Some
Object-Oriented Design
Principles

Design Patternsn Java Bob Tarr

Principle#1

Minimize The Accessibility of Classes and
Members

Some OO Design Principles
2

Design Patterns In Java Bob Tarr

Design Patterns In Java

The Meaning of Abstraction

Tony Hoare: “ Abstraction arises from arecognition of similarities
between certain objects, situations, or processes in the real world,
and the decision to concentrate upon those similarities and to
ignore for the time being the differences.”

Grady Booch: “ An abstraction denotes the essential
characteristics of an object that distinguish it from all other kinds
of objects and thus provide crisply defined conceptual boundaries,
relative to the perspective of the viewer.”

Abstraction is one of the fundamental ways to deal with
complexity

An abstraction focuses on the outside view of an object and
separates an object’ s behavior from its implementation

Some OO Design Principles
3

Bob Tarr

Design Patterns In Java

Encapsulation

Grady Booch: “Encapsulation is the process of
compartmentalizing the elements of an abstraction that constitute
its structure and behavior; encapsulation serves to separate the
contractual interface of an abstraction and itsimplementation.”

Craig Larman: “ Encapsulation is a mechanism used to hide the
data, internal structure, and implementation details of an object.
All interaction with the object is through a public interface of
operations.”

Classes should be opaque

Classes should not expose their internal implementation details

Some OO Design Principles
4

Bob Tarr

Information Hiding In Java

e Use private members and appropriate accessors and mutators
wherever possible

o For example:

= Replace
publ i c doubl e speed;

= with

private doubl e speed;

publ i c doubl e get Speed() {
return(speed);

}

public void set Speed(doubl e newSpeed) {
speed = newSpeed;

}

Some OO Design Principles
5

Design Patterns In Java Bob Tarr

Use Accessors and Mutators, Not Public Members

e YOu can put constraints on values

public void setSpeed(doubl e newSpeed) {
if (newSpeed < 0) {
sendError Message(...);
newSpeed = Mat h. abs(newSpeed);
}
speed = newSpeed;
}

o If users of your class accessed the fields directly, then they would
each be responsible for checking constraints

Some OO Design Principles
6

Design Patterns In Java Bob Tarr

Use Accessors and Mutators, Not Public Members

e You can change your internal representation without changing the
interface

/1 Now using netric units (kph, not nph)

public void setSpeedl nMPH(doubl e newSpeed) {
speedl nKPH = convert (newSpeed) ;

}

public void set Speedl nKPH(doubl e newSpeed) {
speedl nKPH = newSpeed;

}

Some OO Design Principles Bob Tarr

Design Patterns In Java 7

Use Accessors and Mutators, Not Public Members

e You can perform arbitrary side effects

publ i c doubl e set Speed(doubl e newSpeed) {
speed = newSpeed;
noti fyObservers();

}

o If users of your class accessed the fields directly, then they would
each be responsible for executing side effects

Some OO Design Principles Bob Tarr

Design Patterns In Java s

Principle#2

Favor Composition Over Inheritance

Some OO Design Principles
9

Design Patterns In Java Bob Tarr

Composition

e Method of reuse in which new functionality is obtained by
creating an object composed of other objects

e Thenew functionality is obtained by delegating functionality to
one of the objects being composed

e Sometimes called aggregation or containment, although some
authors give specia meanings to these terms

o For example:

= Aggregation - when one object owns or is responsible for another object
and both objects have identical lifetimes (GoF)

= Aggregation - when one object has a collection of objects that can exist on
their own (UML)

= Containment - a special kind of composition in which the contained object
is hidden from other objects and access to the contained object is only via
the container object (Coad)

Some OO Design Principles
10

Design Patterns In Java Bob Tarr

Composition

e Composition can be:
= By reference
= By vaue
e C++ alows composition by value or by reference

e ButinJavaall we have are object references!

