| ntroduction To
Java

Design Patternsin Java

What |sJava?

e New object-oriented programming (OOP) |language devel oped by
SUN Microsystems

e Similar to C and C++, except without some of the confusing,
poorly understood features of C++

e Extensive networking facilities

o Extensive set of APIsfor GUIs, distributed computing, 2D/3D
graphics, mail, and others

e Portable: Write Once, Run Anywhere
e Multithreading support built into the language

Design Patternsin Java Introduction To Java Bob Tarr

2

Java Features

e Automatic garbage collection
= No manual memory allocation and deallocation
<> Never have to worry about memory leaks

e NO pointers or pointer arithmetic
<> No off-by-one bugs

e Arraysarefirst-class objects
< Array bounds are always checked

e Multiple inheritance replaced by interfaces
< Eliminates complexities of multiple inheritance

| mproves software reliability
| ncreases programmer productivity

I ntroduction To Java

Design Patternsin Java 3

Bob Tarr

Features Removed From C/C++

e No typedefs, defines or preprocessor

e NO header files

e NO structures or unions

e NOenums

e No functions - only methods in classes

e NoO multiple inheritance

e NoOgoto

o NO operator overloading (except “+” for string concatenation)
e NO automatic type conversions (except for primitive types)

e NoO pointers

Design Patternsin Java Introduction To Java Bob Tarr

4

Java Virtual Machine

e Javaiscompiled into bytecodes

e Bytecodes are high-level, machine-independent instructions for a
hypothetical machine, the Java Virtual Machine (JVM)

e The Javarun-time system provides the VM
e The VM interprets the bytecodes during program execution

e Since the bytecodes are interpreted, the performance of Java
programs slower than comparable C/C++ programs

e But the VM is continually being improved and new techniques
are achieving speeds comparable to native C++ code

Design Patternsin Java Introduction To Java Bob Tarr

5

Java Virtual Machine

JAVA APPLICATIONS

JAVA VIRTUAL MACHINE

| M m omess

e All Javaprograms run on top of the VM

e TheJVM wasfirst implemented inside Web browsers, but is now available on
awide variety of platforms

e TheJVM interprets the bytecodes defined in a machine-independent binary file
format called aclassfile

Design Patternsin Java Introduction To Java Bob Tarr

6

Types Of Java Programs

o Application
= Standalone Java program that can run independent of any Web browser

o Applet
= Java program that runs within a Java-enabled Web browser

o Sarviet

< Javasoftware that isloaded into a Web server to provide additional server
functionality ala CGI programs

Design Patternsin Java Introduction To Java Bob Tarr

7

TheHeloWorld Program

e Create sourcefile: Hello.java

public class Hello {
public static void main (String args[]) {
Systemout.printin("Hello Wrldl'");

}
}

e Note that the name of the file isthe name of the public class with
a .Java extension added

e Compile: javac Hello.java
< Produces the class file Hello.class
e Run: javaHedlo

= Starts up the VM
< Note that the .class extension is not specified

Design Patternsin Java Introduction To Java Bob Tarr

8

Basic Java L anguage Elements

e Primitive Types

=

L L

byte (1 byte)

short (2 bytes)
Int (4 bytes)
long (8 bytes)
float (4 bytes)
double (8 bytes)
char (2 bytes)
boolean (1 byte)

-128 to +127

-32,768 to 32,767
-2.15E+9 to +2.15E+9
-4.61E+18 to +4.61E+18
1.0E-38 to 1.0E+38
-1.0E-308 to 1.0E+308
0 to Oxffff (Unicode)
true and false

All numeric types are sign extended

Design Patternsin Java

I ntroduction To Java
9

Bob Tarr

Basic Java L anguage Elements

e Operators
<> Similar to C++
= Differences between C++ and Java Operators:
- + IS used to concatenate strings

- instanceof returns true or false depending on whether the left side
object is an instance of the right side object

