
Software Design Patterns for TinyOS

David Gay
Intel Research, Berkeley
david.e.gay@intel.com

Phil Levis
University of California at Berkeley

pal@cs.berkeley.edu

David Culler
University of California at Berkeley

culler@cs.berkeley.edu

Abstract
We present design patterns used by software components in the
TinyOS sensor network operating system. They differ significantly
from traditional software design patterns due to the constraints
of sensor networks and TinyOS’s focus on static allocation and
whole-program composition. We describe how nesC has evolved to
support these design patterns by including a few simple language
primitives and optimisations.

Categories and Subject DescriptorsD.2.11 [Software Engineer-
ing]: Software Architectures — Patterns

General Terms Languages

Keywords Design Patterns, Embedded Systems, nesC, TinyOS

1. Introduction
TinyOS [1] is an OS for wireless network embedded systems, with
an emphasis on reacting to external events and extremely low-
power operation. Rather than a monolithic OS, TinyOS is a set of
components which are included as-needed in applications; a signif-
icant challenge in TinyOS development is the creation of flexible,
reusable components. Additionally, programming abstractions for
sensor networks, where TinyOS is the current OS-of-choice, are
still under investigation. [2]

Writing solid, reusable software components is hard. Doing so
for sensor networks is even harder. Limited resources (e.g., 4kB of
RAM) and strict energy budgets (e.g., averages below 1mW) lead
developers to write application-specific versions of many services.
While specialised software solutions enable developers to build ef-
ficient systems, they are inherently at odds with reusable software.

Software design patterns are a well-accepted technique to pro-
mote code re-use [3, p.1]:

These patterns solve specific design problems and make object-
oriented designs more flexible, elegant, and ultimately reusable.

Design patterns identify sets of common and recurring require-
ments, and define a pattern of object interactions that meet these
requirements. However, these patterns are not directly applicable
to TinyOS programming. Most design patterns focus on the prob-
lems faced by large, object-oriented programs; in sensor networks

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

LCTES’05, June 15–17, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-018-3/05/0006. . . $5.00.

the challenges are quite different. These challenges include [2, Sec-
tion 2.1]:

• Robustness: once deployed, a sensor network must run unat-
tended for months or years.

• Low resource usage: sensor network nodes include very little
RAM, and run off batteries.

• Diverse service implementations: applications should be able
to choose between multiple implementations of, e.g., multi-hop
routing.

• Hardware evolution: mote hardware is in constant evolution;
applications and most system services must be portable across
hardware generations.

• Adaptability to application requirements: applications have
very different requirements in terms of lifetime, communica-
tion, sensing, etc.

nesC [4] — TinyOS’s implementation language — was de-
signed with these challenges in mind; it is a component-based lan-
guage with an event-based execution model. nesC components have
similarities to objects: they encapsulate state and interact through
well-defined interfaces. They also have significant differences: the
set of components and their interactions are fixed at compile-time
(to promote reliability and efficiency), rather than at run-time, as
object-oriented references and instantiation do. Programmers can-
not easily apply idioms or patterns from object-oriented languages,
and when they do, the results are rarely effective.

In this paper, we present a preliminary set of five design patterns
which show how nesC can be used to build components which ad-
dress TinyOS’s challenges.1 These patterns are based on our experi-
ences designing and writing TinyOS components and applications,
and on our examination of code written by others. These patterns
have driven, and continue to drive, the development of nesC. For
instance, theuniqueCount function was introduced in nesC version
1.1 to support the ServiceInstance pattern; nesC version 1.2 will
include generic components, which simplify expression of some of
the patterns presented here (see Section 4).

This paper contributes to embedded system programming in
three ways. First, these design patterns provide insight on how pro-
gramming network embedded systems is structurally different than
traditional software, and how these different factors motivate soft-
ware design. We believe that these patterns have applicability be-
yond the sensor network space: TinyOS’s requirements seen above
are not radically different from those of other embedded systems.
Second, we explore how a few simple features of the nesC language
and compiler, particularly parameterised interfaces, unique identi-
fiers and inlining, are necessary for concise and efficient expression
of these patterns. Finally, this paper helps researchers working with
TinyOS write effective programs. The youth of TinyOS precludes

1 Because of space constraints, we have omitted four more specialised
patterns; these can be found on our website [5].

LightM

TempM

AppM

Main
Init

Sensor1

Sensor2

Light

Temp

Sensor

Sensor

Init

Init
Init

AppC SensorsC

Interface type Initialisation Interface type Sensor

Figure 1. Sample Component Assembly. Solid rectangles are
modules, open rectangles are configurations. Triangles pointing
into a rectangle are provided interfaces, triangles pointing out are
used interfaces. Dotted lines are “wires” added by configuration
AppC, full lines are “wires” added by configurationSensorsC. Com-
ponent names are in bold.

us from having a corpus of tens of millions of lines of code and
decades of experience, as traditional design pattern researchers do:
these patterns are an initial attempt to analyse and distill TinyOS
programming.

Although prior work has explored object oriented design pat-
terns for embedded and real-time devices [6, 7, 8, 9, 10], they deal
with platforms that have orders of magnitude more resources (e.g.,
a few MB of RAM), and correspondingly more traditional pro-
gramming models, including threads, instantiation, and dynamic
allocation.

An alternative approach to building reusable services for sensor
networks is offered by SNACK [11]. A SNACK system is com-
posed of a library of configurable components; a SNACK program
is a declarative specification of the components a program needs
and their connections. SNACK relies on a compiler to figure out
which services should be instantiated (compatible components are
shared, e.g., two requests for a timer at the same rate), with what
parameters and exactly how they should be connected. Effectively,
SNACK aims to make it easy to build an application from an ex-
isting set of reusable services; our design patterns show ways of
building services so that they are more reusable.

Section 2 provides background on the nesC language. Section 3
presents five TinyOS design patterns, describing their motivation,
consequences, and representation in nesC, as well as listing several
TinyOS components that use them.2 Section 4 discusses the pat-
terns in the light of nesC and TinyOS development, and Section 5
concludes.