Some OO Design Principles
11

Design Patterns In Java Bob Tarr

Advantages/Disadvantages Of Composition

e Advantages:

= Contained objects are accessed by the containing class solely through their
interfaces

= "Black-box" reuse, since internal details of contained objects are not visible
= Good encapsulation
= Fewer implementation dependencies
= Each classisfocused on just one task
= The composition can be defined dynamically at run-time through objects
acquiring references to other objects of the same type
¢ Disadvantages:
= Resulting systems tend to have more objects

= Interfaces must be carefully defined in order to use many different objects
as composition blocks

Some OO Design Principles
12

Design Patterns In Java Bob Tarr

Inheritance

e Method of reuse in which new functionality is obtained by
extending the implementation of an existing object

e The generalization class (the superclass) explicitly captures the
common attributes and methods

e The specialization class (the subclass) extends the implementation
with additional attributes and methods

Some OO Design Principles Bob Tarr

Design Patterns In Java
13

Advantages/Disadvantages Of Inheritance

e Advantages:
= New implementation is easy, since most of it isinherited
= Easy to modify or extend the implementation being reused

¢ Disadvantages:

= Breaks encapsulation, since it exposes a subclass to implementation details
of its superclass

= "White-box" reuse, since internal details of superclasses are often visible to
subclasses

= Subclasses may have to be changed if the implementation of the superclass
changes

= Implementations inherited from superclasses can not be changed at run-
time

Some OO Design Principles Bob Tarr

Design Patterns In Java
14

Inheritance vs Composition Example

e Thisexample comes from the book Effective Java by Joshua
Bloch

e Suppose we want avariant of HashSet that keeps track of the
number of attempted insertions. So we subclass HashSet as
follows:

public class |nstrumentedHashSet extends HashSet {

/1 The nunber of attenpted el enent insertions
private int addCount = 0

public InstrumentedHashSet (Collection c) {super(c);}
public InstrumentedHashSet(int initCap, float |oadFactor) {
super (i nitCap, |oadFactor)

}
Design Patterns In Java Some OO De]ign Principles Bob Tarr
Inheritance vs Composition Example (Continued)
public bool ean add(bject o) {
addCount ++
return super. add(o);
}
publi c bool ean addAl | (Coll ection c) {
addCount += c. si ze()
return super.addAll(c);
}
public int get AddCount () {
return addCount;
}
}
Design Patterns In Java Some OO Desl gn Principles Bob Tarr

16

Design Patterns In Java

Inheritance vs Composition Example (Continued)

Looks good, right. Let'stestit!

public static void main(String[] args) {
I nstrunent edHashSet s = new | nstrunent edHashSet () ;
s.addAl | (Arrays. asList(new String[] {"Snap","Crackle","Pop"}));
System out . println(s.get AddCount());

}
We get aresult of 6, not the expected 3. Why?

It's because the internal implementation of addAll() in the
HashSet superclassitself invokes the add() method. So first we
add 3 to addCount in InstrumentedHashSet’ s addAll(). Then we
invoke HashSet’s addAll(). For each element, this addAll()
invokes the add() method, which as overridden by
InstrumentedHashSet adds one for each element. The result: each
element is double counted.

Some OO Design Principles
17

Bob Tarr

Design Patterns In Java

Inheritance vs Composition Example (Continued)

There are several ways to fix this, but note the fragility of our
subclass. Implementation details of our superclass affected the
operation of our subclass.

The best way to fix thisisto use composition. Let’swrite an
InstrumentedSet class that is composed of a Set object. Our
InstrumentedSet class will duplicate the Set interface, but all Set
operations will actually be forwarded to the contained Set object.

InstrumentedSet is known as a wrapper class, since it wraps an
instance of a Set object

Thisis an example of delegation through composition!

