The
Decor ator
Pattern

Design Patternsn Java Bob Tarr

The Decorator Pattern

e Intent

= Attach additional responsibilities to an abject dynamically. Decorators
provide aflexible alternative to subclassing for extending functionality.

e Also Known As
= Wrapper

e Motivation

= We want to add properties, such as borders or scrollbars to a GUI
component. We can do this with inheritance (subclassing), but this limits
our flexibility. A better way isto use composition!

aBorderDecorator
ﬁs—crullnecorator '|

component | aTextView
—memnenz - —-l

Design Patterns In Java The Decorator Pattern Bob Tarr

2

e Motivation

aBorderDecorator

aScrollDecoralor -

The Decorator Pattern

The Decorator Pattern

S applicalions waukd barsfl
T ueing abjects o el sy
agpact al har funchansity. bt
o checaiggn sppenach woulkd be
Drohibiil ey

Far wxarghe, sl docrment si-
e masdularize T sl bomai-
g ard aditing fclibes. o some
s, Homener, ey rweriabhy
g shar of uaing chjssis 1
rpresanl wach chancier and

i hical imant i e documel
Do s wariild ot Rusibbly
al lhe liresl sl te
appbcanan, Tasl and guaphics
coule] b It urioe iy with

TTe

a0 [¢

Design PatternsIn Java 3 Bob Tarr
The Decorator Pattern
e Motivation
Vs Compondnal
Dy}
TaxrVinw o R il i
Drawli Dl O -—-==—==s====== === === comoonent-=Dvwi
[|
Scrollscoratar BorderDecorabar
Doraenl P o Tlrgoar;
SorofTal Dirawioodos]
serol PO o Esange Wtk
Design PatternsIn Java The Decorator Pattern Bob Tarr

4

The Decorator Pattern

o Applicability

= Use Decorator:

- To add responsibilities to individual objects dynamically without affecting

other objects.

- When extension by subclassing isimpractical. Sometimes alarge number of

independent extensions are possible and would produce an explosion of

subclasses to support every combination. Or aclass definition may be hidden
or otherwise unavailable for subclassing.

The Decorator Pattern

Design Patterns In Java

5

Bob Tarr

The Decorator Pattern

e Structure
Component
Operation])
| | component
ConcreteComponent Dy oF
Operation() Operation() O-f---—-----=----=-------
| |
ConcreteDecoratord ConcreteDecoratorB
Cperation{) Operaion{) ©O------7----
AddedBehavior()
addedState

The Decorator Pattern

Design Patterns In Java

6

‘{ compenant->0pe mrionq]h\|

AddedBehavior():

Decorator:Operation]);]

Bob Tarr

Decorator Example 1

o Let'slook at the motivation for the Decorator patternin alittle
more detail. Suppose we have a TextView GUI component and

we want to add different kinds of borders and scrollbars to it.

e Suppose we have three types of borders:

>

Plain, 3D, Fancy

e Andtwo typesof scrollbars:

>

Horizontal, Vertica

e Solution 1: Let’suseinheritance first. We'll generate subclasses

of TextView for al the required cases. We'll need the 15

subclasses:

>

>

>

TextView-Plain
TextView-Fancy
TextView-3D

The Decorator Pattern

Design Patterns In Java

7

Bob Tarr

Decorator Example 1 (Continued)

TextView-Horizontal
TextView-Vertical
TextView-Horizontal-Vertica
TextView-Plain-Horizontal
TextView-Plain-Vertica
TextView-Plain-Horizontal-Vertical
TextView-3D-Horizontal
TextView-3D-Vertical
TextView-3D-Horizontal-Vertical
TextView-Fancy-Horizontal
TextView-Fancy-Vertical
TextView-Fancy-Horizontal -Vertical

The Decorator Pattern

Design Patterns In Java

8

Bob Tarr

Decorator Example 1 (Continued)

e There are severa disadvantages to this technique:

= We aready have an explosion of subclasses. What if we add another type
of border? Or an entirely different property?

= We have to instantiate a specific subclass to get the behavior we want.
This choice is made statically and a client can't control how and when to
decorate the component.

Design Patterns In Java The Decorator Pattern Bob Tarr

9

Decorator Example 1 (Continued)

e Solution 2: Let’s use the Strategy pattern!

