattern are:
timer fidelity requires firing at a high rate, but it's pointless to fire
at 1KHz if the next timer is in four seconds.

configuration TimerC {
provides interface Timer[uint8_t id];

and TimerM usesniqueCount t0o determine how many timers
allocate and accesses them using unique IDs:

C.Timer -> TimerC.Timer [unique("Timer")];

e It allows many components to request independent instances of

The Service Instance pattern provides a solution to these prob- & COmmon system service: adding an instance requires a single
lems. Using this pattern, each user of a service can have its own ~ WINNg.
(virtual) instance, but instances share code and can access each® Itcontrols state allocation, so the amount of RAM used is scaled
other’s state. A component following the Service Instance pattern to exactly the number of instances needed, conserving mem-
provides its service in a parameterised interface; each user wires ~ ory while preventing run-time failures due to many requests ex-
to a unique instance of the interface usifgque. The underlying hausting resources.
component receives the unique identity of each client in each com- e It allows a single component to coordinate all of the instances,
mand, and can use it to index into a state array. The component which enables efficient resource management and coordination.
can determine at compile-time how many instances exist using the

uniqueCount function and dimension the state array accordingly. Because the pattern scales to a variable number of instances,

licable When: the cost of its operations may scale linearly with the number of
Applicable When: users. For example, if setting the underlying clock interrupt rate
e A component needs to provide multiple instances of a service, ?n?plee ﬁ:n?z;iéﬂemtimfagrletrmmg t?\?s?gesstc;m?manllgo??hr:ttlicr)::’erzn
but does not know how many until compile time. npO(n) operation 9 Y 9 '
* Each service instance appears to its user to be independent of If many users require an instance of a service, but each of those

the others. instances are used rarely, then allocating state for each one can be
e The service implementation needs to be able to easily accesswasteful. The other option is to allocate a smaller amount of state
the state of every instance. and dynamically allocate it to users as need be. This can conserve
RAM, but requires more RAM per real instance (client IDs need
Structure to be maintained), imposes a CPU overhead (allocation and deal-

location), can fail at run-time (if there are too many simultaneous

User1 ServiceProvider . . .
S users), and assumes a reclamation strategy (misuse of which would
ve ResourceC lead to leaks). This long list of challenges makes the Service In-
Svc[id] UsedResource>—> AResource stance an attractive — and more and more commonly used — way to

efficiently support application requirements.
Related Patterns

User2 ‘ , g
NUSERS = uniqueCount(“Service”);
Sver—, | StateType state[NUSERS]; e Dispatcher: a service instance creates many instances of an im-

plementation of an interface, while a dispatcher selects between
different implementations of an interface.

) interface Service

components User2, ServiceProvider; D interface Resource
1

User2.Svce -> ServiceProvider.Sve[unique(“Service™)

5This restriction will be lifted in the next version of nesC (Sec 4.4).

3.3 Structural: Placeholder

Intent: Easily change which implementation of a service an entire
application uses. Prevent inadvertent inclusion of multiple, incom-
patible implementations.

Sample Code:Several parts of an application use ad-hoc collec-

tion routing to collect and aggregate sensor readings. However, the
application design is independent of a particular routing implemen-
tation, so that improvements or new algorithms can be easily incor-

porated. The routing subsystem is represented by a Placeholder,

Motivation: Many TinyOS systems and abstractions have several which provides a unified name for the underlying implementation
implementations. For example, there are many ad-hoc tree routingand just exports its interfaces:

protocols (Route, MintRoute, ReliableRoute), but they all expose
the same interfaceend. The standardized interface allows appli-
cations to use any of the implementations without code changes.
Simpler abstractions can also have multiple implementations. For
example, the LedsC component actually turns the LEDs on and off,
while the NoLedsC component, which provides the same interface,
has null operations. During testing, LedsC is useful for debugging,
but in deployment it is a significant energy cost and usually re-
placed with NoLedsC.