Some OO Design Principles
18

Bob Tarr

Inheritance vs Composition Example (Continued)

public class InstrumentedSet inplenents Set {
private final Set s;
private int addCount = O;

public InstrumentedSet(Set s) {this.s = s;}

publi c bool ean add(bject o) {
addCount ++;
return s.add(o);

publi ¢ bool ean addAl |l (Coll ection c) {
addCount += c. si ze();
return s.addAll (c);

public int get AddCount() {return addCount;}

Some OO Design Principles
19

Design Patterns In Java Bob Tarr

Inheritance vs Composition Example (Continued)

/1 Forwarding methods (the rest of the Set interface nethods)
public void clear() { s.clear(); }

publi c bool ean contains(Object o) { return s.contains(o); }
public bool ean i sEmpty() { return s.isEmty(); }
public int size() { return s.size(); }
public Iterator iterator() { return s.iterator(); }
publi ¢ bool ean renmove(Obj ect 0) { return s.renove(0); }
publi ¢ bool ean containsAll (Collection c)

{ return s.containsAll(c); }
publi ¢ bool ean removeAll (Col |l ection c)

{ return s.renpveAll (c); }
public bool ean retai nAll (Coll ection c)

{ return s.retainAll(c); }
public Qoject[] toArray() { return s.toArray(); }
public Object[] toArray(Object[] a) { return s.toArray(a); }
publi ¢ bool ean equal s(Obj ect 0) { return s.equals(o); }
public int hashCode() { return s.hashCode(); }
public String toString() { return s.toString(); }

Some OO Design Principles
20

b&dgn PatternsIn Java Bob Tarr

Inheritance vs Composition Example (Continued)

¢ Note several things:
= Thisclassisa Set
= It has one constructor whose argument is a Set

= The contained Set object can be an object of any class that implements the
Set interface (and not just a HashSet)

= Thisclassisvery flexible and can wrap any preexisting Set object
o Example

List list = new ArrayList();
Set s1 = new I nstrunmentedSet (new TreeSet (list));

int capacity = 7;
float |oadFactor = .66f;
Set s2 = new | nstrument edSet (new HashSet (capacity, |oadFactor));

Some OO Design Principles

Design Patterns In Java
21

Bob Tarr

Coad's Rules

Use inheritance only when all of the following criteria are satisfied:

e A subclass expresses"isaspecial kind of" and not "isarole
played by a"

¢ Aninstance of a subclass never needs to become an object of
another class

¢ A subclass extends, rather than overrides or nullifies, the
responsibilities of its superclass

e A subclass does not extend the capabilities of what is merely a
utility class

e For aclassin the actual Problem Domain, the subclass speciaizes
arole, transaction or device

Some OO Design Principles

Design Patterns In Java
22

Bob Tarr

I nheritance/Compoasition Example 1

Person
Ec=Name
=g»Address
Passenger Agent
“Zea=Frequent Flyer ID EeswPassword
“T=-Reservation “T=xg-Authorization Level

Agent Passenger

Some OO Design Principles
23

Design Patterns In Java Bob Tarr

Inheritance/Composition Example 1 (Continued)

e "lIsaspecia kind of" not "isarole played by a"
= Fail. A passenger isarole aperson plays. Soisan agent.
¢ Never needs to transmute

= Fail. A instance of asubclass of Person could change from Passenger to
Agent to Agent Passenger over time

e Extends rather than overrides or nullifies

2> Pass.
e Does not extend a utility class

2> Pass.
¢ Within the Problem Domain, specializes arole, transaction or

device
= Fail. A Personisnot arole, transaction or device.
Inheritance does not fit herel

Some OO Design Principles
24

Design Patterns In Java Bob Tarr

12

Inheritance/Composition Example 1 (Continued)

Composition to the rescue!

Passenger
i==Frequent Flyer ID
iS&=Reservation
Person D/
iS=Name
S¢=Address
i=5:Passenger
Sk=Agent @\
Agent
i=Password

S Authorization Level

Some OO Design Principles

Design Patterns In Java
25

Bob Tarr

I nheritance/Compasition Example 2

Person

%ﬁg{ﬂgss) PersonRole

SexRole

Passenger Agent
SFrequent Flyer ID SPassword
S&xReservation E&»Authorization Level

Some OO Design Principles

Design Patterns In Java
26

Bob Tarr

13

Inheritance/Composition Example 2 (Continued)

e "Isaspecial kind of" not "isarole played by &'
= Pass. Passenger and agent are special kinds of person roles.
¢ Never needs to transmute
= Pass. A Passenger object stays a Passenger object; the sameistrue for an
Agent object.
o Extendsrather than overrides or nullifies
= Pass.
e Does not extend a utility class
2> Pass.
¢ Within the Problem Domain, specializes arole, transaction or
device
= Pass. A PersonRoleisatype of role.