2. Background
Using a running example of an application component that samples
two sensors, we describe the aspects of nesC relevant to the patterns
we present in Section 3.

nesC [4] is a C-based language with two distinguishing features:
a programming model where components interact via interfaces,
and an event-based concurrency model with run-to-completion
tasks and interrupt handlers. The run-to-completion model pre-
cludes blocking calls: all system services, such as sampling a sen-

2 These components can be found in the TinyOS distributions, available
from http://www.tinyos.net.

TempM
(Provider)

AppM
(User)

command: sense()

event: senseDone(value)

Figure 2. Typical split-phase operation.

sor or sending a packet, are split-phase operations, where a com-
mand to start the operation returns immediately and a callback
event indicates when the operation completes (Figure 2). To pro-
mote reliability and analysability, nesC does not support dynamic
memory allocation or function pointers; all component interactions
are specified at compile-time.

2.1 Components and Interfaces

nesC programs are assemblies of components, connected (“wired”)
via named interfaces that theyprovideor use. Figure 1 graphically
depicts the assembly of six components connected via interfaces of
typeSense andInitialise. Modules are components implemented
with C code, while configurations are components implemented
by wiring other components together. In the example figure,Main,
LightM, TempM, and AppM are modules whileAppC and SensorsC

are configurations. The example shows that configurationAppC

“wires” (i.e., connects)AppM’s Sensor1 interface toSensorsC’s
Light interface, etc.

Modules and configurations have a name, specification and im-
plementation:

module AppM {
provides interface Initialise as Init;
uses interface Sense as Sensor1;
uses interface Sense as Sensor2;

}
implementation { ... }

declares thatAppM (from Figure 1) is a module which pro-
vides an interface namedInit and uses two interfaces, named
Sensor1 andSensor2. Each interface has a type, in this case either
Initialise or Sense. A component name denotes a unique, single-
ton component3: references toMain in different configurations (see
below) all refer to the same component.

An interface type specifies the interaction between a provider
component and a user component as a set of named functions:

interface Initialise { // component initialisation
command void init();

}

interface Sense { // split-phase sensor read
command void sense();
event void senseDone(int value);

}

This interaction is bi-directional:commandsare invocations
from the user to the provider, whileeventsare from the provider
to the user. Interface typeSense represents a typical split-phase
operation: providers must implement thesense command, which
represents a request to read a sensor; users must implement the
senseDone event which the provider signals when the sensor read
completes. Figure 2 shows this relationship forAppM and TempM.
To make the two directions syntactically explicit, nesC events are
signalled while commands arecalled. In both cases, the actual
interaction is a function call.

As a module,AppM must provide C implementations of com-
mands in its provided interfaces and of events in its used interfaces.
It can call or signal any of its commands or events:

3 We discuss in Section 4 how the next version of nesC changes this, and its
effect on design patterns.

module AppM { ... }
implementation {

int sum = 0;
command void Init.init() {

call Sensor1.sense();
}
event void Sensor1.senseDone(int val) {

sum += val;
call Sensor2.sense();

}
event void Sensor2.senseDone(int val) {

sum += val;
}

}

As this example shows, a command or eventf of an interface
I is namedI.f and is similar to a C function except for the
extra syntactic elements such ascommand, event andcall. Modules
encapsulate their state: all of their variables (e.g.,sum) are private.

2.2 Configurations

A configuration implements its specification by wiring other com-
ponents together, andequatingits own interfaces with interfaces
of those components. Two components can interact only if some
configuration has wired them together:

configuration SensorsC {
provides interface Sense as Light;
provides interface Sense as Temp;

}
implementation {

components Main, LightM, TempM;

Main.Init -> LightM.Init;
Main.Init -> TempM.Init;

Light = LightM.Sensor;
Temp = TempM.Sensor;

}

SensorsC “assembles” componentsLightM andTempM into a single
component providing an interface for each sensor:Temp is equated
to TempM’s Sensor interface,Light with LightM’s Sensor interface.
Additionally, SensorsC wires the system’s initialisation interface
(Main.Init) to the initialisation interfaces ofLightM andTempM.

Finally, AppC, the configuration for the whole application, wires
moduleAppM (which uses two sensors) toSensorsC (which provides
two sensors), and ensures thatAppM is initialised by wiring it to
Main.Init:

configuration AppC { }
implementation {

components Main, AppM, SensorsC;

Main.Init -> AppM.Init;
AppM.Sensor1 -> SensorsC.Light;
AppM.Sensor2 -> SensorsC.Temp;

}

In this application, interfaceMain.Init is multiply wired.
AppC connects it toAppM.Init, while SensorsC connects it to
LightM.Init and TempM.Init. The call Init.init() in module
Main compiles to an invocation of all threeinit() commands.4

2.3 Parameterised Interfaces

A parameterised interface is an interface array. For example, this
module has a separate instance of interfaceA for each value ofid:

module Example {
provides interface Initialise as Inits[int id];
uses interface Sense as Sensors[int id];

} ...

4 If a multiply wired function has non-void result, nesC combines the results
via a programmer-specified function. [4]

In a module, commands and events of parameterised interfaces
have an extra argument:

command void Inits.init[int id1]() {
call Sensors.sense[id1]();

}
event void Sensors.senseDone[int i](int v) {
}

A configuration can wire a single interface by specifying its
index:

configuration ExampleC {
}
implementation {

components Main, Example;
components TempM, LightM;

Main.Init -> Example.Inits[42];
Example.Sensors[42] -> TempM.Sensor;
Example.Sensors[43] -> LightM.Sensor;

}

WhenMain’s Init.init command is called,Example’s Inits.init

command will be executed withid = 42. This will causeExample
to callSensor[42].sense, which connects toTempM.sense.