Sometimes, the decision of which implementation to use needs
to be uniform across an application. For example, if a network
health monitoring subsysterea1thc) wires to MintRoute, while
an application uses ReliableRoute, two routing trees will be built,
wasting resources. As every configuration that wires to a service
names it, changing the choice of implementation in a large appli-

cation could require changing many files. Some of these files, such

asHealthC, are part of the system; an application writer should not
have to modify them.
One option is for every implementation to use the same compo-

nent name, and put them in separate directories. Manipulating the

nesC search order allows an application to select which version to

use. This approach doesn'’t scale well: each implementation of each

configuration CollectionRouter {
provides interface StdControl as SC;
uses interface StdControl as ActualSC;
provides interface SendMsg as Send;
uses interface SendMsg as ActualSend;
}
implementation {
SC = ActualSC; // Just "forward" the
Send = ActualSend; // interfaces

}

Component using collection routing wire to CollectionRouter:

SensingM.Send -> CollectionRouter.Send;

and the application must globally select its routing component by

wiring the “Actual” interfaces of the Placeholder to the desired

component:

configuration AppMain { }
implementation {
components CollectionRouter, EWMARouter;

CollectionRouter.ActualSC -> EWMARouter.SC;
CollectionRouter.ActualSend -> EWMARouter.Send;

component needs a separate directory. Streamlining this structure

by bundling several implementations (e.g., the “safe” versions and
the “optimized” ones) in a single directory requires all-or-nothing
inclusion. This approach also precludes the possibility of including
two implementations, even if they can interoperate.

The Placeholder pattern offers a solution. A placeholder con-

figuration represents the desired service through a level of naming

indirection. All components that need to use the service wire to the
placeholder. The placeholder itself is just “a pass through” of the
service’s interfaces. A second configuration (typically provided by
the application) wires the placeholder to the selected implemen-

ConsequencesThe key aspects of the Placeholder pattern are:

e Establishes a global name that users of a common service can
wire to.

¢ Allows you to specify the implementation of the service on an
application-wide basis.

e Does not require every component to use the Placeholder’s
implementation.

By adding a level of naming indirection, a Placeholder provides

tation. This selection can then be changed centrally by editing a & single point at which you can choose an implementation. Place-
single file. As the level of indirection is solely in terms of names holders create a global namespace for implementation-independent

— there is no additional code generated — it imposes no CPU over-Uusers of common system services. As using the Placeholder pattern

head.
Applicable When:

e A component or service has multiple, mutually exclusive im-
plementations.

generally requires every component to wire to the Placeholder in-
stead of a concrete instance, incorporating a Placeholder into an ex-
isting application can require modifying many components. How-
ever, the nesC compiler optimises away the added level of wiring
indirection, so a Placeholder imposes no run-time overhead. The

e Many subsystems and parts of your application need to use this Placeholder supports flexible composition and simplifies use of al-

component/service.
¢ You need to easily switch between the implementations.

Structure

User1 Placeholder
Impl - -,
Sve Sve Actual te 1
Sve --
. 1
2o () i RS |

Sve

components User2, Placeholder; > interface Service
User2.Sve -> Placeholder.Sve;

ternative service implementations.
Related Patterns

e Dispatcher: a placeholder allows an application to select an
implementation at compile-time, while a dispatcher allows it
to select an implementation at runtime.

e Facade: a placeholder allows easy selection of the implementa-
tion of a group of interfaces, while a facade allows easy use of
a group of interfaces. An application may well connect a place-
holder to a facade.

3.4 Structural: Facade

Intent: Provides a unified access point to a set of inter-related

services and interfaces. Simplifies use, inclusion, and composition
of the subservices.

Motivation: Complex system components, such as a filesystem or
networking abstraction, are often implemented across many com-
ponents. Higher-level operations may be based on lower-level ones,

spread across several components. Although implemented sepa
rately, these pieces of functionality are part of a cohesive whole
that we want to present as a logical unit.

For example, the Matchbox filing system provides interfaces
for reading and writing files, as well as for metadata operations

Applicable When:

¢ An abstraction, or series of related abstractions, is implemented
across several separate components.

e |t is preferable to present the abstraction in whole rather than in
parts.

Sample Code: The Matchbox filing system uses a Facade to
and a user needs access to both. Complex functionality may pePresent a uni_form filesystem abstraction. File operations are all

implemented in different components, but the top-level Matchbox
configuration provides them in a single place. Each of these compo-
nents depends on a wide range of underlying abstractions, such as
a block interface to non-volatile storageitchbox.nc wires them

appropriately, resolving all of the dependencies.

such as deleting and renaming. Separate modules implement each configuration Matchbox {

of the interfaces, depending on common underlying services such
as reading blocks.

