The
Chain of Responsibility
Pattern

Design Patternsn Java Bob Tarr

The Chain of Responsibility Pattern

e Intent

= Avoid coupling the sender of arequest to its receiver by giving more than
one object a chance to handle the request. Chain the receiving objects and
pass the request aong the chain until an object handlesit.

e Motivation
= Consider a context-sensitive help system for a GUI

= The object that ultimately provides the help isn't known explicitly to the
object (e.g., abutton) that initiates the help request

= S0 use achain of objects to decouple the senders from the receivers. The
request gets passed along the chain until one of the objects handlesit.

= Each object on the chain shares a common interface for handling requests
and for accessing its successor on the chain

Design Patterns In Java

The Chain Of Responsibility Pattern Bob Tarr
2




The Chain of Responsibility Pattern

e Motivation

aSaveDialog

handler

aPrintDialog

aPrintButton anApplication

anOKButton

specific genaral

handler

handler

The Chain Of Responsibility Pattern Bob Tarr
3

Design Patterns In Java

The Chain of Responsibility Pattern

o Applicability
= Use Chain of Responsibility:
- When more than one object may handle arequest and the actual handler is not
know in advance

- When requests follow a“handle or forward” model - that is, some requests can
be handled where they are generated while others must be forwarded to another
object to be handled

e Consequences

= Reduced coupling between the sender of arequest and the receiver - the
sender and receiver have no explicit knowledge of each other

= Receipt is not guaranteed - arequest could fall off the end of the chain
without being handled

= The chain of handlers can be modified dynamically

The Chain Of Responsibility Pattern
4

Design Patterns In Java Bob Tarr




The Chain of Responsibility Pattern

e Structure

HanadleFagquasii)

ConcreteHandler1 ConcreteHandler2

SUCGCesSS0r

HandieRequest() HandleReguest(y

T ¥
aClient
|' aConcreteHandler ]
aHandler ® | { aConcreteHandler ]
lsucues&or - i

SUCCEss0T

Design Patterns In Java

The Chain Of Responsibility Pattern Bob Tarr
5

Chain of Responsibility Example 1

e Scenario: The designers of aset of GUI classes need to have a
way to propagate GUI events, such as MOUSE_CLICKED, to the
individual component where the event occurred and then to the
object or objects that are going to handle the event

e Solution: Use the Chain of Responsibility pattern. First post the
event to the component where the event occurred. That
component can handle the event or post the event to its container
component (or both!). The next component in the chain can again
either handle the event or passit up the component containment
hierarchy until the event is handled.

e Thistechnique was actually used in the Java 1.0 AWT

Design Patterns In Java

The Chain Of Responsibility Pattern Bob Tarr
6




Chain of Responsibility Example 1 (Continued)

e Here'satypical Javal.0 AWT event handler:

publ i c bool ean action(Event event, Object obj) ({

if (event.target == test_button)
doTest But t onActi on();

else if (event.target == exit_button)
doExi t Butt onAction();

el se

return super.action(event, obj);
return true; // Return true to indicate the event has been
/1 handl ed and should not be propagated further.

The Chain Of Responsibility Pattern Bob Tarr
7

Design Patterns In Java

Chain of Responsibility Example 1 (Continued)

e InJaval.lthe AWT event model was changed from the Chain of
Responsibility (CoR) pattern to the Observer pattern. Why?

= Efficiency: GUIs frequently generate many events, such as
MOUSE_MOVE events. In many cases, the application did not care about
these events. Yet, using the CoR pattern, the GUI framework would
propagate the event up the containment hierarchy until some component
handled it. This caused the GUI to slow noticeably.

= Flexibility: The CoR pattern assumes a common Handler superclass or
interface for all objects which can handle chained requests. In the case of
the Java 1.0 AWT, every object that could handle an event had to be a
subclass of the Component class. Thus, events could not be handled be
non-GUI abjects, limiting the flexibility of the program.

The Chain Of Responsibility Pattern Bob Tarr
8

Design Patterns In Java




Chain of Responsibility Example 1 (Continued)

e TheJdaval.l AWT event model usesthe Observer pattern. Any
object that wants to handle an event registers as an event listener
with acomponent. When an event occurs, it is posted to the
component. The component then dispatches the event to any of
itslisteners. If the component has no listeners, the event is
discarded. For this application, the Observer pattern is more
efficient and more flexible!

The Chain Of Responsibility Pattern
9

Design Patterns In Java Bob Tarr

Chain of Responsibility Example 2

e Scenario: We are designing the software for a security monitoring
system. The system uses various sensors (smoke, fire, motion,
etc.) which transmit their statusto a central computer. We decide
to instantiate a sensor object for each physical sensor. Each
sensor object knows when the value it is sensing exceeds some
threshold(s). When this happens, the sensor object should take
some action. But the action that should be taken may depend on
factors other than just the sensor's value. For example, the
location of the sensor, the value of the data or equipment located
at the sensor’ s position, the value of the data or equipment in
other locations near the sensor’ s position, etc. We want avery
scalable solution in which we can use our physical sensors and
sensor objects in any environment. What can be do??