A configuration can wire or equate a parameterised interface to
another parameterised interface. This equatesExample.Sensors[i]

to ADC[i] for all values ofi:

provides interface Sense as ADC[int id];
...
Example.Sensors = ADC;

2.4 unique and uniqueCount

In many cases, a programmer wants to use a single element of a
parameterised interface, and does not care which one as long as no
one else uses it. This functionality is supported by nesC’sunique

construction:

AppM.Timer1 -> TimerC.Timer[unique("Timer")];
AppM.Timer2 -> TimerC.Timer[unique("Timer")];

All uses ofunique with the same argument string (a constant)
return different values, from a contiguous sequence starting at 0. It
is also often useful to know the number of different values returned
by unique (e.g., a service may wish to know how many clients it
has). This number is returned by theuniqueCount construction:

timer_t timers[uniqueCount("Timer")];

3. Design Patterns
We present five TinyOS design patterns: two behavioural (relat-
ing to component interaction): Dispatcher and Decorator, and three
structural (relating to how applications are structured): Service In-
stance, Placeholder and Facade. A more in-depth presentation of
these and other patterns can be found on our website [5]; in par-
ticular we do not include any namespace (management of iden-
tifiers such as message types) patterns here. We follow the basic
format used inDesign Patterns[3], abbreviated to fit in a research
paper. Each pattern has anIntent, which briefly describes its pur-
pose. A more in-depthMotivation follows, providing an example
drawn from TinyOS.Applicable Whenprovides a succinct list of
conditions for use and a component diagram shows theStructure
of how components in the pattern interact. This diagram follows
the same format as Figure 1, with the addition of a folded sub-box
for showing source code (a floating folded box represents source
code in some other, unnamed, component).Sample Codeshows an
example nesC implementation;Consequencesdescribes how the
pattern achieves its goals, and notes issues to consider when using
it. Related Patternscompares to other relevant patterns.

3.1 Behavioural: Dispatcher

Intent: Dynamically select between a set of operations based on an
identifier. Provides a way to easily extend or modify a system by
adding or changing operations.
Motivation: At a high level, sensor network applications execute
operations in response to environmental input such as sensor read-
ings or network packets. The operation’s details are not important
to the component that presents the input. We need to be able to eas-
ily extend and modify what inputs an application cares about, as
well as the operation associated with an input.

For example, a node can receive many kinds of active mes-
sages (packets). Active messages (AM) have an 8-bit type field,
to distinguish between protocols. A flooding protocol uses one AM
type, while an ad-hoc routing protocol uses another.AMStandard,
the component that signals the arrival of a packet, should not need
to know what processing a protocol performs or whether an appli-
cation supports a protocol.AMStandard just delivers packets, and
the application responds to those it cares about.

The traditional approach to this problem is to use function point-
ers or objects, which are dynamically registered as callbacks. In
many cases, even though registered at run time, the set of operations
is known at compile time. Thus these callbacks can be replaced by
a dispatch table compiled into the executable, with two benefits.
First, this allows better cross-function analysis and optimization,
and secondly it conserves RAM, as no pointers or callback struc-
tures need to be stored.

Such a dispatch table could be built for the active message
example by using aswitch statement inAMStandard. But this is
very inflexible: any change to the protocols used in an application
requires a change in a system component.

A better approach in TinyOS is to use the Dispatcher pattern.
A Dispatcher invokes operations using a parameterised interface,
based on a data identifier. In the case ofAMStandard, the interface
is ReceiveMsg and the identifier is the active message type field.
AMStandard is independent of what messages the application han-
dles, or what processing those handlers perform. Adding a new han-
dler requires a single wiring toAMStandard. If an application does
not wire a receive handler for a certain type,AMStandard defaults
to a null operation.

Another example of a Dispatcher is the scheduler of the Maté
virtual machine. Each instruction is a separate component that
provides theMateBytecode interface. The scheduler executes a
particular bytecode by dispatching to the instruction component
using a parameterisedMateBytecode interface. The instruction set
can be easily changed by altering the wiring of the scheduler.
Applicable When:

• A component needs to support an externally customisable set
of operations.

• A primitive integer type can identify which operation to per-
form.

• The operations can all be implemented in terms of a single
interface.

Structure

Dispatcher

Operations[id]

interface Operation

Op1
Op

components Dispatcher, Op2;
Dispatcher.Operations[KEY2] -> Op2.Op;

Op2
Op

Sample Code:AMStandard is the radio stack component that dis-
patches received messages:

module AMStandard {
// Dispatcher interface for messages
uses interface ReceiveMsg as Recv[uint8_t id];

}
implementation {

TOS_MsgPtr received(TOS_MsgPtr packet) {
return signal Recv.receive[packet->type](packet);

}
...

}

and theApp configuration registersAppM to handle two kinds of
messages:

configuration App {}
implementation {

components AppM, AMStandard;
AppM.ClearIdMsg -> AMStandard.Receive[AM_CLEARIDMSG];
AppM.SetIdMsg -> AMStandard.Receive[AM_SETIDMSG];

}

Consequences:By leaving operation selection to nesC wirings, the
dispatcher’s implementation remains independent of what an appli-
cation supports. However, finding the full set of supported opera-
tions can require looking at many files. Sloppy operation identifier
management can lead to dispatch problems: if two operations are
wired with the same identifier, then a dispatch will call both, which
may cause problems.

The key aspects of the dispatcher pattern are:

• It allows you to easily extend or modify the functionality an ap-
plication supports: adding an operation requires a single wiring.

• It allows the elements of functionality to be independently im-
plemented and re-used. Because each operation is implemented
in a component, it can be easily included in many applications.
Keeping implementations separate can also simplify testing, as
the components will be smaller, simpler, and easier to pinpoint
faults in. The nesC compiler will automatically inline small op-
erations, or you can explicitly request inlining; thus this decom-
position has no performance cost.

• It requires the individual operations to follow a uniform inter-
face. The dispatcher is usually not well suited to operations that
have a wide range of semantics. As all implementations have to
meet the same interface, broad semantics leads to the interface
being overly general, pushing error checks from compile-time
to run-time. An implementor forgetting a run-time parameter
check can cause a hard to diagnose system failure.

The compile-time binding of the operation simplifies program
analysis and puts dispatch tables in the compiled code, saving
RAM. Dispatching provides a simple way to develop programs that
execute in reaction to their environment.
Related Patterns:

• Service Instance: a service instance creates many instances of
an implementation of an interface, while a dispatcher selects
between different implementations of an interface.

• Placeholder: a placeholder allows an application to select an
implementation at compile-time, while a dispatcher allows it to
select an implementation at runtime.

3.2 Structural: Service Instance

Intent: Allows multiple users to have separate instances of a par-
ticular service, where the instances can collaborate efficiently.
Motivation: Sometimes many components or subsystems need to
use a system abstraction, but each user wants a separate instance of
that service. We don’t know how many users there will be until we
build a complete application. Each instance requires maintaining
some state, and the service implementation needs to access all of
this state to make decisions.