One option would be to put all of the operations in a single,
shared interface. This raises two problems. First, the nesC wiring
rules mean that a component that wants toarsecommand in the
interface has to handkl of its events. In the case of a file system,
all the operations are split-phase; having to handle a half dozen
events feadDone, writeDone, openDone, €tC.) merely to be able to
delete afile is hardly usable. Second, the implementation cannot be
easily decomposed into separate components without introducing
internal interfaces, as the top-level component will need to call out

provides {
interface FileRead[uint8_t fd];
interface FileWrite[uint8_t fd];
interface FileDir;
interface FileRename;
interface FileDelete;

}

implementation {

// File operation implementations
components Read, Write, Dir, Rename, Delete;

FileRead = Read.FileRead;
FileWrite = Write.FileWrite;

into the subcomponents. Implementing the entire subsystem as a
single huge component is not easy to maintain.

Another option is to export each interface in a separate com-
ponent (e.g., MatchboxRead, MatchboxWrite, MatchboxRename,
etc.). This increases wiring complexity, making the abstraction
more difficult to use. For a simple open, read, and write sequence, ConsequencesThe key aspects of the Facade pattern are:
the application would have to wire to three different components.
Additionally, each interface would need a separate configuration to
wire it to the subsystems it depends on, increasing clutter in the
component namespace. The implementer needs to be careful with
these configurations, to prevent inadvertent double-wirings.

The Facade pattern provides a better solution to this problem.
The Facade pattern provides a uniform access point to interfaces
provided by many components. A Facade is a nesC configuration
that defines a coherent abstraction boundary by exporting the inter-])
faces of several underlying components. Additionally, the Facade A Facade is not always without cost. Because the Facade names
can wire the under|ying Components’ s|mp||fy|ng dependency res- all of its Sub-parts, they will all be included in the appllcatlon.
olution. While the nesC compiler attempts to remove unreachable code, this

A nesC Facade has strong resemblances to the object orientednalysis is necessarily conservative and may end up keeping much
pattern of the same namg! [3] The distinction lies in nesC's static Useless code. In particular, unused interrupt handlers are never
model. An object-oriented Facade instantiates its subcomponents afemoved, so all the code reachable from them will be included
run-time, storing pointers and resolving operations through another every time the Facade is used. If you expect applications to only use
level of call indirection. In contrast, as a nesC Facade is defined & very narrow part of an abstraction, then a Facade can be wasteful.
through naming (pass through W|nng) at Comp”e time, there is no Several $table, Comm0n|y used abstract boundaries have emerged
run time cost. in TinyOS [2], such as GenericComm (the network stack) and
Matchbox (a file system), The presentation of these APIs is almost

FileDir = Dir.FileDir;

FileRename = Rename.FileRename;

FileDelete = Delete.FileDelete;

// VWiring of operations to sub-services omitted

¢ Provides an abstraction boundary as a set of interfaces. A user
can easily see the set of operations the abstraction support, and
only needs to include a single component to use the whole
service.

¢ Presents the interfaces separately. A user can wire to only the
needed parts of the abstraction, but be certain everything under-
neath is composed correctly.

Structure
always a Facade.
Facade
User Related Patterns
| Svcimpl1 . .
Svel b Svel b Sve ¢ Placeholder: a placeholder allows easy selection of the imple-
Sved mentation of a group of interfaces, while a facade allows easy
Svcimpl2 use of a group of interfaces. An application may well connect a
components User, Facade; £> Sve placehOIder tO a faCade
User.Svel = Facade.Svel;
User.Svc2 = Facade.Sve2; components SvelImpl, Sve2Impl; G
) interface Servicel z:ﬁ; : ::E;:l:g::i