Component
Texdiew Cecorator

<

Border

Wl e

PlainBorder 3DBorder FancyBorder HorzScrallbar Hyscrallbar vertgcrallbar

Design Patterns In Java The Decorator Pattern Bob Tarr

10

Decorator Example 1 (Continued)

o Now the TextView Classlooks like this:

public class TextView extends Conponent {
private Border border;
private Scrollbar sb;

publ i c TextVi e Border border, Scrollbar sb) {
this. border = border;
this.sb = sb;
}
public void drawm) {
border. draw();
sb. draw();
/] Code to draw the TextView object itself.
}
}

The Decorator Pattern

Design Patterns In Java
11

Bob Tarr

Decorator Example 1 (Continued)

¢ Using the Strategy pattern we can add or change properties to the
TextView component dynamically. For example, we could have
mutators for the border and sb attributes and we could change

them at run-time.

¢ But note that the TextView object itself had to be modified and it
has knowledge of borders and scrollbars! If we wanted to add
another kind of property or behavior, we would have to again

modify TextView.

The Decorator Pattern

Design Patterns In Java
12

Bob Tarr

Decorator Example 1 (Continued)

e Solution 3: Let’sturn Strategy inside out to get the Decorator
pattern!

Component
Textview Decoratar
Border
/f K Scollbar
PlainBorder 3DBorder FancyBarder HorzScrollbar HwSerollbar vertScrollbar

111E UELUI dLUI FdlLet 11
13

Design Patterns In Java Bob Tarr

Decorator Example 1 (Continued)

e Now the TextView class knows nothing about borders and
scrollbars:

public class TextView extends Conponent {
public void draw() {
/] Code to draw the TextView object itself.
}
}

Design Patterns In Java The Decorator Pattern Bob Tarr

14

Decorator Example 1 (Continued)

¢ But the decorators need to know about components:

public class FancyBorder extends Decorator {
private Conponent conponent;

publ i ¢ FancyBor der (Conponent conponent) {
thi s. conponent = conponent;

}

public void draw() {
conponent . draw() ;
/] Code to draw the FancyBorder object itself.

}

The Decorator Pattern

Design Patterns In Java
15

Bob Tarr

Decorator Example 1 (Continued)

e Now aclient can add borders as follows:

public class Cient {

public static void main(String[] args) {
Text Vi ew data = new Text View);
Conponent borderData = new FancyBorder (data);

Conponent scroll edData = new Vert Scrol | bar (data);

Conmponent bor der AndScrol | edData = new
Hor zScr ol | bar (bor der Dat a) ;

e Decorator: Changing the skin of an object
e Strategy: Changing the guts of an object

The Decorator Pattern

Design Patterns In Java
16

Bob Tarr

Decorator Example 2

Javal/O classes use the Decorator pattern

The basic 1/0 classes are | nputStream, OutputStream, Reader and
Writer. These classes have avery basic set of behaviors.

We would like to add additional behaviorsto an existing stream
toyield, for example:

= Buffered Stream - adds buffering for the stream

= Data Stream - allows /O of primitive Java data types

= Pushback Stream - allows undo operation

We redlly do not want to modify the basic I/O classesto achieve
these behaviors, so we use decorator classes, which Javacalls
filter classes, to add the desired properties using composition

The Decorator Pattern

Design Patterns In Java Bob Tarr

17

Decorator Example 2 (Continued)

e Some examples of the decorator (filter) classes are:

= BufferedlnputStream
= Datal nputStream
= PushbacklnputStream

e The constructors for these classes take an InputStream object

The Decorator Pattern

Design Patterns In Java Bob Tarr

18

Decorator Example 2 (Continued)

e Hereisan example of the use of these classes:

public class Javal O {
public static void main(String[] args) {

/1 Open an | nputStream

FilelnputStreamin = new FilelnputStream("test.dat");
/] Create a buffered | nputStream

Buf f er edl nput Stream bi n = new Bufferedl nput Strean{in);
// Create a buffered, data |nputStream

Dat al nput Stream dbi n = new Dat al nput St r ean(bi n);

/] Create an unbuffered, data |nputStream

Dat al nput Stream di n = new Dat al nput Strean{in);

/] Create a buffered, pushback, data |nputStream

Pushbackl nput St r eam pbdbi n = new Pushbackl nput St r eam(dbi n) ;

}

Design Patterns n Java The Decorator Pattern

19

Bob Tarr

10