For example, a wide range of TinyOS components need timers,
for everything from network timeouts to sensor sampling. Each
timer appears independent, but they all operate on top of a single
hardware clock. An efficient implementation thus requires knowing
the state of all of the timers. If the implementation can easily deter-
mine which timer has to fire next, then it can schedule the underly-
ing clock resource to fire as few interrupts as possible to meet this
lowest timer’s requirement. Firing fewer interrupts reduces CPU
load on the system and can allow it to sleep longer, saving energy.

The traditional object-oriented approach to this problem is to
instantiate an object representing the service and use another class
to coordinate state. This approach is not applicable in nesC as we
cannot have multiple copies of components5, and requires either
sharing state across objects, which is contrary to encapsulation, or
state copying, which uses additional RAM.

Implementing each timer in a separate module leads to dupli-
cated code and requires inter-module coordination in order to fig-
ure out how to set the underlying hardware clock. Just setting it at
a fixed rate and maintaining a counter for each Timer is inefficient:
timer fidelity requires firing at a high rate, but it’s pointless to fire
at 1KHz if the next timer is in four seconds.

The Service Instance pattern provides a solution to these prob-
lems. Using this pattern, each user of a service can have its own
(virtual) instance, but instances share code and can access each
other’s state. A component following the Service Instance pattern
provides its service in a parameterised interface; each user wires
to a unique instance of the interface usingunique. The underlying
component receives the unique identity of each client in each com-
mand, and can use it to index into a state array. The component
can determine at compile-time how many instances exist using the
uniqueCount function and dimension the state array accordingly.
Applicable When:

• A component needs to provide multiple instances of a service,
but does not know how many until compile time.

• Each service instance appears to its user to be independent of
the others.

• The service implementation needs to be able to easily access
the state of every instance.

Structure

NUSERS = uniqueCount(“Service”);
StateType state[NUSERS];

ServiceProvider

Svc[id]

ResourceC
AResourceUsedResource

User2
Svc

interface Service

interface Resource

User1
Svc

components User2, ServiceProvider;
User2.Svc -> ServiceProvider.Svc[unique(“Service”)];

5 This restriction will be lifted in the next version of nesC (Section 4.4).

Sample Code:TimerC wires TimerM, which contains the actual
timer logic, to an underlying hardware clock and exports its Timer
interfaces:

configuration TimerC {
provides interface Timer[uint8_t id];

}
implementation {

components TimerM, ClockC;

Timer = TimerM.Timer;
TimerM.Clock -> ClockC.Clock;

}

and TimerM usesuniqueCount to determine how many timers
to allocate and accesses them using unique IDs:

module TimerM {
provides interface Timer[uint8_t clientId];
uses interface Clock;

}
implementation {

// per-client state
timer_t timers[uniqueCount("Timer")];

command result_t Timer.start[uint8_t clientId](...) {
if (timers[clientId].busy)

...
}

}

Clients wanting a timer wire using unique:

C.Timer -> TimerC.Timer[unique("Timer")];

Consequences:The key aspects of the Service Instance pattern are:

• It allows many components to request independent instances of
a common system service: adding an instance requires a single
wiring.

• It controls state allocation, so the amount of RAM used is scaled
to exactly the number of instances needed, conserving mem-
ory while preventing run-time failures due to many requests ex-
hausting resources.

• It allows a single component to coordinate all of the instances,
which enables efficient resource management and coordination.

Because the pattern scales to a variable number of instances,
the cost of its operations may scale linearly with the number of
users. For example, if setting the underlying clock interrupt rate
depends on the timer with the shortest remaining duration, an
implementation might determine this by scanning all of the timers,
an O(n) operation.

If many users require an instance of a service, but each of those
instances are used rarely, then allocating state for each one can be
wasteful. The other option is to allocate a smaller amount of state
and dynamically allocate it to users as need be. This can conserve
RAM, but requires more RAM per real instance (client IDs need
to be maintained), imposes a CPU overhead (allocation and deal-
location), can fail at run-time (if there are too many simultaneous
users), and assumes a reclamation strategy (misuse of which would
lead to leaks). This long list of challenges makes the Service In-
stance an attractive – and more and more commonly used – way to
efficiently support application requirements.
Related Patterns:

• Dispatcher: a service instance creates many instances of an im-
plementation of an interface, while a dispatcher selects between
different implementations of an interface.

3.3 Structural: Placeholder

Intent: Easily change which implementation of a service an entire
application uses. Prevent inadvertent inclusion of multiple, incom-
patible implementations.
Motivation: Many TinyOS systems and abstractions have several
implementations. For example, there are many ad-hoc tree routing
protocols (Route, MintRoute, ReliableRoute), but they all expose
the same interface,Send. The standardized interface allows appli-
cations to use any of the implementations without code changes.
Simpler abstractions can also have multiple implementations. For
example, the LedsC component actually turns the LEDs on and off,
while the NoLedsC component, which provides the same interface,
has null operations. During testing, LedsC is useful for debugging,
but in deployment it is a significant energy cost and usually re-
placed with NoLedsC.

Sometimes, the decision of which implementation to use needs
to be uniform across an application. For example, if a network
health monitoring subsystem (HealthC) wires to MintRoute, while
an application uses ReliableRoute, two routing trees will be built,
wasting resources. As every configuration that wires to a service
names it, changing the choice of implementation in a large appli-
cation could require changing many files. Some of these files, such
asHealthC, are part of the system; an application writer should not
have to modify them.

One option is for every implementation to use the same compo-
nent name, and put them in separate directories. Manipulating the
nesC search order allows an application to select which version to
use. This approach doesn’t scale well: each implementation of each
component needs a separate directory. Streamlining this structure
by bundling several implementations (e.g., the “safe” versions and
the “optimized” ones) in a single directory requires all-or-nothing
inclusion. This approach also precludes the possibility of including
two implementations, even if they can interoperate.