Inheritance ok herel

Some OO Design Principles
27

Design Patterns In Java Bob Tarr

I nheritance/Composition Example 3

Transaction
“Ez#D
eg=Date
Reservation Purchase
SaDateExpires iSa==ProductSet
&2 DiscountCategory S Store

Some OO Design Principles
28

Design Patterns In Java Bob Tarr

14

Inheritance/Composition Example 3 (Continued)

e "lIsaspecia kind of" not "isarole played by a"
= Pass. Reservation and purchase are a specia kind of transaction.
¢ Never needs to transmute

= Pass. A Reservation object stays a Reservation object; the same istrue for

a Purchase object.

o Extends rather than overrides or nullifies

2> Pass.
e Does not extend a utility class

2> Pass.
¢ Within the Problem Domain, specializes arole, transaction or

device
= Pass. It'satransaction.
Inheritance ok here!

Some OO Design Principles

Design Patterns In Java
29

Bob Tarr

I nheritance/Composition Example 4

java.util.Observable

Reservation

iS2DateExpires
¥S2s-DiscountCategory

Some OO Design Principles

Design Patterns In Java
30

Bob Tarr

15

Inheritance/Composition Example 4 (Continued)

e "lIsaspecia kind of" not "isarole played by a"
= Fail. A reservation is not a specia kind of observable.
¢ Never needs to transmute
= Pass. A Reservation object stays a Reservation object.
o Extends rather than overrides or nullifies
2> Pass.
e Does not extend a utility class
= Fail. Observableisjust a utility class.
¢ Within the Problem Domain, specializes arole, transaction or
device
= Not Applicable. Observableisa utility class, not a Problem Domain class
Inheritance does not fit here!

Some OO Design Principles
31

Design Patterns In Java Bob Tarr

Inheritance/Composition Summary

e Both composition and inheritance are important methods of reuse

¢ Inheritance was overused in the early days of OO development

e Over time we've learned that designs can be made more reusable
and simpler by favoring composition

e Of course, the available set of composable classes can be enlarged
using inheritance

e S0 composition and inheritance work together

e But our fundamental principleis:

Favor Composition Over Inheritance

Some OO Design Principles
32

Design Patterns In Java Bob Tarr

16

Design Patterns In Java

Principle#3

Program To An Interface, Not An
| mplementation

Some OO Design Principles

Bob Tarr
33

Design Patterns In Java

Interfaces

Aninterfaceisthe set of methods one object knows it can invoke
on another object

An object can have many interfaces. (Essentialy, an interfaceis
asubset of all the methods that an object implements).

A typeisaspecific interface of an object

Different objects can have the same type and the same object can
have many different types

An object is known by other objects only through its interface

In asense, interfaces express "isakind of" in avery limited way
as"isakind of that supports this interface"

Interfaces are the key to pluggability!

Some OO Design Principles

Bob Tarr
34

17

Design Patterns In Java

| mplementation Inheritance vs I nterface | nheritance

Implementation Inheritance (Class Inheritance) - an object's
implementation is defined in terms of another's objects
implementation

Interface Inheritance (Subtyping) - describes when one object can
be used in place of another object

The C++ inheritance mechanism means both class and interface
inheritance

C++ can perform interface inheritance by inheriting from a pure
abstract class

Java has a separate language construct for interface inheritance -
the Javainterface

Java's interface construct makes it easier to express and
implement designs that focus on object interfaces

Some OO Design Principles
35

Bob Tarr

Design Patterns In Java

Benefits Of Interfaces

e Advantages:

!
v

Clients are unaware of the specific class of the object they are using

One object can be easily replaced by another

Object connections need not be hardwired to an object of a specific class,
thereby increasing flexibility

L oosens coupling

> Increases likelihood of reuse

> Improves opportunities for composition since contained objects can be of
any class that implements a specific interface

!
v

!
v

! !
v

!