[> interface Service2

3.5 Behavioural: Decorator Applicable When:

Intent: Enhance or modify a component's capabilities without ® You wish to extend the functionality of an existing component
modifying its implementation. Be able to apply these changes to Wwithout changing its implementation, or

any component that provides the interface. * You wish to provide several variants of a component without
Motivation: We often need to add extra functionality to an exist- having to implement each possible combination separately.
ing component, or to modify the way it works without changing its
interfaces. For instance, the standayéleEEPROM component pro-
vides aLogData interface to log data to a region of flash memory. 3 i
In some circumstances, we would like to introduce a RAM write [h€LogData operations, and, additionally, supportsstLogbata
buffer on top of the interface. This would reduce the number of ac- INtérface with a non-split-phasgpend operation (for small writes
tual writes to the EEPROM, conserving energy (writes to EEPROM ONIY):

Sample Code:The standardogData interface includes split-phase
erase, append andsync operationsBufferedLog adds buffering to

are expensive) and the lifetime of the medium. module BufferedLog {
Adding a buffer to thesyteEEPROM component forces all log- provides interface LogData as Log;
ging applications to allocate the buffer. As some application may provides interface FastlLogData as FastLog;

uses interface LogData as UnbufferedLog;

not able to spare the RAM, this is undesirable. Providing two ver-
sions, buffered and unbuffered, replicates code, reducing reuse and implementation {
increasing the possibility of incomplete bug fixes. It is possible that uint8_t bufferl[BUFSIZE], buffer2[BUFSIZE];

several implementers of the interface — any component that pro- ~ wint8_t *buffer;
command result_t FastLog.append(data, n) {

videsLogbata — may benefit from the added functionality. Having if (bufferFull()) {
multiple copies of the buffering version, spread across several ser- call UnbufferedLog.append(buffer, offset);
vices, further replicates code. // ... switch to other buffer ...
There are two traditional object-oriented approaches to this :
// ... append to buffer ...

problem: inheritance, which defines the relationship at compile }
time through a class hierarchy, and decorators, which define the re-
lationship at run time through encapsulation. [3] As nesCisnotan The SendqQueue Decorator introduces a send queue on top of a
object-oriented language, and has no notion of inheritance, the for- split-phasesend interface:

mer option is not possible. Similarly, run-time encapsulation is not
readily supported by nesC'’s static component composition model

module SendQueue {
provides interface Send;

and imposes overhead in terms of pointers and call forwarding. uses interface Send as SubSend;
However, we can use nesC’s component composition and wiring }
to provide a compile time version of the Decorator. implementation {)
A Decorator component is typically a module that provides and z?iggsfpflzajue‘tlzi[gleUE-SIZE] ’
uses the same interface type, suchL&@ata. The provided in- command result.t s;nd,send(ms_Msgptr nsg) {
terface adds functionality on top of the used interface. For exam- if (!queueFull()) enqueue(msg);
ple, theBufferedLog cOMponent sits on top ofiagdata provider. if (!subSendBusy()) startSendRequest();

It implements its additional functionality by aggregating several ¥

BufferedLog Writes into a singla.ogbata write.

Using a Decorator can have further benefits. In addition to aug-
menting existing interfaces, they can introduce new ones that pro-
vide alternative abstractions. For exampl&tferedLog provides a
synchronous (not split phasedstLog interface; a call trastLog
writes directly into the buffer.

Finally, separating added functionality into a Decorator allows it
to apply to any implementation. For example, a packet queue
Decorator can be interposed on top of any networking abstraction
that provides theend interface; this allows flexible interposition-
ing of queues and queueing policies in a networking system.

ConsequencesApplying a Decorator allows you to extend or
modify a component’s behaviour though a separate component:
the original implementation can remain unchanged. Additionally,
the Decorator can be applied to any component that provides the
interface.

In most cases, a decorated component should not be used di-
rectly, as the Decorator is already handling its events. The Place-
holder pattern (Sectidn 3.3) can be used to help ensure this.

Additional interfaces are likely to use the underlying compo-
nent, creating dependencies between the original and extra inter-
faces of a Decorator. For instance,Biif feredLog, FastLog USES

Structure UnbufferedLog, SO concurrent requests fastLog and Log are
likely to conflict: only one can access thgbufferedLog at once.
i Decorator Original Decorators are a lightweight but flexible way to extend com-
Sve Orig Sve ponent functionality. Interpositioning is a common technique in
OldUser Ext building networking stacks [12], and Decorators enable this style
K of composition.