- >>> ghifts bits right, filling with zeros

e Decision Constructs
> if-else (test expression must resolve into a boolean)
2 switch (switch expression must resolve to an int, short, byte or char)

e LoOOpS
- Same as C/C++
> while, do-while
= for

Design Patternsin Java Introduction To Java Bob Tarr

10

Some Java OO Ter minology

e Class- collection of data (attributes) and methods that operate on
that data

e Member - either an attribute or a method of a class

e Public Member - member which is accessible by any method in
any class

e Private Member - member which is accessible only by methods
defined within the class

e Public Class- classthat isvisible everywhere and can be used by
any method in any class

e Object - instance of aclass
e Object Instantiation - the creation of a new object

Design Patternsin Java Introduction To Java Bob Tarr

11

Some Java OO Ter minology

e Constructor - method which performs object initialization (not
creation!)

e Object Reference - variable that holds a reference to (really the
memory address of) an object

e Instance Variable - attribute for which each object (instance) has
Its own copy

e Class Variable - attribute for which there is only one copy for the
class. Each object (instance) sharesthis copy. Also called a
static variable

Design Patternsin Java Introduction To Java Bob Tarr

12

Some Java OO Ter minology

¢ Instance Method - method which operates on the attributes of an
object (instance)
e Class Method - method which does not operate on a particular

object, but performs some utility function or operates on static
variables. Also called a static method.

e Method Sgnature - the number, type and order of arguments of a
method

e Method Overloading - defining a method with the same name but
different signature as another method in the same class

I ntroduction To Java
13

Design Patternsin Java Bob Tarr

Simple Java Example: Point

/**

* Class Point inplenents a geonetric point.
* @ut hor Bob Tarr

* |

public class Point {

private int x; [/ X Coordinate
private int y; [/ Y Coordinate

/**

* Creates a new Point with coordi nates O, O.

*/
public Point() {

x = 0;

y = 0;

Systemout.println("Point() constructor: " + this);
}

I ntroduction To Java Bob Tarr

Design Patternsin Java
14

Simple Java Example: Point (Continued)

/**

* Creates a new Point with the specified coordi nates.
* @aramx The x coordi nate.
* @aramy The y coordinate.
*/
public Point(int x, int y) {
this.x = Xx;

this.y =vy;

Systemout.printin("Point(int,int) constructor: " + this);
}
/**

* Returns the x coordi nate.
* @eturn The x coordi nate.
* [

public int getX() {return x;}

Design Patternsin Java Introduction To Java Bob Tarr

15

Simple Java Example: Point (Continued)

/**

* Returns the y coordinate.
* @eturn The y coordi nate.
*/

public int getY() {return vy;}

/**

* Sets the x coordinate.

* @aramx The x coordinate.

*/

public void setX(int x) {this.x = x;}

/**
* Sets the y coordinate.
* @aramy The y coordi nate.
*/
public void setY(int y) {this.y =vy;}

Design Patternsin Java Introduction To Java Bob Tarr

16

Simple Java Example: Point (Continued)

/**

* Converts a Point to a String.
* @eturn The Point as a String.
*/
public String toString() {
return ("[" + x +",)" +y +"]");

I ntroduction To Java

Design Patternsin Java
17

Bob Tarr

Test Program For Point

e Test program for the Point class:

/| Test programfor the Point class.
public class TestPoint {

}

public static void nmain(String args[]) {

/|l Create sone Point objects.
Poi nt pl = new Point();

Point p2 = null;

p2 = new Point (5, 10);

/| Test the accessors and nutators.

pl. set X(22);

Systemout.printIn("P1 is now " + pl);
p2.set Y(13);

Systemout.printIn("P2 is now " + p2);

I ntroduction To Java

Design Patternsin Java

18

Bob Tarr

Test Program For Paoint (Continued)

e [est program output:

Point() constructor: [O0,O0]
Point(int,int) constructor: [5, 10]
Pl is now [22,0]

P2 is now [5,13]

Design Patternsin Java Introduction To Java Bob Tarr

19

Arrays

Arrays are objectsin Java

Creating an array involves three steps. declaration, creation and
Initialization

Declaration:

Point data[]; // The variable data can hold a reference
/[l to an array of Points
Point[] data; // Sane thing!