The Placeholder pattern offers a solution. A placeholder con-
figuration represents the desired service through a level of naming
indirection. All components that need to use the service wire to the
placeholder. The placeholder itself is just “a pass through” of the
service’s interfaces. A second configuration (typically provided by
the application) wires the placeholder to the selected implemen-
tation. This selection can then be changed centrally by editing a
single file. As the level of indirection is solely in terms of names
– there is no additional code generated – it imposes no CPU over-
head.
Applicable When:

• A component or service has multiple, mutually exclusive im-
plementations.

• Many subsystems and parts of your application need to use this
component/service.

• You need to easily switch between the implementations.

Structure

Placeholder

ActualSvc

Svc = Actual;

User1
Svc

User2
Svc

components User2, Placeholder;
User2.Svc -> Placeholder.Svc;

interface Service

Alternate
Svc

Impl
Svc

Sample Code:Several parts of an application use ad-hoc collec-
tion routing to collect and aggregate sensor readings. However, the
application design is independent of a particular routing implemen-
tation, so that improvements or new algorithms can be easily incor-
porated. The routing subsystem is represented by a Placeholder,
which provides a unified name for the underlying implementation
and just exports its interfaces:

configuration CollectionRouter {
provides interface StdControl as SC;
uses interface StdControl as ActualSC;
provides interface SendMsg as Send;
uses interface SendMsg as ActualSend;

}
implementation {

SC = ActualSC; // Just "forward" the
Send = ActualSend; // interfaces

}

Component using collection routing wire to CollectionRouter:

SensingM.Send -> CollectionRouter.Send;

and the application must globally select its routing component by
wiring the “Actual” interfaces of the Placeholder to the desired
component:

configuration AppMain { }
implementation {

components CollectionRouter, EWMARouter;

CollectionRouter.ActualSC -> EWMARouter.SC;
CollectionRouter.ActualSend -> EWMARouter.Send;
...

}

Consequences:The key aspects of the Placeholder pattern are:

• Establishes a global name that users of a common service can
wire to.

• Allows you to specify the implementation of the service on an
application-wide basis.

• Does not require every component to use the Placeholder’s
implementation.

By adding a level of naming indirection, a Placeholder provides
a single point at which you can choose an implementation. Place-
holders create a global namespace for implementation-independent
users of common system services. As using the Placeholder pattern
generally requires every component to wire to the Placeholder in-
stead of a concrete instance, incorporating a Placeholder into an ex-
isting application can require modifying many components. How-
ever, the nesC compiler optimises away the added level of wiring
indirection, so a Placeholder imposes no run-time overhead. The
Placeholder supports flexible composition and simplifies use of al-
ternative service implementations.
Related Patterns:

• Dispatcher: a placeholder allows an application to select an
implementation at compile-time, while a dispatcher allows it
to select an implementation at runtime.

• Facade: a placeholder allows easy selection of the implementa-
tion of a group of interfaces, while a facade allows easy use of
a group of interfaces. An application may well connect a place-
holder to a facade.

3.4 Structural: Facade

Intent: Provides a unified access point to a set of inter-related
services and interfaces. Simplifies use, inclusion, and composition
of the subservices.
Motivation: Complex system components, such as a filesystem or
networking abstraction, are often implemented across many com-
ponents. Higher-level operations may be based on lower-level ones,
and a user needs access to both. Complex functionality may be
spread across several components. Although implemented sepa-
rately, these pieces of functionality are part of a cohesive whole
that we want to present as a logical unit.

For example, the Matchbox filing system provides interfaces
for reading and writing files, as well as for metadata operations
such as deleting and renaming. Separate modules implement each
of the interfaces, depending on common underlying services such
as reading blocks.

One option would be to put all of the operations in a single,
shared interface. This raises two problems. First, the nesC wiring
rules mean that a component that wants to useanycommand in the
interface has to handleall of its events. In the case of a file system,
all the operations are split-phase; having to handle a half dozen
events (readDone, writeDone, openDone, etc.) merely to be able to
delete a file is hardly usable. Second, the implementation cannot be
easily decomposed into separate components without introducing
internal interfaces, as the top-level component will need to call out
into the subcomponents. Implementing the entire subsystem as a
single huge component is not easy to maintain.

Another option is to export each interface in a separate com-
ponent (e.g., MatchboxRead, MatchboxWrite, MatchboxRename,
etc.). This increases wiring complexity, making the abstraction
more difficult to use. For a simple open, read, and write sequence,
the application would have to wire to three different components.
Additionally, each interface would need a separate configuration to
wire it to the subsystems it depends on, increasing clutter in the
component namespace. The implementer needs to be careful with
these configurations, to prevent inadvertent double-wirings.

The Facade pattern provides a better solution to this problem.
The Facade pattern provides a uniform access point to interfaces
provided by many components. A Facade is a nesC configuration
that defines a coherent abstraction boundary by exporting the inter-
faces of several underlying components. Additionally, the Facade
can wire the underlying components, simplifying dependency res-
olution.

A nesC Facade has strong resemblances to the object oriented
pattern of the same name. [3] The distinction lies in nesC’s static
model. An object-oriented Facade instantiates its subcomponents at
run-time, storing pointers and resolving operations through another
level of call indirection. In contrast, as a nesC Facade is defined
through naming (pass through wiring) at compile time, there is no
run time cost.
Structure

Facade
User

SvcImpl1
Svc

interface Service1

interface Service2

SvcImpl2
Svc

Svc2

Svc1

Svc2

Svc1

components Svc1Impl, Svc2Impl;
Svc1 = Svc1Impl.Svc;
Svc2 = Svc2Impl.Svc;

components User, Facade;
User.Svc1 = Facade.Svc1;
User.Svc2 = Facade.Svc2;

Applicable When:

• An abstraction, or series of related abstractions, is implemented
across several separate components.

• It is preferable to present the abstraction in whole rather than in
parts.

