
1

Design Patterns In Java Bob Tarr

The
Chain of Responsibility

Pattern

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
22

The Chain of Responsibility PatternThe Chain of Responsibility Pattern

l Intent
é Avoid coupling the sender of a request to its receiver by giving more than

one object a chance to handle the request. Chain the receiving objects and
pass the request along the chain until an object handles it.

l Motivation
é Consider a context-sensitive help system for a GUI

é The object that ultimately provides the help isn't known explicitly to the
object (e.g., a button) that initiates the help request

é So use a chain of objects to decouple the senders from the receivers. The
request gets passed along the chain until one of the objects handles it.

é Each object on the chain shares a common interface for handling requests
and for accessing its successor on the chain

2

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
33

The Chain of Responsibility PatternThe Chain of Responsibility Pattern

l Motivation

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
44

The Chain of Responsibility PatternThe Chain of Responsibility Pattern

l Applicability
é Use Chain of Responsibility:

Ý When more than one object may handle a request and the actual handler is not
know in advance

Ý When requests follow a “handle or forward” model - that is, some requests can
be handled where they are generated while others must be forwarded to another
object to be handled

l Consequences
é Reduced coupling between the sender of a request and the receiver - the

sender and receiver have no explicit knowledge of each other

é Receipt is not guaranteed - a request could fall off the end of the chain
without being handled

é The chain of handlers can be modified dynamically

3

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
55

The Chain of Responsibility PatternThe Chain of Responsibility Pattern

l Structure

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
66

Chain of Responsibility Example 1Chain of Responsibility Example 1

l Scenario: The designers of a set of GUI classes need to have a
way to propagate GUI events, such as MOUSE_CLICKED, to the
individual component where the event occurred and then to the
object or objects that are going to handle the event

l Solution: Use the Chain of Responsibility pattern. First post the
event to the component where the event occurred. That
component can handle the event or post the event to its container
component (or both!). The next component in the chain can again
either handle the event or pass it up the component containment
hierarchy until the event is handled.

l This technique was actually used in the Java 1.0 AWT

4

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
77

Chain of Responsibility Example 1 (Continued)Chain of Responsibility Example 1 (Continued)

l Here's a typical Java 1.0 AWT event handler:

 public boolean action(Event event, Object obj) {

 if (event.target == test_button)

 doTestButtonAction();

 else if (event.target == exit_button)

 doExitButtonAction();

 else

 return super.action(event,obj);

 return true; // Return true to indicate the event has been

 // handled and should not be propagated further.

 }

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
88

Chain of Responsibility Example 1 (Continued)Chain of Responsibility Example 1 (Continued)

l In Java 1.1 the AWT event model was changed from the Chain of
Responsibility (CoR) pattern to the Observer pattern. Why?

é Efficiency: GUIs frequently generate many events, such as
MOUSE_MOVE events. In many cases, the application did not care about
these events. Yet, using the CoR pattern, the GUI framework would
propagate the event up the containment hierarchy until some component
handled it. This caused the GUI to slow noticeably.

é Flexibility: The CoR pattern assumes a common Handler superclass or
interface for all objects which can handle chained requests. In the case of
the Java 1.0 AWT, every object that could handle an event had to be a
subclass of the Component class. Thus, events could not be handled be
non-GUI objects, limiting the flexibility of the program.

5

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
99

Chain of Responsibility Example 1 (Continued)Chain of Responsibility Example 1 (Continued)

l The Java 1.1 AWT event model uses the Observer pattern. Any
object that wants to handle an event registers as an event listener
with a component. When an event occurs, it is posted to the
component. The component then dispatches the event to any of
its listeners. If the component has no listeners, the event is
discarded. For this application, the Observer pattern is more
efficient and more flexible!

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1010

Chain of Responsibility Example 2Chain of Responsibility Example 2

l Scenario: We are designing the software for a security monitoring
system. The system uses various sensors (smoke, fire, motion,
etc.) which transmit their status to a central computer. We decide
to instantiate a sensor object for each physical sensor. Each
sensor object knows when the value it is sensing exceeds some
threshold(s). When this happens, the sensor object should take
some action. But the action that should be taken may depend on
factors other than just the sensor's value. For example, the
location of the sensor, the value of the data or equipment located
at the sensor’s position, the value of the data or equipment in
other locations near the sensor’s position, etc. We want a very
scalable solution in which we can use our physical sensors and
sensor objects in any environment. What can be do??