Creation:;

data = new Point[10]; // Now the variable data refers to the
/] array of 10 elenents that can refer
/!l to a Point object. Al the references
/[l in the array are null.

I ntroduction To Java

Design Patternsin Java Bob Tarr

20

Arrays

e Initialization:

data[0] = new Point(4, 5); // First array elenent initialized.
[l It is nowreferring to the new

/| Point object.

e Declaration, creation and initialization can be combined:

int[] values = {1,7,5,8,9};
Point[] points = {new Point(4,5), new Point(1,-3)};

I ntroduction To Java Bob Tarr

Design PatternsIn Java
J 21

Exceptions

e EXception - asignal that an error or special condition has occurred
e Throw an exception - to signal the error or special condition
e Catch an exception - to handle the error or specia condition

e EXceptions propagate up the lexical block structure of the Java
program until they are caught and handled

e |f an exception is not handled, the Javainterpreter will print an
error message and stack trace and then exit

Design Patternsin Java Introduction To Java Bob Tarr

22

Exceptions

e EXxceptions handling is done within atry/catch block:

try {
/1 Try this code. |If it generates an exception,

/1 we'll handle it in a catch bl ock.
}

catch (Exceptionl el) {

/'l Handl e exception type Exceptionl.
}
catch (Exception2 e2) {

/'l Handl e exception type Exception2.
}
finally {

/1 Al ways execute this code.

I ntroduction To Java
23

Design Patternsin Java Bob Tarr

Exceptions

o All exceptionsin Java are objects derived from the Exception
class

e EXceptions are of two types:

= Unchecked exceptions. These are exceptions that commonly occur, such
asdivide by zero. (They are instances of RuntimeException, a subclass of
Exception).
< Checked exceptions: These are less common exceptions, such asan 1/0
error.
e Checked exceptions must either be caught or specified, else a
compiler error will result

e A throws clauseis used to indicate that the method may throw an
exception up the call stack:

public void sonmeMet hod() throws | OException { ... }

Design Patternsin Java Introduction To Java Bob Tarr

24

|nheritance

Java supports single inheritance using the extends keyword:

public class B extends A

The extended class is called a subclass of the class it extends
The classthat is extended is called its superclass or base class
All classes implicitly extend the Object class

A subclass can override a method in its superclass by providing a
new definition for a method with the same name, return type and
signature

All method invocations in Java are polymorphic. The method
called depends on the type of the object referred to by its object
reference and not on the type of the object reference itself.

I ntroduction To Java

Design Patternsin Java Bob Tarr

25

|nheritance

e A protected member of aclass can be accessed by any method in
the same class or a subclass. (It can aso be access by any method
In a class in the same package which will be described later.)

e UML Notation:

Superclass

Subclass

Design Patternsin Java | ntroductlz%n ToJava Bob Tarr

| nheritance Example

e Here'sthe superclass:

public class A {
protected int aDat a;
public A(int abData) {this.aData = aData;}
public A() {aData = 0;}

protected void f() {
Systemout.println("This is As f");

I ntroduction To Java
27

Design Patternsin Java Bob Tarr

| nheritance Example (Continued)

e Here'sthe subclass:

public class B extends A {

protected int bData;

public B(int bData) {this.bData

public B() {this(0):}

protected void f() {

Systemout.printin("This is B

protected void g() {

Systemout.printin("This is B

}

Design Patternsin Java

S

S

bDat a; }

f");

g");

I ntroduction To Java

28

Bob Tarr

| nheritance Example (Continued)

e Here'sthetest program:

public class ABTest {

public static void main(String[] argv) {

/' Pol ymor phi sm
A a = new A();
B b = new B();
a.f();

b.1();