Q
SVC

// implement Sve, Ext
// using Orig

NewUser
Ext

) interface Service
components NewUser, Decorator; . N .
NewUser.Ext -> Decorator. Ext; [> interface Extension

4, DiSCUSSiOI’] inlining dead-code| unoptimised
. . . + dead-code only

We compare our design patterns to standard object-oriented pat- Power draw 5.1mW 9.5mW

terns and show how they support TinyOS'’s design goals. We show Interpreter size 47.1kB 52.5kB 83.8kB

that our patterns depend fundamentally on features of both the nesCTa
language and compiler. Finally, we discuss how these patterns have
influenced the design of the nesC programming language and howP
upcoming changes to nesC will address some of the limitations of
our current patterns.

ble 1. Effect of optimisations on code size and power draw in a
attern-intensive program.

4.3 Language and compiler support for patterns

To be of practical use, these design patterns must be not only useful
))) . for embedded systems programming, but must also be expressible
The five design patterns described in Secfipn 3 can be separategn 5 sufficiently concise fashion, and should not impose significant
into classes: Dispatcher and Service Instance are specific to nesCegode space or runtime overhead. We briefly describe the nesC
while Decorator, Facade and Placeholder have analogues in existrompiler, and then discuss how its features combined with the nesC
ing pattern|[8]. The differences from traditional object-oriented pat- |anguage design supports design patterns.

terns stem from the design principles behind TinyOS [1]. For ex- The nesC compiler generates a single C file containing the
ample, TinyOS generally depends on static composition techniquesexecutable code of all the modules of the program, where the
to provide robust, unattended operation: function pointers or virtual yirings specified by configurations become direct function calls.
functions can complicate program analysis, while dynamic alloca- The explicit specification of the program’s call graph via wiring
where many object-oriented patterns increase object flexibility and program optimisations. First, unreachable functions are eliminated
reusability by allowing behaviour changes at runtime, our patterns from the output C file. Second, the compiler adds inline directives
require that most such decisions be taken by compile-time. _to all “small” functions (where the size of a function includes the

The nesC-specific patterns represent ways to make nesC's statiG;jze of all functions it calls) and to all functions called exactly once.
programming model more practical. Service Instance allow ser- we rely on the C compiler which processes the generated C file to
vices (e.g., timers, file systems) to have a variable number of perform the actual inlininfj|
clients; it is the standard pattern for a stateful TinyOS service. Dis- * concise and efficient expression of our patterns is made possible
patcher supports application-configured dispatching (e.g., messagey the following features:
reception, user commands).

The TinyOS Facade and Decorator patterns have similar goals ® Inlining makes it possible to break programs into lots of com-
and structures to their identically-named object-oriented ana- ponents without a large performance cost (Dispatcher, Place-
logues [[3, p.175,p.185]. The Facade assembles a set of existing holder, Facade, Decorator).
components and presents them as a single component to simplify e Dead code elimination removes unused functionality, allowing
use, while the Decorator adds extra functionality to an existing more general components to be designed (Facade).
component. The differences lie in nesC's model of static compo- ¢ parameterised interfaces allow runtime dispatches (Dispatcher,
sition. In the case of the Facade, this means that all of the rela- geryice Instance).
tionships are bound at compile-time; additionally, nesC provides
no way of making the internals of a Facade truly private (the in-
ternal components can always be referred to from elsewhere by
name). The Decorator is more useful than in an object-oriented To show the importance of nesC’s optimisations in real pro-
context, as it provides a way to define implementation-inheritance grams, we evaluated the code size and average power draw of
hierarchies in a component-based language. However, the use of bytecoded interpreter for a Scheme-like language, running on
any given Decorator is limited by the singleton nature of compo- mica2 [13] motes. The interpreter, built with the Matirtual ma-
nents. Finally, Placeholder has similarities to the Bridge [3, p.151]: chine architecture [14], makes heavy use of all these patterns. The
it simplifies implementation switching, but requires that the imple- mica2 motes have an Atmel ATmegal28 microcontroller, running

4.1 Comparison to object-oriented patterns

¢ Unique identifiers support compile-time configuration of ser-
vices, e.g., to identify clients (Service Instance).

mentation selection be performed at compile-time. at 8MHz, with 128kB of flash and 4kB of RAM. We ran a simple
program that performed a little computation 10 times a second, and
4.2 Patterns support TinyOS’s goals sends a radio message with the results every 50s.

