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The Decorator Pattern

e Intent

= Attach additional responsibilities to an abject dynamically. Decorators
provide aflexible alternative to subclassing for extending functionality.

e Also Known As
= Wrapper

e Motivation

= We want to add properties, such as borders or scrollbars to a GUI
component. We can do this with inheritance (subclassing), but this limits
our flexibility. A better way isto use composition!
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The Decorator Pattern

o Applicability

= Use Decorator:

- To add responsibilities to individual objects dynamically without affecting

other objects.

- When extension by subclassing isimpractical. Sometimes alarge number of

independent extensions are possible and would produce an explosion of

subclasses to support every combination. Or aclass definition may be hidden
or otherwise unavailable for subclassing.
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The Decorator Pattern

e Structure
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Decorator Example 1

o Let'slook at the motivation for the Decorator patternin alittle
more detail. Suppose we have a TextView GUI component and

we want to add different kinds of borders and scrollbars to it.

e Suppose we have three types of borders:

>

Plain, 3D, Fancy

e Andtwo typesof scrollbars:

>

Horizontal, Vertica

e Solution 1: Let’suseinheritance first. We'll generate subclasses

of TextView for al the required cases. We'll need the 15

subclasses:

>

>

>

TextView-Plain
TextView-Fancy
TextView-3D
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Decorator Example 1 (Continued)

TextView-Horizontal
TextView-Vertical
TextView-Horizontal-Vertica
TextView-Plain-Horizontal
TextView-Plain-Vertica
TextView-Plain-Horizontal-Vertical
TextView-3D-Horizontal
TextView-3D-Vertical
TextView-3D-Horizontal-Vertical
TextView-Fancy-Horizontal
TextView-Fancy-Vertical
TextView-Fancy-Horizontal -Vertical
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Decorator Example 1 (Continued)

e There are severa disadvantages to this technique:

= We aready have an explosion of subclasses. What if we add another type
of border? Or an entirely different property?

= We have to instantiate a specific subclass to get the behavior we want.
This choice is made statically and a client can't control how and when to
decorate the component.
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Decorator Example 1 (Continued)

e Solution 2: Let’s use the Strategy pattern!

Component
Texdiew Cecorator

<

Border

Wl e

PlainBorder 3DBorder FancyBorder HorzScrallbar Hyscrallbar vertgcrallbar
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Decorator Example 1 (Continued)

o Now the TextView Classlooks like this:

public class TextView extends Conponent {
private Border border;
private Scrollbar sb;

publ i c TextVi e Border border, Scrollbar sb) {
this. border = border;
this.sb = sb;
}
public void drawm) {
border. draw();
sb. draw();
/] Code to draw the TextView object itself.
}
}
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Decorator Example 1 (Continued)

¢ Using the Strategy pattern we can add or change properties to the
TextView component dynamically. For example, we could have
mutators for the border and sb attributes and we could change

them at run-time.

¢ But note that the TextView object itself had to be modified and it
has knowledge of borders and scrollbars! If we wanted to add
another kind of property or behavior, we would have to again

modify TextView.
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Decorator Example 1 (Continued)

e Solution 3: Let’sturn Strategy inside out to get the Decorator
pattern!

Component
Textview Decoratar
Border
/f K Scollbar
PlainBorder 3DBorder FancyBarder HorzScrollbar HwSerollbar vertScrollbar

111E UELUI dLUI FdlLet 11
13

Design Patterns In Java Bob Tarr

Decorator Example 1 (Continued)

e Now the TextView class knows nothing about borders and
scrollbars:

public class TextView extends Conponent {
public void draw() {
/] Code to draw the TextView object itself.
}
}
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Decorator Example 1 (Continued)

¢ But the decorators need to know about components:

public class FancyBorder extends Decorator {
private Conponent conponent;

publ i ¢ FancyBor der ( Conponent conponent) {
thi s. conponent = conponent;

}

public void draw() {
conponent . draw() ;
/] Code to draw the FancyBorder object itself.

}
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Decorator Example 1 (Continued)

e Now aclient can add borders as follows:

public class Cient {

public static void main(String[] args) {
Text Vi ew data = new Text View);
Conponent borderData = new FancyBorder (data);

Conponent scroll edData = new Vert Scrol | bar (data);

Conmponent bor der AndScrol | edData = new
Hor zScr ol | bar (bor der Dat a) ;

e Decorator: Changing the skin of an object
e Strategy: Changing the guts of an object
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Decorator Example 2

Javal/O classes use the Decorator pattern

The basic 1/0 classes are | nputStream, OutputStream, Reader and
Writer. These classes have avery basic set of behaviors.

We would like to add additional behaviorsto an existing stream
toyield, for example:

= Buffered Stream - adds buffering for the stream

= Data Stream - allows /O of primitive Java data types

= Pushback Stream - allows undo operation

We redlly do not want to modify the basic I/O classesto achieve
these behaviors, so we use decorator classes, which Javacalls
filter classes, to add the desired properties using composition
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Decorator Example 2 (Continued)

e Some examples of the decorator (filter) classes are:

= BufferedlnputStream
= Datal nputStream
= PushbacklnputStream

e The constructors for these classes take an InputStream object
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Decorator Example 2 (Continued)

e Hereisan example of the use of these classes:

public class Javal O {
public static void main(String[] args) {

/1 Open an | nputStream

FilelnputStreamin = new FilelnputStream("test.dat");
/] Create a buffered | nputStream

Buf f er edl nput Stream bi n = new Bufferedl nput Strean{in);
// Create a buffered, data |nputStream

Dat al nput Stream dbi n = new Dat al nput St r ean( bi n);

/] Create an unbuffered, data |nputStream

Dat al nput Stream di n = new Dat al nput Strean{in);

/] Create a buffered, pushback, data |nputStream

Pushbackl nput St r eam pbdbi n = new Pushbackl nput St r eam( dbi n) ;

}
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