¢ Disadvantages:

= Modest increase in design complexity

Some OO Design Principles
36

Bob Tarr

18

I nterface Example

/**
* Interface | Maneuverabl e provides the specification
* for a maneuverabl e vehicle
*/
public interface | Maneuverabl e {
public void left();

public void right();
public void forward();
public void reverse();

public void dive();
public void set Speed(doubl e speed);

c
c
c

public void clinb();
c
c

publ i c doubl e get Speed();

Some OO Design Principles

Design Patterns In Java Bob Tarr
37
I nterface Example (Continued)

public class Car

i mpl ements | Maneuverable { // Code here. }
public class Boat

i mpl enents | Maneuverable { // Code here. }
public class Subnmarine

i mpl ements | Maneuverable { // Code here. }
Design Patterns In Java Some OO Desl gn Prindples Bob Tarr

38

19

I nterface Example (Continued)

e Thismethod in some other class can maneuver the vehicle
without being concerned about what the actual classis (car, boat,
submarine) or what inheritance hierarchy it isin

public void travel (I Maneuverabl e vehicle) {
vehi cl e. set Speed(35.0);
vehicle.forward();
vehicle.left();
vehicle.clinb();
}

Some OO Design Principles
39

Design Patterns In Java Bob Tarr

Principle#4

The Open-Closed Principle:

Software Entities Should Be Open For
Extension, Yet Closed For Modification

Some OO Design Principles
40

Design Patterns In Java Bob Tarr

20

The Open-Closed Principle

e The Open-Closed Principle (OCP) says that we should attempt to
design modules that never need to be changed

¢ To extend the behavior of the system, we add new code. We do
not modify old code.

e Modulesthat conform to the OCP meet two criteria:

= Open For Extension - The behavior of the module can be extended to meet
new requirements

= Closed For Modification - the source code of the module is not allowed to
change
¢ How can we do this?
= Abstraction
= Polymorphism
= Inheritance

= Interfaces

Some OO Design Principles
41

Design Patterns In Java Bob Tarr

The Open-Closed Principle

e Itisnot possibleto have all the modules of a software system
satisfy the OCP, but we should attempt to minimize the number of
modules that do not satisfy it

e The Open-Closed Principleisreally the heart of OO design

e Conformance to this principle yields the greatest level of
reusability and maintainability

Some OO Design Principles
42

Design Patterns In Java Bob Tarr

21

Open-Closed Principle Example

e Consider the following method of some class:

public double total Price(Part[] parts) {
doubl e total = 0.0;
for (int i=0; i<parts.length; i++) {
total += parts[i].getPrice();

}

return total;

}

e Thejob of the above function is to total the price of each part in
the specified array of parts

e If Partisabase class or an interface and polymorphism is being
used, then this class can easily accommodate new types of parts
without having to be modified!

e It conformsto the OCP

Some OO Design Principles
43

Design Patterns In Java Bob Tarr

Open-Closed Principle Example (Continued)

e But what if the Accounting Department decrees that motherboard
parts and memory parts should have a premium applied when
figuring the total price.

e How about the following code?
public double total Price(Part[] parts) {
doubl e total = 0.0;
for (int i=0; i<parts.length; i++) {
if (parts[i] instanceof Mdtherboard)
total += (1.45 * parts[i].getPrice());
else if (parts[i] instanceof Menory)
total += (1.27 * parts[i].getPrice());
el se
total += parts[i].getPrice();
}
return total;
}

Some OO Design Principles
44

Design Patterns In Java Bob Tarr

22

Open-Closed Principle Example (Continued)

e Doesthis conform to the OCP? No way!

e Every time the Accounting Department comes out with a new
pricing policy, we have to modify the total Price() method! Itis
not Closed For Modification. Obviously, policy changes such as
that mean that we have to modify code somewhere, so what could
we do?

e Touseour first version of totalPrice(), we could incorporate
pricing policy in the getPrice() method of a Part

Some OO Design Principles
45

Design Patterns In Java Bob Tarr

Open-Closed Principle Example (Continued)

e Here are example Part and ConcretePart classes.