] . . Table[] shows the power draw of this program, and interpreter
The patterns we have presented directly support TinyOS's designcoge size with and without the inlining and dead-code optimisa-
goals of robustness, low resource usage, supporting hardware evosiqns. Without optimisation, power increases by ﬂi%d code size

lution, _ena_bling div_erse service implementations, and adaptability by 78%. We can thus see that these optimisations, enabled in part by
to application requirements. Specifically, nesC’s language features, are essential to performance in programs
which make heavy use of these patterns. In contrast, a program that

* A Placeholder supports diverse implementations by simplifying spends most of its time in the radio stack — a monolithic subsystem

implementation selection and hardware evolution by defining a making little use of patterns — sees “only” a 7% increase (1.22mW

platform-independent abstraction layer. to 1.31mW) in power draw when turning off inlining.
e A Decorator supports diverse implementations by enabling
lightweight component extension. 4.4 nesC, Yesterday and Tomorrow

e Service Instance and Dispatcher increase robustness and loweRAs experience in using TinyOS has grown, we have introduced fea-
resource usage by resolving component interactions at compile-tures in nesC to make building applications easier. Design patterns
time.

e A Dispatcher improves application adaptability by providing a 8All our current platforms use gcc. We ensure that it inlines all requested
way to easily configure what operations an application supports functions by passing it an -finline-limit=100000 option.
and how it reacts to its environment. " Dead-code elimination has no effect on power draw.

have been the motivation for several of these features. For example, Finally, our design patterns are reusable patterns of component

the first version of nesC (before TinyOS 1.0) had neitla@gue nor composition. TinyOS has many other forms of patterns, such as
uniqueCount. Initial versions of the Timer component coalesced interface patterns (e.g., split-phase operations, error harﬁling)
into Service Instance pattern, which led to the inclusionmfue and data-handling patterns (e.g., data pumps in the network stack).

anduniqueCount. The next version of nesC, 1.2, will introduce the These other sorts of patterns deserve further investigation.
feature ofgeneric components simplify using design patterns.

TinyOS design patterns are Ii_mit_e_d by the singleton nature_of Acknowledgements
nesC components, leading to a significant amount of code duplica-__ .
tion. For example, when wiring to a Service Instance, a program- 1his work was supported, in part, by the Defense Department
mer must carefully use the same incantation with a particular key Advanced Research Projects Agency (grants F33615-01-C-1895
for unique. If a program needs two copies of, e.g., a data filter Dec- and N6601-99-2-8913), the National Science Foundation (grants
orator, then two separate components must exist, and their codeNO- 0122599 and NSF 11S-033017), California MICRO program,
must be maintained separately. These examples involve replicatec@d Intel Corporation. Research infrastructure was provided by the
code: changing the Service Instance key requires changing everyNational Science Foundation (grant EIA-9802069).
user of the service, and a typo in one instance of the key can lead
to buggy behaviour (the keys may no longer be unique). References

Tht_e upcoming 1.2 version of nt_esC ad_dresses this Issue with [1] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
generic componentsvhich can be instantiated at compile-time A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler,
with numerical and type parameters. Essentially, componentinstan- “TinyOS: An operating system for wireless sensor networks,” in
tiation creates a copy of the code with arguments substituted for the Ambient Intelligence New York, NY: Springer-Verlag, To Appear.
parameters. Configurations (including generic configurations) can [2] p. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,

instantiate generic components: E. Brewer, and D. Culler, “The Emergence of Networking Abstrac-
tions and Techniques in TinyOS,” First USENIX/ACM Symposium
components new LogBufferer() as LB, ByteEEPROM; on Network Systems Design and Implementation (NSZDD4.

LB Unbufferedlog > ByteEEPRON; [3] E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign Patters:

Elements of Reusable Object-Oriented SoftwarAddison-Wesley,
1995.