6

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1111

Chain of Responsibility Example 2 (Continued)Chain of Responsibility Example 2 (Continued)

l Solution: Use the Chain of Responsibility pattern. Aggregate
sensor objects in a containment hierarchy that mirrors the
required physical zones (areas) of security. Define wall, room,
floor, area, building, campus and similar objects as part of this
containment hierarchy. The alarm generated by a sensor is passed
up this hierarchy until some containment object handles it.

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1212

Chain of Responsibility Example 3Chain of Responsibility Example 3

l Scenario: We are designing the software for a system that
approves purchasing requests. The approval authority depends on
the dollar amount of the purchase. The approval authority for a
given dollar amount could change at any time and the system
should be flexible enough to handle this situation.

l Solution: Use the Chain of Responsibility pattern.
PurchaseRequest objects forward the approval request to a
PurchaseApproval object. Depending on the dollar amount, the
PurchaseApproval object may approve the request or forward it
on to the next approving authority in the chain. The approval
authority at any level in the chain can be easily modified without
affecting the original PurchaseRequest object.

7

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1313

Handling RequestsHandling Requests

l Notice in the basic structure for the CoR pattern that the Handler
class just has one method, handleRequest(). Here it is as a Java
interface:

 public interface Handler {

 public void handleRequest();

 }

l What if we want to handle different kinds of requests, for
example, help, print and format requests?

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1414

Handling Requests (Continued)Handling Requests (Continued)

l Solution 1:We could change our Handler interface to support
multiple request types as follows:

 public interface Handler {

 public void handleHelp();

 public void handlePrint();

 public void handleFormat();

 }

l Now any concrete handler would have to implement all of the
methods of this Handler interface.

8

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1515

Handling Requests (Continued)Handling Requests (Continued)

l Here's an example of a concrete handler for this new Handler
interface:

 public class ConcreteHandler implements Handler {

 private Handler successor;

 public ConcreteHandler(Handler successor) {

 this.successor = successor;

 }

 public void handleHelp() {

 // We handle help ourselves, so help code is here.

 }

 public void handlePrint() {

 successor.handlePrint();

 }

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1616

Handling Requests (Continued)Handling Requests (Continued)

 public void handleFormat() {

 successor.handleFormat();

 }

 }

l Of course, if we add a new kind of request we need to change the
interface which means that all concrete handlers need to be
modified!

9

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1717

Handling Requests (Continued)Handling Requests (Continued)

l Solution 2: Another solution is to have separate handler interfaces
for each type of request. For example, we could have:

 public interface HelpHandler {

 public void handleHelp();

 }

 public interface PrintHandler {

 public void handlePrint();

 }

 public interface FormatHandler {

 public void handleFormat();

 }

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1818

Handling Requests (Continued)Handling Requests (Continued)

l Now a concrete handler can implement one (or more) of these
interfaces. The concrete handler must have successor references
to each type of request that it deals with, in case it needs to pass
the request on to its successor.

10

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
1919

Handling Requests (Continued)Handling Requests (Continued)

l Here's a concrete handler which deals with all three request types:

 public class ConcreteHandler

 implements HelpHandler, PrintHandler, FormatHandler {

 private HelpHandler helpSuccessor;

 private PrintHandler printSuccessor;

 private FormatHandler formatSuccessor;

 public ConcreteHandler(HelpHandler helpSuccessor

 PrintHandler printSuccessor,

 FormatHandler formatSuccessor) {

 this.helpSuccessor = helpSuccessor;

 this.printSuccessor = printSuccessor;

 this.formatSuccessor = formatSuccessor;

 }

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
2020

Handling Requests (Continued)Handling Requests (Continued)

 public void handleHelp() {

 // We handle help ourselves, so help code is here.

 }

 public void handlePrint() {printSuccessor.handlePrint();}

 public void handleFormat() {formatSuccessor.handleFormat();}

 }

11

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
2121

Handling Requests (Continued)Handling Requests (Continued)

l Solution 3: Still another approach to handling different kinds of
requests is to have a single method in the Handler interface which
takes an argument describing the type of request. For example,
we could describe the request as a String:

 public interface Handler {

 public void handleRequest(String request);

 }

 Bob TarrDesign Patterns In Java The Chain Of Responsibility Pattern
2222

Handling Requests (Continued)Handling Requests (Continued)

l And now our concrete handler looks like:

 public class ConcreteHandler implements Handler {

 private Handler successor;

 public ConcreteHandler(Handler successor) {

 this.successor = successor;

 }

 public void handleRequest(String request) {

 if (request.equals("Help")) {

 // We handle help ourselves, so help code is here.

 }

 else

 // Pass it on!

 successor.handle(request);

 }

 }