Sample Code: The Matchbox filing system uses a Facade to
present a uniform filesystem abstraction. File operations are all
implemented in different components, but the top-level Matchbox
configuration provides them in a single place. Each of these compo-
nents depends on a wide range of underlying abstractions, such as
a block interface to non-volatile storage;Matchbox.nc wires them
appropriately, resolving all of the dependencies.

configuration Matchbox {
provides {

interface FileRead[uint8_t fd];
interface FileWrite[uint8_t fd];
interface FileDir;
interface FileRename;
interface FileDelete;

}
}
implementation {

// File operation implementations
components Read, Write, Dir, Rename, Delete;

FileRead = Read.FileRead;
FileWrite = Write.FileWrite;
FileDir = Dir.FileDir;
FileRename = Rename.FileRename;
FileDelete = Delete.FileDelete;
// Wiring of operations to sub-services omitted

}

Consequences:The key aspects of the Facade pattern are:

• Provides an abstraction boundary as a set of interfaces. A user
can easily see the set of operations the abstraction support, and
only needs to include a single component to use the whole
service.

• Presents the interfaces separately. A user can wire to only the
needed parts of the abstraction, but be certain everything under-
neath is composed correctly.

A Facade is not always without cost. Because the Facade names
all of its sub-parts, they will all be included in the application.
While the nesC compiler attempts to remove unreachable code, this
analysis is necessarily conservative and may end up keeping much
useless code. In particular, unused interrupt handlers are never
removed, so all the code reachable from them will be included
every time the Facade is used. If you expect applications to only use
a very narrow part of an abstraction, then a Facade can be wasteful.

Several stable, commonly used abstract boundaries have emerged
in TinyOS [2], such as GenericComm (the network stack) and
Matchbox (a file system), The presentation of these APIs is almost
always a Facade.
Related Patterns:

• Placeholder: a placeholder allows easy selection of the imple-
mentation of a group of interfaces, while a facade allows easy
use of a group of interfaces. An application may well connect a
placeholder to a facade.

3.5 Behavioural: Decorator

Intent: Enhance or modify a component’s capabilities without
modifying its implementation. Be able to apply these changes to
any component that provides the interface.
Motivation: We often need to add extra functionality to an exist-
ing component, or to modify the way it works without changing its
interfaces. For instance, the standardByteEEPROM component pro-
vides aLogData interface to log data to a region of flash memory.
In some circumstances, we would like to introduce a RAM write
buffer on top of the interface. This would reduce the number of ac-
tual writes to the EEPROM, conserving energy (writes to EEPROM
are expensive) and the lifetime of the medium.

Adding a buffer to theByteEEPROM component forces all log-
ging applications to allocate the buffer. As some application may
not able to spare the RAM, this is undesirable. Providing two ver-
sions, buffered and unbuffered, replicates code, reducing reuse and
increasing the possibility of incomplete bug fixes. It is possible that
several implementers of the interface – any component that pro-
videsLogData – may benefit from the added functionality. Having
multiple copies of the buffering version, spread across several ser-
vices, further replicates code.

There are two traditional object-oriented approaches to this
problem: inheritance, which defines the relationship at compile
time through a class hierarchy, and decorators, which define the re-
lationship at run time through encapsulation. [3] As nesC is not an
object-oriented language, and has no notion of inheritance, the for-
mer option is not possible. Similarly, run-time encapsulation is not
readily supported by nesC’s static component composition model
and imposes overhead in terms of pointers and call forwarding.
However, we can use nesC’s component composition and wiring
to provide a compile time version of the Decorator.

A Decorator component is typically a module that provides and
uses the same interface type, such asLogData. The provided in-
terface adds functionality on top of the used interface. For exam-
ple, theBufferedLog component sits on top of aLogData provider.
It implements its additional functionality by aggregating several
BufferedLog writes into a singleLogData write.

Using a Decorator can have further benefits. In addition to aug-
menting existing interfaces, they can introduce new ones that pro-
vide alternative abstractions. For example,BufferedLog provides a
synchronous (not split phase)FastLog interface; a call toFastLog
writes directly into the buffer.

Finally, separating added functionality into a Decorator allows it
to apply to any implementation. For example, a packetSend queue
Decorator can be interposed on top of any networking abstraction
that provides theSend interface; this allows flexible interposition-
ing of queues and queueing policies in a networking system.
Structure

Decorator Original
SvcOrigSvc

Ext

// implement Svc, Ext
// using Orig

interface Service

interface Extension

OldUser
Svc

NewUser
Ext

components NewUser, Decorator;
NewUser.Ext -> Decorator.Ext;

components OldUser, Decorator;
OldUser.Svc -> Decorator.Svc;

Applicable When:

• You wish to extend the functionality of an existing component
without changing its implementation, or

• You wish to provide several variants of a component without
having to implement each possible combination separately.

Sample Code:The standardLogData interface includes split-phase
erase, append andsync operations.BufferedLog adds buffering to
theLogData operations, and, additionally, supports aFastLogData

interface with a non-split-phaseappend operation (for small writes
only):

module BufferedLog {
provides interface LogData as Log;
provides interface FastLogData as FastLog;
uses interface LogData as UnbufferedLog;

}
implementation {

uint8_t buffer1[BUFSIZE], buffer2[BUFSIZE];
uint8_t *buffer;
command result_t FastLog.append(data, n) {

if (bufferFull()) {
call UnbufferedLog.append(buffer, offset);
// ... switch to other buffer ...

}
// ... append to buffer ...

}

The SendQueue Decorator introduces a send queue on top of a
split-phaseSend interface:

module SendQueue {
provides interface Send;
uses interface Send as SubSend;

}
implementation {

TOS_MsgPtr queue[QUEUE_SIZE];
uint8_t head, tail;
command result_t Send.send(TOS_MsgPtr msg) {

if (!queueFull()) enqueue(msg);
if (!subSendBusy()) startSendRequest();

}

Consequences:Applying a Decorator allows you to extend or
modify a component’s behaviour though a separate component:
the original implementation can remain unchanged. Additionally,
the Decorator can be applied to any component that provides the
interface.

In most cases, a decorated component should not be used di-
rectly, as the Decorator is already handling its events. The Place-
holder pattern (Section 3.3) can be used to help ensure this.

Additional interfaces are likely to use the underlying compo-
nent, creating dependencies between the original and extra inter-
faces of a Decorator. For instance, inBufferedLog, FastLog uses
UnbufferedLog, so concurrent requests toFastLog and Log are
likely to conflict: only one can access theUnbufferedLog at once.

Decorators are a lightweight but flexible way to extend com-
ponent functionality. Interpositioning is a common technique in
building networking stacks [12], and Decorators enable this style
of composition.