D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” irSIGPLAN Conference on Programming Language Design

Generic configurations allow a programmer to capture wiring
patterns and represent them once. For example, the key a Service
Instance component uses can be written in one place: instead of 4]
wiring with unique, a user of the service wires to an instance of a

generic configuration: and Implementation (PLDI'03)June 2003.
generic configuration TimerSve() { [5] P. Levisand D. Gay, “Tinyos design patterns,” http://www.cs.berkeley.edu/ pal/tin)
provides interface Timer; patterns, 2004.
} [6] OOPSLA Workshop Towards Patterns and Pattern Languages for OO
implementation { Distributed Real-time and Embedded Syste2001.
components TimerC; . i .
Timer = TimerC.Timer [unique("TimerKey")]; [7] OOPSLA Workshop on Patterns in Distributed Real-time and

¥ Embedded Systen002.
. [8] PLOP Workshop on Patterns and Pattern Languages in Distributed
) . Real-time and Embedded Syste&G02.
;:Ziin;:;:rufjr;yTI::ZrT;T:SVCO as MyTimer; [9] B. P. DouglassiReal-Time Design Patterns: Robust Scalable Architec-
ture for Real-Time SystemsAddison-Wesley, 2002.

Generic modules make patterns such as Decorator much more[10] L. Girod, J. Elson, and A. Cerpa, “Em*: a Software Environment
reusable, and allow patterns such as Facade to have private compo- for Developing and Deploying Wireless Sensor Networks,” in
nents, whose interfaces are only accessible through what a config- ~ Proceedings of the USENIX General Tra2l04.
uration exposes. By providing a globally accessible name, a Place-[11] B. Greenstein, E. Kohler, and D. Estrin, “A Sensor Network

holder provides a way to make a generic component behave like a Application Construction Kit (SNACK),” inProceedings of the 2nd
nesC 1.1 singleton. International Conference on Embedded Sensor Systems (SENSYS'04)

Nov. 2004, pp. 69-80.
. [12] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
5. Conclusion Click modular router”ACM Transactions on Computer Systems

Like their object-oriented brethren, TinyOS design patterns are [13] \l’JOI,' 18, ,rt'o' 3f pCp'I,fGSfZWB’ A;gluSI %&90'2 hematicE™Fi

templates of how functional elements of a software system inter- niversity of Laliornia, Serkeley, Micas schematics, ftp:

act I?:Iexibility is a common goal, but in TinyOS we mugt also pre- g\éveg%gg'g%rke?y'edwtosi]/‘h;\iﬁrdwgg%ges'gn/ORMS/M'CAZ/
: o = X X 10- -01ACLEAN. : .

serve the efficiency and reliability of nesC’s static programming pgl, Mar

A : P [14] P. Levis, D. Gay, and D. Culler, “Active Sensor Networks,” in
model. Thus, the TinyOS patterns allow most of this flexibility to Proceedings of the 2nd USENIX/ACM Symposium on Network Systems
be resglved at compile-time, through the use of wiriagque and Design and Implementation (NSDNlay 2005.
uniqueCount.

Our set of TinyOS design patterns is a work in progress. In par-
ticular, it is clear that analogues of many of the structural patterns
from the original Design Patterns bodK [3] can be expressed in
nesC, with a “component = class”, or “component = object” map-
ping. Translations of behavioural patterns is harder, reflecting the
differences in resources and application domains. The fact that our
list contains relatively few behavioural patterns (just Dispatcher
and Decorator) may reflect the fact that, so far, TinyOS applica- _
tions have been fairly simple. 8The device patterns in EM[10] may provide inspiration here.

http://webs.cs.berkeley.edu/tos/hardware/design/ORCAD_FILES/MICA2/6310-0306-01ACLEAN.pdf
http://webs.cs.berkeley.edu/tos/hardware/design/ORCAD_FILES/MICA2/6310-0306-01ACLEAN.pdf
http://webs.cs.berkeley.edu/tos/hardware/design/ORCAD_FILES/MICA2/6310-0306-01ACLEAN.pdf

	Introduction
	Background
	Components and Interfaces
	Configurations
	Parameterised Interfaces
	unique and uniqueCount

	Design Patterns
	Behavioural: Dispatcher
	Structural: Service Instance
	Structural: Placeholder
	Structural: Facade
	Behavioural: Decorator

	Discussion
	Comparison to object-oriented patterns
	Patterns support TinyOS's goals
	Language and compiler support for patterns
	nesC, Yesterday and Tomorrow

	Conclusion