A al = b;
al.f();

/'l Up Casting
A a2 = (A b;

Design Patternsin Java

/'l Invokes A's f()
/'l Invokes B's f()

/'l I nvokes B' s f()

Il Ok

I ntroduction To Java
29

Bob Tarr

| nheritance Example (Continued

/1 Down Casting
//B bl = a;

/B b2 = (B) a;

[/ Oher stuff

int i = a.aData;
/[/1 = a.bDat a;

ITa.g();

Design Patternsin Java

/]
/]
/1
/1

/]
/]
/]
/]
/1

|1l egal at conpile tine,
explicit cast needed

Ck at conpile tine,
exception at run tine

Ck, sane package
|1l egal at conpile tine,

bData not defined in A

|1l egal at conpile tine,
g() not found in A

I ntroduction To Java

30

Bob Tarr

Constructor Chaining

e Javaawaysinvokes a superclass constructor when a subclass
object is created (since the superclass object is “part of” the
subclass object)

e You can explicitly call asuperclass constructor using acall to
super(...) asthefirst line of a subclass constructor:

public B(int bData) {

super(); [// Explicitly call our superclass constructor
this. bData = bDat a;

}

e If you do not explicitly invoke a superclass constructor, then the
no-arg superclass constructor isimplicitly called for you. That
IS, Java inserts the call to "super()" for you automatically.

Design Patternsin Java Introduction To Java Bob Tarr

31

Constructor Chaining

e What? You don't have a no-arg superclass constructor? That's
ok, provided you have no superclass constructors, in which case
the default no-arg constructor for aclassis supplied for you. (But
If you have superclass constructors defined, and do not have a no-
arg one, you'll get acompiler error when Javatriesto insert the
call to "super()" in the subclass constructor.)

e Thedefault no-arg constructor supplied by Java does just one
thing - it makes a call to the no-arg superclass constructor!

e One exception: If thefirst line of a constructor usesthe "thig(...)"
syntax to invoke another constructor of the class, then Java does
not automatically insert the call to "super()" in the constructor:

public B() {
this(0); // Call to super() not automatically inserted here.

Design Patternsin Java Introduction To Java Bob Tarr

32

Abstract Methods And Classes

e An abstract method has no body
e Itislikeapure virtual functionin C++.

e The abstract method is expected to be overridden in a subclass
with an actual implementation

e Any classwith an abstract method is an abstract class and must
be declared abstract

e An abstract class can not be instantiated

e |If asubclass of an abstract class does not provide
Implementations for all of the abstract methods of its superclass,
then the subclass itself is abstract

Design Patternsin Java Introduction To Java Bob Tarr

33

Abstract Class Example

/'l Class Shape is an abstract base class for a geonetric shape.
publ i c abstract class Shape {
public abstract double area();

/1 Class Rectangle is a concrete inplenentation of a Shape.
public class Rectangl e extends Shape {

prot ect ed double w,
prot ect ed doubl e h;

publ i ¢ Rectangl e(double w, double h) {
this.w = w
this.h = h;

public double area() { return (w* h); }

Design Patternsin Java Introduction To Java Bob Tarr

34

| nterfaces

In OO terminology, an interface is some subset of the public
methods of aclass. The implementation of a class isthe code that
makes up those methods.

In Java an interface isjust a specification of a set of abstract
methods

A class that implements the interface must provide an
Implementation for all of the abstract methods in the interface

A class can implement many interfaces, but a class can only
extend one class

So a Java interface expressly separates the idea of an OO
Interface from its implementation

I ntroduction To Java

Design Patternsin Java Bob Tarr

35

| nter face Example

/'l Interface Drawabl e provides the specification for a drawable
/'l graphics object.
public interface Drawabl e {

public void Draw);

/'l Class Drawabl eRectangl e inplenments the Drawabl e i nterface.
public class Drawabl eRect angl e

ext ends Rect angl e

| npl enents Drawabl e {

[/ O her code here.