/Il Class Part is the superclass for all parts.
public class Part {
private double price;
public Part(double price) (this.price = price;}
public void setPrice(double price) {this.price = price;}
public double getPrice() {return price;}

}

/1l Class ConcretePart inplements a part for sale.
/1 Pricing policy explicit here!
public class ConcretePart extends Part {
public double getPrice() {
[/l return (1.45 * price); /] Prem um
return (0.90 * price); // Labor Day Sal e

}

Some OO Design Principles
46

Design Patterns In Java Bob Tarr

23

Open-Closed Principle Example (Continued)

e But now we must modify each subclass of Part whenever the
pricing policy changes!

e A better ideaisto have a PricePolicy class which can be used to
provide different pricing policies:

/1l The Part class now has a contained PricePolicy object.
public class Part {

private double price;

private PricePolicy pricePolicy;

public void setPricePolicy(PricePolicy pricePolicy) {
this.pricePolicy = pricePolicy;}

public void setPrice(double price) {this.price = price;}

public double getPrice() {return pricePolicy.getPrice(price);}

Some OO Design Principles
47

Design Patterns In Java Bob Tarr

Open-Closed Principle Example (Continued)

/**
* Class PricePolicy inplenents a given price policy.
*/
public class PricePolicy {
private double factor;

public PricePolicy (double factor) {
this.factor = factor;

}

public double getPrice(double price) {return price * factor;}

Some OO Design Principles
48

Design Patterns In Java Bob Tarr

24

Open-Closed Principle Example (Continued)

¢ With this solution we can dynamically set pricing policies at run
time by changing the PricePolicy object that an existing Part
object refersto

e Of course, in an actual application, both the price of aPart and its
associated PricePolicy could be contained in a database

Some OO Design Principles
49

Design Patterns In Java Bob Tarr

The Single Choice Principle

A corollary to the OCP is the Single Choice Principle

The Sngle Choice Principle:

Whenever a software system must support a
set of alternatives, ideally only one classin
the system knows the entire set of
alternatives

Some OO Design Principles
50

Design Patterns In Java Bob Tarr

25

Principle#5

The Liskov Substitution Principle:

Functions That Use References To Base
(Super) Classes Must Be

Able To Use Objects Of Derived
(Sub) Classes Without Knowing It

Some OO Design Principles
51

Design Patterns In Java Bob Tarr

The Liskov Substitution Principle

e TheLiskov Substitution Principle (L SP) seems obvious given all
we know about polymorphism

o For example:

public void drawShape(Shape s) {
/'l Code here.

}

e The drawShape method should work with any subclass of the
Shape superclass (or, if Shape is aJavainterface, it should work
with any class that implements the Shape interface)

e But we must be careful when we implement subclasses to insure
that we do not unintentionally violate the L SP

Some OO Design Principles
52

Design Patterns In Java Bob Tarr

26

The Liskov Substitution Principle

¢ If afunction does not satisfy the LSP, then it probably makes
explicit reference to some or all of the subclasses of its superclass.
Such afunction also violates the Open-Closed Principle, sinceit
may have to be modified whenever a new subclassis created.

Some OO Design Principles
53

Design Patterns In Java Bob Tarr

L SP Example

e Consider the following Rectangle class:

/1 A very nice Rectangle class.
public class Rectangle {
private doubl e width;
private doubl e height;

publ i c Rectangl e(doubl e w, double h) {

width = w

hei ght = h;
}
public double getWdth() {return width;}
publ i c doubl e getHeight() {return height;}
public void setWdth(double w) {width = w;}
public void setHei ght(double h) {height = h;}
public double area() {return (width * height);

}

Some OO Design Principles
54

Design Patterns In Java Bob Tarr

27

L SP Example (Continued)

e Now, had about a Square class? Clearly, asquareisarectangle,
so the Square class should be derived from the Rectangle class,
right? Let's see!

e Observations:

= A square does not need both awidth and a height as attributes, but it will
inherit them from Rectangle anyway. So, each Square object wastes alittle
memory, but thisis not amajor concern.