The Chain Of Responsibility Pattern
10

Design Patterns In Java Bob Tarr




Chain of Responsibility Example 2 (Continued)

e Solution: Use the Chain of Responsibility pattern. Aggregate
Sensor objects in a containment hierarchy that mirrors the
required physical zones (areas) of security. Define wall, room,
floor, area, building, campus and similar objects as part of this
containment hierarchy. The alarm generated by a sensor is passed
up this hierarchy until some containment object handlesiit.

The Chain Of Responsibility Pattern
11

Design Patterns In Java Bob Tarr

Chain of Responsibility Example 3

e Scenario: We are designing the software for a system that
approves purchasing requests. The approval authority depends on
the dollar amount of the purchase. The approval authority for a
given dollar amount could change at any time and the system
should be flexible enough to handle this situation.

o Solution: Use the Chain of Responsibility pattern.
PurchaseRequest objects forward the approval request to a
PurchaseApproval object. Depending on the dollar amount, the
PurchaseApproval object may approve the request or forward it
on to the next approving authority in the chain. The approval
authority at any level in the chain can be easily modified without
affecting the original PurchaseRequest object.

The Chain Of Responsibility Pattern
12

Design Patterns In Java Bob Tarr




Handling Requests

¢ Noticein the basic structure for the CoR pattern that the Handler
classjust has one method, handleRequest(). HereitisasaJava
interface:

public interface Handler {
public void handl eRequest ();

}

o What if we want to handle different kinds of requests, for
example, help, print and format requests?

The Chain Of Responsibility Pattern
13

Design Patterns In Java Bob Tarr

Handling Requests (Continued)

¢ Solution 1:We could change our Handler interface to support
multiple request types as follows:

public interface Handler {
public void handl eHel p();
public void handl ePrint();
public void handl eFormat () ;

}

e Now any concrete handler would have to implement al of the
methods of this Handler interface.

The Chain Of Responsibility Pattern
14

Design Patterns In Java Bob Tarr




Handling Requests (Continued)

e Here'san example of a concrete handler for this new Handler
interface:

public class ConcreteHandl er inplenments Handler {
private Handl er successor;

publ i ¢ Concret eHandl er (Handl er successor) {
thi s.successor = successor;

}

public void handl eHel p() {
// W handl e hel p ourselves, so help code is here.

}

public void handl ePrint() {
successor. handl ePrint ();

}

The Chain Of Responsibility Pattern
15

Design Patterns In Java Bob Tarr

Handling Requests (Continued)

public void handl eFormat () {
successor . handl eFormat () ;

}
}

e Of coursg, if we add a new kind of request we need to change the
interface which means that al concrete handlers need to be
modified!

The Chain Of Responsibility Pattern
16

Design Patterns In Java Bob Tarr




Handling Requests (Continued)

e Solution 2: Another solution is to have separate handler interfaces
for each type of request. For example, we could have:

public interface Hel pHandl er {
public void handl eHel p();
}

public interface PrintHandl er {
public void handl ePrint();
}

public interface FormatHandl er {
public void handl eFormat ();

}

The Chain Of Responsibility Pattern
17

Design Patterns In Java Bob Tarr

Handling Requests (Continued)

e Now aconcrete handler can implement one (or more) of these
interfaces. The concrete handler must have successor references
to each type of request that it deals with, in case it needs to pass
the request on to its successor.

The Chain Of Responsibility Pattern
18

Design Patterns In Java Bob Tarr




Handling Requests (Continued)

e Here'saconcrete handler which deals with al three request types:

public class ConcreteHandl er
i mpl ement s Hel pHandl er, PrintHandl er, FormatHandl er {

private Hel pHandl er hel pSuccessor;
private PrintHandl er printSuccessor;
private FormatHandl er format Successor;

publ i ¢ Concret eHandl er (Hel pHandl er hel pSuccessor
Print Handl er print Successor,
For mat Handl er format Successor) {
t hi s. hel pSuccessor = hel pSuccessor;
this.printSuccessor = printSuccessor;
this. format Successor = format Successor;

The Chain Of Responsibility Pattern
19

Design Patterns In Java Bob Tarr

Handling Requests (Continued)

public void handl eHel p() {
/1 We handl e hel p ourselves, so help code is here.

public void handlePrint() {printSuccessor.handlePrint();}

public void handl eFornmat () {format Successor. handl eFormat();}

The Chain Of Responsibility Pattern
20

Design Patterns In Java Bob Tarr

10



Handling Requests (Continued)

e Solution 3: Still another approach to handling different kinds of
requestsisto have a single method in the Handler interface which
takes an argument describing the type of request. For example,
we could describe the request as a String:

public interface Handler {
public void handl eRequest (String request);

}

The Chain Of Responsibility Pattern Bob Tarr

Design Patterns In Java
21

Handling Requests (Continued)

e And now our concrete handler looks like:

public class ConcreteHandl er inplenments Handler {
private Handl er successor;

publ i ¢ Concret eHandl er (Handl er successor) {
thi s.successor = successor;

}

public void handl eRequest (String request) {
if (request.equal s("Help")) {
/1 We handl e hel p ourselves, so help code is here.
}
el se
/1 Pass it on!
successor . handl e(request);

}
}

Design Patterns In Java

The Chain Of Responsibility Pattern Bob Tarr
22

11