public void Drawm) {
/1 Body of Draw()

Design Patternsin Java Introduction To Java Bob Tarr

36

Differ ences Between | nterfaces and Abstract Classes

e A class can implement more than one interface, but an abstract
class can only subclass one class

e An abstract class can have non-abstract methods. All methods of
an interface are implicitly (or explicitly) abstract.

e An abstract class can declare instance variables; an interface can
NOt

e An abstract class can have a user-defined constructor:; an interface
has no constructors

e Every method of an interface isimplicitly (or explicitly) public.
An abstract class can have non-public methods.

Design Patternsin Java Introduction To Java Bob Tarr

37

Why Are Interfaces Important?

e Anobject'stype essentially refersto the OO interface of its class

e S0, in Java, an object of aclass that implements several interfaces
has many types

e And objects from many different classes can have the same type

e Thisallows usto write methods that can work on objects from

many different classes which can even be in different inheritance
hierarchies:

public void renderScreen(Drawabl e d) {
/'l Render this Drawabl e on the screen.
/1 It does not matter whether this is Drawabl eRectangl e,
/'l DrawableCi rcle, etc. Since the object is a Drawable, it
[l MJST inplenent the Draw net hod.
d. Draw() ;

}

Design Patternsin Java Introduction To Java Bob Tarr

38

Packages

Java classes can be grouped together into a package

Packages have several advantages.
= related classes can be grouped together

< class names and member names need not be unique across the entire
program

= members can be accessible only to methods of classes in the same package

The package statement must appear as the first statement of the
Java sourcefile:

package BT. Tool s. G aphi cs;

If no package statement is present, the code is made part of the
unnamed default package

I ntroduction To Java

Design Patternsin Java Bob Tarr

39

Packages

o A fully qualified Javanamefor aclassis:

< <Package Name>.<Class Name>
< For example, BT.Tools.Graphics.Point

e Classfiles must be stored in adirectory that has the same

components of the package name for the class
= For example, the class BT.Tools.Graphics.Point must be in the
BT/Tools/Graphics/Point.class file
= Thisfilenameisinterpreted relative to one of the directories specified in
the CLASSPATH environment variable

Design Patternsin Java | ntrOdUCtL%n ToJava Bob Tarr

Packages

e The CLASSPATH environment variable tells the Java interpreter
where to ook for user-defined classes. CLASSPATH isacolon-
separated list of directories to search or the names of "zip" or
"1ar" filesthat contain the classes:

= For example, setenv CLASSPATH
../home/bt/java:/usr/local/comms/classes.zip

< Given the above CLASSPATH, if the Point.classfileisin
/home/bt/javalBT/Tools/Graphics, it will be successfully found by the Java
run-time system

Design Patternsin Java Introduction To Java Bob Tarr

41

Thelmport Statement

The import statement allows the use of abbreviated class namesin
aJava sourcefile

Classes are aways available viatheir fully-qualified names:
BT. Tool s. G aphi cs. Point p = new BT. Tool s. G aphi cs. Poi nt () ;

The import statement does not "read in" the class or "include” it;
It just saves typing:

| nport BT. Tool s. Graphi cs. Poi nt;

Point p = new Point();

All of the classes of a package can be imported at one time using
this form of the import statement:

| nport java.util.*;

Thisimports al of the classes in the java.util package.

I ntroduction To Java

Design Patternsin Java Bob Tarr

42

Visbility Modifiers

o We'veaready seen that a class member can be modified with the
public, private or protected keywords

e |If none of these modifiers are used, the member has the default
visibility or "package" visibility
e A package member is only accessible from within the class that

defines it or a class in the same package

e Here'sthe definitive chart!