= Theinherited setWidth() and setHeight() methods are not really appropriate
for a Square, since the width and height of a square areidentical. So we'll
need to override setWidth() and setHeight(). Having to override these

simple methods is a clue that this might not be an appropriate use of
inheritance!

Some OO Design Principles
55

Design Patterns In Java Bob Tarr

L SP Example (Continued)

e Here'sthe Square class:

/1 A Square class.
public class Square extends Rectangle {

public Square(double s) {super(s, s);}

public void setWdth(double w) {
super.set Wdt h(w);
super . set Hei ght (w) ;

}

public void setHei ght(double h) {
super . set Hei ght (h);
super.set Wdt h(h);
}
}

Some OO Design Principles
56

Design Patterns In Java Bob Tarr

28

L SP Example (Continued)

e Everything looks good. But check this out!

public class TestRectangle {

/1 Define a nethod that takes a Rectangle reference.
public static void testLSP(Rectangle r) {
r.setWdth(4.0);
r.set Hei ght (5.0);
Systemout.printin("Wdth is 4.0 and Height is 5.0" +
", so Areais " + r.area());

if (r.area() == 20.0)
System out . println("Looki ng good!\n");
el se

System out. println("Huh?? What kind of rectangle is
this??2\n");

}
Design Patterns In Java Some OO De?;gn Principles Bob Tarr
L SP Example (Continued)
public static void main(String args[]) {
//Create a Rectangle and a Square
Rectangle r = new Rectangl e(1.0, 1.0);
Square s = new Square(1l.0);
/1 Now call the method above. According to the
/1 LSP, it should work for either Rectangles or
/1 Squares. Does it??
testLSP(r);
testLSP(s);
}
}
Design Patterns In Java Some OO DeSign Principles Bob Tarr

58

29

L SP Example (Continued)

e Test program output:

Wdth is 4.0 and Height is 5.0, so Area is 20.0
Looki ng good!

Wdth is 4.0 and Height is 5.0, so Area is 25.0
Huh?? What kind of rectangle is this??

e Lookslikewe violated the LSP!

Some OO Design Principles

Design Patterns In Java
59

Bob Tarr

L SP Example (Continued)

What's the problem here? The programmer of the testL SP()
method made the reasonabl e assumption that changing the width
of a Rectangle leavesits height unchanged.

Passing a Square object to such amethod resultsin problems,
exposing aviolation of the LSP

e The Square and Rectangle classes |ook self consistent and valid.
Y et a programmer, making reasonable assumptions about the base
class, can write a method that causes the design model to break
down

e Solutions can not be viewed in isolation, they must also be

viewed in terms of reasonable assumptions that might be made by
users of the design

Some OO Design Principles

Design Patterns In Java
60

Bob Tarr

30

L SP Example (Continued)

¢ A mathematical square might be arectangle, but a Square object
is not a Rectangle object, because the behavior of a Square object
is not consistent with the behavior of a Rectangle object!

e Behaviorally, aSquareisnot a Rectangle! A Square object is not
polymorphic with a Rectangle object.

Some OO Design Principles
61

Design Patterns In Java Bob Tarr

The Liskov Substitution Principle

e The Liskov Substitution Principle (LSP) makesit clear that the
| SA relationship is all about behavior

e Inorder for the LSP to hold (and with it the Open-Closed
Principle) all subclasses must conform to the behavior that clients
expect of the base classes they use

¢ A subtype must have no more constraints than its base type, since
the subtype must be usable anywhere the base type is usable

¢ If the subtype has more constraints than the base type, there
would be uses that would be valid for the base type, but that
would violate one of the extra constraints of the subtype and thus
violate the LSP!

e The guarantee of the LSP is that a subclass can always be used
wherever its base classis used!

Some OO Design Principles
62

Design Patterns In Java Bob Tarr

