The
Composite
Pattern

Design Patternsn Java Bob Tarr

The Composite Pattern

e Intent

= Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
uniformly. Thisis called recursive composition.

e Motivation

Glrapshic

Dyvany}

Ak Campe

R e ranne
Crm i)

A

| | | | I
Lirm Factaingle Tt Pictura f=—

o

Do) [=1= (a0} Oraw(y Or—-—---fF-—--——------ lu--‘in':Jc:_;LHm-q.u
Add(Siepphen gi G- —- - L

Rarmerves] Girap hic|]

Gttty ----I ovckd 3 b ol o craphicn E-'

The Composite Pattern
2

Design Patterns In Java Bob Tarr

The Composite Pattern

e Motivation

-:' \\'\-\.
¥ b
[l =anT] |I’ ummﬂmlej

P
- 1 Ty
[aText r’ [_ A1 L] [QHMEFIH]

o Applicability
Use the Composite pattern when
= You want to represent part-whole hierarchies of objects

= You want clients to be able to ignore the difference between compositions
of objects and individual objects. Clientswill treat all objectsin the
composite structure uniformly.

Design PatternsIn Java The Compo35|te Pattern Bob Tarr
The Composite Pattern
e Structure
[ciom | o] companent "
Clpransr]
Ao Carmnpranary)
e |r:’.'wu:1mn i)
I]
Laalt 0 e e
Qpsrpbori) Opmmiion) S--—-—- I':'I!j"r_ L;:;:-T::-':r?"
Arkd{Campansniy
Pearcnon | Campans|
s hikdnirei
;I:nquulhl
[ALanf ALl f_mﬂﬂ""j &Ll :|
L
Gy [Tl (e
Design PatternsIn Java The Composte Pattern Bob Tarr

4

The Composite Pattern

e Consequences
= Benefits
- |t makesit easy to add new kinds of components

- |t makes clients simpler, since they do not have to know if they are dealing
with aleaf or acomposite component

= Liabilities
- |t makesit harder to restrict the type of components of a composite

The Composite Pattern
5

Design Patterns In Java Bob Tarr

The Composite Pattern

e Implementation Issues

= A composite object knows its contained components, that is, its children.
Should components maintain a reference to their parent component?

- Depends on application, but having these references supports the Chain of

Responsibility pattern
= Where should the child management methods (add(), remove(), getChild())
be declared?

- In the Component class: Gives transparency, since all components can be
treated the same. But it's not safe, since clients can try to do meaningless
things to leaf components at run-time.

- Inthe Composite class: Gives safety, since any attempt to perform a child
operation on aleaf component will be caught at compile-time. But we lose

transparency, since now leaf and composite components have different
interfaces.

The Composite Pattern
6

Design Patterns In Java Bob Tarr

The Composite Pattern

e Transparent vs. Safe

Component

operation() children

add()
remove()
getChild()

Leaf Composite

TRANSPARENT

Component children

operation()

Composite

Leaf add()
removey()

getChild(

SAFE

The Composite Pattern
7

Design Patterns In Java Bob Tarr

The Composite Pattern

e Implementation Issues

= Should Component maintain the list of components that will be used by a
composite object? That is, should thislist be an instance variable of
Component rather than Composite?

- Better to keep this part of Composite and avoid wasting the space in every leaf
object

= |schild ordering important?

- Depends on application

= Who should delete components?

- Not aproblemin Javal The garbage collector will come to the rescue!
= What's the best data structure to store components?
- Depends on application

The Composite Pattern
8

Design Patterns In Java Bob Tarr

Composite Pattern Example 1

e Situation: A GUI system has window objects which can contain
various GUI components (widgets) such as, buttons and text
areas. A window can aso contain widget container objects which
can hold other widgets.

e Solution 1: What if we designed all the widgets with different
interfaces for "updating” the screen? We would then have to
write a Window update() method as follows:

public class W ndow {

Button[] buttons;

Menu[] nenus;

Text Area[] textAreas;

W dget Cont ai ner[] contai ners;

The Composite Pattern Bob Tarr

Design Patterns In Java 9

Composite Pattern Example 1 (Continued)

public void update() {
if (buttons !'= null)
for (int k = 0; k < buttons.length; k++)
buttons[k].draw);
if (nenus !'= null)
for (int k = 0; k < nmenus.|ength; k++)
menus[k] . refresh();
// Other widgets handled simlarly.
if (containers != null)
for (int k = 0; k < containers.length; k++)
cont ai ner s[k] . updat eW dget s() ;

}

o Well, that looks particularly bad. It violates the Open-Closed
Principle. If we want to add a new kind of widget, we have to
modify the update() method of Window to handleit.

The Composite Pattern Bob Tarr

Design Patterns In Java
10

Composite Pattern Example 1 (Continued)

e Solution 2: We should always try to program to an interface,
right? So, let's make all widgets support the Widget interface,
either by being subclasses of a Widget class or implementing a
Java Widget interface. Now our update() method becomes:

public class W ndow {
W dget[] w dgets;
W dget Cont ai ner[] contai ners;
public void update() {
if (widgets !'= null)
for (int k = 0; k < wdgets.length; k++)
wi dget s[k] . updat e();
if (containers != null)
for (int k = 0; k < containers.length; k++)
cont ai ner s[k] . updat eW dget s() ;
}
}

Design Patterns|n Java The Composite Pattern

Bob Tarr
11

Composite Pattern Example 1 (Continued)

e That looks better, but we are still distinguishing between widgets
and widget containers

e Solution 3: The Composite Pattern!

Component components

Button Menu WidgetContainer

Design Patterns n Java The Composite Pattern

Bob Tarr
12

Composite Pattern Example 1 (Continued)

¢ Now the update method looks like:

public class W ndow {
Conmponent [] components;

public void update() {
if (components != null)
for (int k = 0; k < conponents.|ength; k++)
conponent s[k] . updat e() ;

Design Patterns In Java The Compggte Pattern Bob Tarr
(
—
—
-
—
—
—
C
—
—
CEmss afE e sTs
Design Patterns In Java The CompOSite Pattern Bob Tarr

14

Composite Pattern Example 3

e Situation: Many types of manufactured systems, such as computer
systems and stereo systems, are composed of individual
components and sub-systems that contain components. For
example, a computer system can have various chassis that contain
components (hard-drive chassis, power-supply chassis) and
busses that contain cards. The entire system is composed of
individual components (floppy drives, cd-rom drives), busses and
chassis.

The Composite Pattern

Design Patterns In Java
15

Bob Tarr

Composite Pattern Example 3 (Continued)

e Solution: Use the Composite pattern!

Equipment equipment
FloppyDisk Card EquipmentComposite
Bus Chassis

The Composite Pattern

Design Patterns In Java
16

Bob Tarr