MEMBER VISIBILITY
ACCESSIBLE TO: public | protected package private
Same class Yes Yes Yes Yes
Class in same package Yes Yes Yes No
Subclass in different package Yes Yes No No
Non-subclassin different package Yes No No No

Table from Java In A Nutshell, 2" Edition by David Flanagan

Design Patternsin Java

I ntroduction To Java

43

Bob Tarr

Inner Classes

e Inner classes were added to the Javalanguagein Javal.1

e Therearenow five different types of Java classes and two
different types of Java interfaces

e Top-level classes and interfaces

= Package member class (or interface)
- Ordinary class (or interface) that is adirect member of a package

- Theoriginal, familiar Java 1.0 class (or interface)

= Nested top-level class (or interface)
- A class (or interface) declared static within another top-level class (or
Interface)
- Can only access the static members of its containing class
- Useful for helper classes (and interfaces) and provide a convenient way to
group related classes (or interfaces)

Design Patternsin Java | ntrOdUCthn ToJava Bob Tarr

Inner Classes (Continued)

e InNner classes

<> Member class
- A class defined as a member of another class
- Can not be declared static
- Can not have any static members
- Can access all members (even private) of its containing class
- Also useful for helper classes

< Local class
- Class defined inside a block of code
- |svisible only within the enclosing block
- Analogousto alocal variable
- Can access all members (even private) of its enclosing class

- Similar in use to amember class, but can be put close to the location in the
code where it is actually used, thus improving readability

Design Patternsin Java Introduction To Java Bob Tarr

45

Inner Classes (Continued)

e InNner classes

< Anonymous class
- A local classwhich is defined and instantiated in one statement
- Does not have a name!

e Inner classes are frequently used to implement the event listener
objects required by the Abstract Window Toolkit (AWT) or
Swing Java Foundation Classes GUI components

I ntroduction To Java Bob Tarr

Design Patternsin Java
46

Member Class Example

/'l Menmber O ass exanpl e.
public class ButtonDeno {
publ i c ButtonDeno() {
/'l Create a button.
Button button = new Button("Press ne");
/'l Register an ActionListener for the button.
butt on. addAct i onLi st ener (new Butt onActi onHandl er ());

}

/| Somewhere later in the file we have this nmenber class which
[l defines the required ActionListener.
cl ass ButtonActi onHandl er inplenents ActionListener {
public void actionPerforned(Acti onEvent e) {
Systemout. println("You pressed ne, you pressed ne!");

Design Patternsin Java Introduction To Java Bob Tarr

47

L ocal Class Example

/'l Local C ass exanple.
public class ButtonDeno {
publ i c ButtonDeno() {
/'l Create a button.
Button button = new Button("Press ne");
/'l Register an ActionListener for the button.
but t on. addActi onLi st ener (new Butt onActi onHandl er());

/[l Let's put the definition of the required ActionListener right
/] here as a local class. That way, it is nmuch closer in the
Il source file to its actual use.
cl ass ButtonActi onHandl er inplenents ActionListener {
public void actionPerforned(ActionEvent e) {
Systemout. println("You pressed ne, you pressed ne!");

Design Patternsin Java Introduction To Java Bob Tarr

48

Anonymous Class Example

/1 Anonynous C ass exanpl e.
public class ButtonDeno {
publ i c ButtonDeno() {
/'l Create a button.
Button button = new Button("Press ne");

/'l Instantiate an anonynous inner class that acts as the
/Il ActionLi stener for the button.
but t on. addActi onLi st ener (new Acti onLi stener () {
public void actionPerforned(ActionEvent e) {
Systemout. println("You pressed ne, you pressed ne!");

}
o),

Design Patternsin Java Introduction To Java Bob Tarr

49

Anonymous vs L ocal

e Which one should you use? An anonymous class or alocal class?
e It'samatter of your own personal style
e But....

e Prefer an anonymous class if
<> Theclassisvery small
< Only one instance of the classis needed
= The classisto be used right after it is defined
= Naming the class does not make your code any easier to read

o Prefer aloca classif
< More than one instance of the classis required

Design Patternsin Java Introduction To Java Bob Tarr

50