4. Discussion
We compare our design patterns to standard object-oriented pat-
terns and show how they support TinyOS’s design goals. We show
that our patterns depend fundamentally on features of both the nesC
language and compiler. Finally, we discuss how these patterns have
influenced the design of the nesC programming language and how
upcoming changes to nesC will address some of the limitations of
our current patterns.

4.1 Comparison to object-oriented patterns

The five design patterns described in Section 3 can be separated
into classes: Dispatcher and Service Instance are specific to nesC,
while Decorator, Facade and Placeholder have analogues in exist-
ing pattern [3]. The differences from traditional object-oriented pat-
terns stem from the design principles behind TinyOS [1]. For ex-
ample, TinyOS generally depends on static composition techniques
to provide robust, unattended operation: function pointers or virtual
functions can complicate program analysis, while dynamic alloca-
tion can fail at run-time if one allocator misbehaves. As a result,
where many object-oriented patterns increase object flexibility and
reusability by allowing behaviour changes at runtime, our patterns
require that most such decisions be taken by compile-time.

The nesC-specific patterns represent ways to make nesC’s static
programming model more practical. Service Instance allow ser-
vices (e.g., timers, file systems) to have a variable number of
clients; it is the standard pattern for a stateful TinyOS service. Dis-
patcher supports application-configured dispatching (e.g., message
reception, user commands).

The TinyOS Facade and Decorator patterns have similar goals
and structures to their identically-named object-oriented ana-
logues [3, p.175,p.185]. The Facade assembles a set of existing
components and presents them as a single component to simplify
use, while the Decorator adds extra functionality to an existing
component. The differences lie in nesC’s model of static compo-
sition. In the case of the Facade, this means that all of the rela-
tionships are bound at compile-time; additionally, nesC provides
no way of making the internals of a Facade truly private (the in-
ternal components can always be referred to from elsewhere by
name). The Decorator is more useful than in an object-oriented
context, as it provides a way to define implementation-inheritance
hierarchies in a component-based language. However, the use of
any given Decorator is limited by the singleton nature of compo-
nents. Finally, Placeholder has similarities to the Bridge [3, p.151]:
it simplifies implementation switching, but requires that the imple-
mentation selection be performed at compile-time.

4.2 Patterns support TinyOS’s goals

The patterns we have presented directly support TinyOS’s design
goals of robustness, low resource usage, supporting hardware evo-
lution, enabling diverse service implementations, and adaptability
to application requirements. Specifically,

• A Placeholder supports diverse implementations by simplifying
implementation selection and hardware evolution by defining a
platform-independent abstraction layer.

• A Decorator supports diverse implementations by enabling
lightweight component extension.

• Service Instance and Dispatcher increase robustness and lower
resource usage by resolving component interactions at compile-
time.

• A Dispatcher improves application adaptability by providing a
way to easily configure what operations an application supports
and how it reacts to its environment.

inlining dead-code unoptimised
+ dead-code only

Power draw 5.1mW 9.5mW
Interpreter size 47.1kB 52.5kB 83.8kB

Table 1. Effect of optimisations on code size and power draw in a
pattern-intensive program.

4.3 Language and compiler support for patterns

To be of practical use, these design patterns must be not only useful
for embedded systems programming, but must also be expressible
in a sufficiently concise fashion, and should not impose significant
code space or runtime overhead. We briefly describe the nesC
compiler, and then discuss how its features combined with the nesC
language design supports design patterns.

The nesC compiler generates a single C file containing the
executable code of all the modules of the program, where the
wirings specified by configurations become direct function calls.
The explicit specification of the program’s call graph via wiring
and parameterised interfaces make it easy to perform two whole
program optimisations. First, unreachable functions are eliminated
from the output C file. Second, the compiler adds inline directives
to all “small” functions (where the size of a function includes the
size of all functions it calls) and to all functions called exactly once.
We rely on the C compiler which processes the generated C file to
perform the actual inlining.6

Concise and efficient expression of our patterns is made possible
by the following features:

• Inlining makes it possible to break programs into lots of com-
ponents without a large performance cost (Dispatcher, Place-
holder, Facade, Decorator).

• Dead code elimination removes unused functionality, allowing
more general components to be designed (Facade).

• Parameterised interfaces allow runtime dispatches (Dispatcher,
Service Instance).

• Unique identifiers support compile-time configuration of ser-
vices, e.g., to identify clients (Service Instance).

To show the importance of nesC’s optimisations in real pro-
grams, we evaluated the code size and average power draw of
a bytecoded interpreter for a Scheme-like language, running on
mica2 [13] motes. The interpreter, built with the Maté virtual ma-
chine architecture [14], makes heavy use of all these patterns. The
mica2 motes have an Atmel ATmega128 microcontroller, running
at 8MHz, with 128kB of flash and 4kB of RAM. We ran a simple
program that performed a little computation 10 times a second, and
sends a radio message with the results every 50s.

Table 1 shows the power draw of this program, and interpreter
code size with and without the inlining and dead-code optimisa-
tions. Without optimisation, power increases by 86%7 and code size
by 78%. We can thus see that these optimisations, enabled in part by
nesC’s language features, are essential to performance in programs
which make heavy use of these patterns. In contrast, a program that
spends most of its time in the radio stack — a monolithic subsystem
making little use of patterns — sees “only” a 7% increase (1.22mW
to 1.31mW) in power draw when turning off inlining.

4.4 nesC, Yesterday and Tomorrow

As experience in using TinyOS has grown, we have introduced fea-
tures in nesC to make building applications easier. Design patterns

6 All our current platforms use gcc. We ensure that it inlines all requested
functions by passing it an -finline-limit=100000 option.
7 Dead-code elimination has no effect on power draw.

have been the motivation for several of these features. For example,
the first version of nesC (before TinyOS 1.0) had neitherunique nor
uniqueCount. Initial versions of the Timer component coalesced
into Service Instance pattern, which led to the inclusion ofunique

anduniqueCount. The next version of nesC, 1.2, will introduce the
feature ofgeneric componentsto simplify using design patterns.

