
1

Design Patterns In Java Bob Tarr

The
Decorator

Pattern

 Bob TarrDesign Patterns In Java The Decorator Pattern
22

The Decorator PatternThe Decorator Pattern

l Intent
é Attach additional responsibilities to an object dynamically. Decorators

provide a flexible alternative to subclassing for extending functionality.

l Also Known As
é Wrapper

l Motivation
é We want to add properties, such as borders or scrollbars to a GUI

component. We can do this with inheritance (subclassing), but this limits
our flexibility. A better way is to use composition!

2

 Bob TarrDesign Patterns In Java The Decorator Pattern
33

The Decorator PatternThe Decorator Pattern

l Motivation

 Bob TarrDesign Patterns In Java The Decorator Pattern
44

The Decorator PatternThe Decorator Pattern

l Motivation

3

 Bob TarrDesign Patterns In Java The Decorator Pattern
55

The Decorator PatternThe Decorator Pattern

l Applicability
é Use Decorator:

Ý To add responsibilities to individual objects dynamically without affecting
other objects.

Ý When extension by subclassing is impractical. Sometimes a large number of
independent extensions are possible and would produce an explosion of
subclasses to support every combination. Or a class definition may be hidden
or otherwise unavailable for subclassing.

 Bob TarrDesign Patterns In Java The Decorator Pattern
66

The Decorator PatternThe Decorator Pattern

l Structure

4

 Bob TarrDesign Patterns In Java The Decorator Pattern
77

Decorator Example 1Decorator Example 1

l Let’s look at the motivation for the Decorator pattern in a little
more detail. Suppose we have a TextView GUI component and
we want to add different kinds of borders and scrollbars to it.

l Suppose we have three types of borders:
é Plain, 3D, Fancy

l And two types of scrollbars:
é Horizontal, Vertical

l Solution 1: Let’s use inheritance first. We’ll generate subclasses
of TextView for all the required cases. We’ll need the 15
subclasses:

é TextView-Plain

é TextView-Fancy

é TextView-3D

 Bob TarrDesign Patterns In Java The Decorator Pattern
88

Decorator Example 1 (Continued)Decorator Example 1 (Continued)

é TextView-Horizontal

é TextView-Vertical

é TextView-Horizontal-Vertical

é TextView-Plain-Horizontal

é TextView-Plain-Vertical

é TextView-Plain-Horizontal-Vertical

é TextView-3D-Horizontal

é TextView-3D-Vertical

é TextView-3D-Horizontal-Vertical

é TextView-Fancy-Horizontal

é TextView-Fancy-Vertical

é TextView-Fancy-Horizontal-Vertical

5

 Bob TarrDesign Patterns In Java The Decorator Pattern
99

Decorator Example 1 (Continued)Decorator Example 1 (Continued)

l There are several disadvantages to this technique:
é We already have an explosion of subclasses. What if we add another type

of border? Or an entirely different property?

é We have to instantiate a specific subclass to get the behavior we want.
This choice is made statically and a client can't control how and when to
decorate the component.

 Bob TarrDesign Patterns In Java The Decorator Pattern
1010

Decorator Example 1 (Continued)Decorator Example 1 (Continued)

l Solution 2: Let’s use the Strategy pattern!

6

 Bob TarrDesign Patterns In Java The Decorator Pattern
1111

Decorator Example 1 (Continued)Decorator Example 1 (Continued)

l Now the TextView Class looks like this:

 public class TextView extends Component {

 private Border border;

 private Scrollbar sb;

 public TextView(Border border, Scrollbar sb) {

 this.border = border;

 this.sb = sb;

 }

 public void draw() {

 border.draw();

 sb.draw();

 // Code to draw the TextView object itself.

 }

 }

 Bob TarrDesign Patterns In Java The Decorator Pattern
1212

Decorator Example 1 (Continued)Decorator Example 1 (Continued)

l Using the Strategy pattern we can add or change properties to the
TextView component dynamically. For example, we could have
mutators for the border and sb attributes and we could change
them at run-time.

l But note that the TextView object itself had to be modified and it
has knowledge of borders and scrollbars! If we wanted to add
another kind of property or behavior, we would have to again
modify TextView.

7

 Bob TarrDesign Patterns In Java The Decorator Pattern
1313

Decorator Example 1 (Continued)Decorator Example 1 (Continued)

l Solution 3: Let’s turn Strategy inside out to get the Decorator
pattern!

 Bob TarrDesign Patterns In Java The Decorator Pattern
1414

Decorator Example 1 (Continued)Decorator Example 1 (Continued)

l Now the TextView class knows nothing about borders and
scrollbars:

 public class TextView extends Component {

 public void draw() {

 // Code to draw the TextView object itself.

 }

 }

8

 Bob TarrDesign Patterns In Java The Decorator Pattern
1515

Decorator Example 1 (Continued)Decorator Example 1 (Continued)

l But the decorators need to know about components:

 public class FancyBorder extends Decorator {

 private Component component;

 public FancyBorder(Component component) {

 this.component = component;

 }

 public void draw() {

 component.draw();

 // Code to draw the FancyBorder object itself.

 }

 }

 Bob TarrDesign Patterns In Java The Decorator Pattern
1616

Decorator Example 1 (Continued)Decorator Example 1 (Continued)

l Now a client can add borders as follows:

 public class Client {

 public static void main(String[] args) {

 TextView data = new TextView();

 Component borderData = new FancyBorder(data);

 Component scrolledData = new VertScrollbar(data);

 Component borderAndScrolledData = new

 HorzScrollbar(borderData);

 }

 }

l Decorator: Changing the skin of an object

l Strategy: Changing the guts of an object

9

 Bob TarrDesign Patterns In Java The Decorator Pattern
1717

Decorator Example 2Decorator Example 2

l Java I/O classes use the Decorator pattern

l The basic I/O classes are InputStream, OutputStream, Reader and
Writer. These classes have a very basic set of behaviors.

l We would like to add additional behaviors to an existing stream
to yield, for example:

é Buffered Stream - adds buffering for the stream

é Data Stream - allows I/O of primitive Java data types

é Pushback Stream - allows undo operation

l We really do not want to modify the basic I/O classes to achieve
these behaviors, so we use decorator classes, which Java calls
filter classes, to add the desired properties using composition

 Bob TarrDesign Patterns In Java The Decorator Pattern
1818

Decorator Example 2 (Continued)Decorator Example 2 (Continued)

l Some examples of the decorator (filter) classes are:
é BufferedInputStream

é DataInputStream

é PushbackInputStream

l The constructors for these classes take an InputStream object

10

 Bob TarrDesign Patterns In Java The Decorator Pattern
1919

Decorator Example 2 (Continued)Decorator Example 2 (Continued)

l Here is an example of the use of these classes:

 public class JavaIO {

 public static void main(String[] args) {

 // Open an InputStream.

 FileInputStream in = new FileInputStream("test.dat");

 // Create a buffered InputStream.

 BufferedInputStream bin = new BufferedInputStream(in);

 // Create a buffered, data InputStream.

 DataInputStream dbin = new DataInputStream(bin);

 // Create an unbuffered, data InputStream.

 DataInputStream din = new DataInputStream(in);

 // Create a buffered, pushback, data InputStream.

 PushbackInputStream pbdbin = new PushbackInputStream(dbin);

 }

 }