TinyOS design patterns are limited by the singleton nature of
nesC components, leading to a significant amount of code duplica-
tion. For example, when wiring to a Service Instance, a program-
mer must carefully use the same incantation with a particular key
for unique. If a program needs two copies of, e.g., a data filter Dec-
orator, then two separate components must exist, and their code
must be maintained separately. These examples involve replicated
code: changing the Service Instance key requires changing every
user of the service, and a typo in one instance of the key can lead
to buggy behaviour (the keys may no longer be unique).

The upcoming 1.2 version of nesC addresses this issue with
generic components, which can be instantiated at compile-time
with numerical and type parameters. Essentially, component instan-
tiation creates a copy of the code with arguments substituted for the
parameters. Configurations (including generic configurations) can
instantiate generic components:

components new LogBufferer() as LB, ByteEEPROM;
LB.UnbufferedLog -> ByteEEPROM;

Generic configurations allow a programmer to capture wiring
patterns and represent them once. For example, the key a Service
Instance component uses can be written in one place: instead of
wiring with unique, a user of the service wires to an instance of a
generic configuration:

generic configuration TimerSvc() {
provides interface Timer;

}
implementation {

components TimerC;
Timer = TimerC.Timer[unique("TimerKey")];

}
....

components User1, new TimerSvc() as MyTimer;
User1.Timer -> MyTimer.Timer;

Generic modules make patterns such as Decorator much more
reusable, and allow patterns such as Facade to have private compo-
nents, whose interfaces are only accessible through what a config-
uration exposes. By providing a globally accessible name, a Place-
holder provides a way to make a generic component behave like a
nesC 1.1 singleton.

5. Conclusion
Like their object-oriented brethren, TinyOS design patterns are
templates of how functional elements of a software system inter-
act. Flexibility is a common goal, but in TinyOS we must also pre-
serve the efficiency and reliability of nesC’s static programming
model. Thus, the TinyOS patterns allow most of this flexibility to
be resolved at compile-time, through the use of wiring,unique and
uniqueCount.

Our set of TinyOS design patterns is a work in progress. In par-
ticular, it is clear that analogues of many of the structural patterns
from the original Design Patterns book [3] can be expressed in
nesC, with a “component = class”, or “component = object” map-
ping. Translations of behavioural patterns is harder, reflecting the
differences in resources and application domains. The fact that our
list contains relatively few behavioural patterns (just Dispatcher
and Decorator) may reflect the fact that, so far, TinyOS applica-
tions have been fairly simple.

Finally, our design patterns are reusable patterns of component
composition. TinyOS has many other forms of patterns, such as
interface patterns (e.g., split-phase operations, error handling)8,
and data-handling patterns (e.g., data pumps in the network stack).
These other sorts of patterns deserve further investigation.

Acknowledgements
This work was supported, in part, by the Defense Department
Advanced Research Projects Agency (grants F33615-01-C-1895
and N6601-99-2-8913), the National Science Foundation (grants
No. 0122599 and NSF IIS-033017), California MICRO program,
and Intel Corporation. Research infrastructure was provided by the
National Science Foundation (grant EIA-9802069).

References
[1] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,

A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler,
“TinyOS: An operating system for wireless sensor networks,” in
Ambient Intelligence. New York, NY: Springer-Verlag, To Appear.

[2] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,
E. Brewer, and D. Culler, “The Emergence of Networking Abstrac-
tions and Techniques in TinyOS,” inFirst USENIX/ACM Symposium
on Network Systems Design and Implementation (NSDI), 2004.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,Design Patters:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[4] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded
systems,” inSIGPLAN Conference on Programming Language Design
and Implementation (PLDI’03), June 2003.

[5] P. Levis and D. Gay, “Tinyos design patterns,” http://www.cs.berkeley.edu/˜pal/tinyos-
patterns, 2004.

[6] OOPSLA Workshop Towards Patterns and Pattern Languages for OO
Distributed Real-time and Embedded Systems, 2001.

[7] OOPSLA Workshop on Patterns in Distributed Real-time and
Embedded Systems, 2002.

[8] PLOP Workshop on Patterns and Pattern Languages in Distributed
Real-time and Embedded Systems, 2002.

[9] B. P. Douglass,Real-Time Design Patterns: Robust Scalable Architec-
ture for Real-Time Systems. Addison-Wesley, 2002.

[10] L. Girod, J. Elson, and A. Cerpa, “Em*: a Software Environment
for Developing and Deploying Wireless Sensor Networks,” in
Proceedings of the USENIX General Track, 2004.

[11] B. Greenstein, E. Kohler, and D. Estrin, “A Sensor Network
Application Construction Kit (SNACK),” inProceedings of the 2nd
International Conference on Embedded Sensor Systems (SENSYS’04),
Nov. 2004, pp. 69–80.

[12] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, “The
Click modular router,”ACM Transactions on Computer Systems,
vol. 18, no. 3, pp. 263–297, August 2000.

[13] University of California, Berkeley, “Mica2 schematics,” http:
//webs.cs.berkeley.edu/tos/hardware/design/ORCADFILES/MICA2/
6310-0306-01ACLEAN.pdf, Mar. 2003.

[14] P. Levis, D. Gay, and D. Culler, “Active Sensor Networks,” in
Proceedings of the 2nd USENIX/ACM Symposium on Network Systems
Design and Implementation (NSDI), May 2005.

8 The device patterns in EM? [10] may provide inspiration here.

http://webs.cs.berkeley.edu/tos/hardware/design/ORCAD_FILES/MICA2/6310-0306-01ACLEAN.pdf
http://webs.cs.berkeley.edu/tos/hardware/design/ORCAD_FILES/MICA2/6310-0306-01ACLEAN.pdf
http://webs.cs.berkeley.edu/tos/hardware/design/ORCAD_FILES/MICA2/6310-0306-01ACLEAN.pdf

	Introduction
	Background
	Components and Interfaces
	Configurations
	Parameterised Interfaces
	unique and uniqueCount

	Design Patterns
	Behavioural: Dispatcher
	Structural: Service Instance
	Structural: Placeholder
	Structural: Facade
	Behavioural: Decorator

	Discussion
	Comparison to object-oriented patterns
	Patterns support TinyOS's goals
	Language and compiler support for patterns
	nesC, Yesterday and Tomorrow

	Conclusion

