Remote
M ethod
| nvocation

Design Patternsn Java Bob Tarr

Distributed Computing

o Distributed Computing involves the design and implementation of
applications as a set of cooperating software entities (processes,
threads, objects) that are distributed across a network of machines

¢ Advantages to Distributed Computing
= Performance
< Scalability
= Resource Sharing
= Fault Tolerance
o Difficultiesin developing Distributed Computing systems
= Latency
= Synchronization
= Partial Failure

Remote M ethod I nvocation B
ob Tarr

Design Patterns In Java 2




Client-Server Programming
e Client-Server Model
= Client - entity that makes arequest for a service

= Server - entity that responds to arequest and provides a service

Client Server

Metwrork
—f

e The predominant networking protocol in use today is the Internet
Protocol (1P). Themain API for writing client-server programs
using IP isthe Berkeley socket API.

Remote M ethod I nvocation
3

Design Patterns In Java Bob Tarr

Client-Server Programming

e Dealing with al of the details of the socket library calls can be
tedious. (See, for example, Stevens Unix Network
Programming.)

e Thejavanet package provides classes to abstract away many of
the details of socket-level programming, making it smple to write
client-server applications

Remote M ethod I nvocation
4

Design Patterns In Java Bob Tarr




Client Example

import java.net.*;
import java.io.*;

/**
* Client Program
* Connects to a server which converts text to uppercase.
* Server responds on port 2345.
* Server host specified on command line: java Cient server_host
*/
public class Cient {
public static void main(String args[]) {
Socket s;
String host;
int port = 2345;
Dat al nput Stream i s;
Dat al nput St ream ui ;
Print Stream os;
String theLine;

Design Patternsin Java Remote Method Invocation Bob Tarr

5

Client Example (Continued)

host = args[O0];

try {
s = new Socket (host, port);

is = new Datal nput Strean(s. getlnputStrean());
0s = new PrintStrean(s.getQutputStrean());
ui = new Dat al nput Strean(System i n);
Systemout.printin("Enter Data");
while(true) {

t heLi ne = ui.readLine();

if (theLine.equal s("end"))

br eak;
os. println(theLine);
System out. println(is.readLine());

Design Patternsin Java Remote Method Invocation Bob Tarr

6




Client Example (Continued)

os.close();
is.close();
ui.close();
s.close();
}
cat ch(UnknownHost Exception e) {
Systemout.printIn(”"Can't find " + host);
}
cat ch( Socket Exception e) {
System out. println("Could not connect to " + host);
}
catch(| CException e) {
Systemout.printin(e);

Design Patternsin Java Remote Method Invocation Bob Tarr

7

Server Example

import java.net.*;
import java.io.*;

/**
* Server Program
* Converts incoming text to uppercase and sends converted
* text back to client.
* Accepts connection requests on port 2345.
*/
public class Server {
public static void main(String args[]) {
Server Socket theServer;
Socket con;
Print Stream ps;
Dat al nput Stream di s;
String input;
int port = 2345;
bool ean flag = true;

Design Patternsin Java Remote Method Invocation Bob Tarr

8




Server Example (Continued)

try {
theServer = new Server Socket (port);

con = theServer. accept();
dis = new Datal nput St rean{ con. getl nput Strean());
ps = new PrintStream (con. get Qut put Strean());
while(flag == true) {
i nput = dis.readLine();
if ( input == null ) break;
ps. println(uppers(input));
}
con.cl ose();
dis.close();
ps. close();
theServer. close();
}
cat ch(Nul | Poi nt er Exception e){
System out. println("NPE" + e.getMessage());

}

Remote M ethod I nvocation

10

Design Patterns In Java 9 Bob Tarr
Server Example (Continued)
catch(| CException e) {
Systemout.printin(e);
}
}
public static String uppers(String input) {
char let;
StringBuffer sb = new StringBuffer(input);
for (int i =0; i < sh.length(); i++) {
let = sh.charAt(i);
|l et = Character.toUpperCase(let);
sb. set Char At (i, let);
}
return sh.toString();
}
}
Design Patternsin Java Remote Method Invocation Bob Tarr




Design Patterns In Java

Remote Procedures

In the previous example, the client communicated to the server
over a socket connection using a protocol known to both parties
But both the client and server had to be aware of the socket level
details
Wouldn't it be nice if even these details were abstracted away and
the request to the server looked like alocal procedure call from
the viewpoint of the client?
That' s the idea behind a Remote Procedure Call (RPC), a
technology introduced in the late 1970's
Two RPC specifications:

= SUN’s Open Network Computing (ONC) RPC

= OSF s Distributed Computing Environment (DCE) RPC

Remote M ethod I nvocation
11

Bob Tarr

Design Patterns In Java

Digtributed Object Technology

But RPC is not object-oriented. In the OO world, we'd like to
have distributed objects and remote method calls.

While there are many Distributed Object Technologies available
today, three are widely available:
> RMI
- CORBA
> SOAP
Remote Method Invocation (RMI)
> Developed by SUN
> Available as part of the core Java AP
> Java-centric
2> Object interfaces defined as Java interfaces
» Uses object serialization

!

!

!

P

!

Remote M ethod I nvocation
12

Bob Tarr




Digtributed Object Technology

o Common Object Request Broker Architecture (CORBA)
= Developed by the Object Management Group (OMG)
= Language and platform independent
= Object interfaces defined in an Interface Definition Language (IDL)

= An Object Request Broker (ORB) facilitates the client-server
request/response action

= ORBs communicate via abinary protocol called the Internet Inter-ORB
Protocol (110P)
o SOAP
Simple Object Access Protocol
> XML-Based
Developed from an earlier spec called XML-RPC
Standardized by the W3C
Many implementations available

!
v

!

!
v

!
v

!
v

Design Patternsin Java Remote Method Invocation Bob Tarr

13

RMI

e Provides adistributed object capability for Java applications

¢ Allows aJava method to obtain areference to aremote object and
invoke methods of the remote object nearly as easily asif the
remote object existed locally

e Theremote object can be in another VM on the same host or on
different hosts across the network

o Uses object serialization to marshal and unmarshal method
arguments

e Supports the dynamic downloading of required class files across
the network

Design Patternsin Java Remote Method Invocation Bob Tarr

14




RMI Application

e RMI Application

T
E*.../ﬁn, |

|
_ [ ] Server LFRL prlntl:uccul

R | |
I -@c_{)"- ""---.___
'Um-fa el ¥
s

Remote M ethod I nvocation
15

Design Patterns In Java Bob Tarr

RMI Stubs And Skeletons

e RMI uses stub and skeleton objects to provide the connection
between the client and the remote object

e A stubisaproxy for aremote object which is responsible for
forwarding method invocations from the client to the server
where the actual remote object implementation resides

¢ A client's reference to aremote object, therefore, is actualy a
referenceto alocal stub. The client hasalocal copy of the stub
object.

e A skeleton is aserver-side object which contains a method that
dispatches calls to the actual remote object implementation

¢ A remote object has an associated local skeleton object to
dispatch remote callsto it

Remote M ethod I nvocation
16

Design Patterns In Java Bob Tarr




RMI Stubs And Skeletons

e Note: Java 2 (JDK1.2) does not require an explicit skeleton class.
The skeleton object is automatically provided on the server side.

¢ A method can get areference to a remote object
= by looking up the remote object in some directory service. RMI providesa
simple directory service called the RMI registry for this purpose.
= by receiving the remote object reference as a method argument or return
value

Remote M ethod I nvocation B
ob Tarr

Design Patterns In Java
17

Developing An RMI Application

¢ An object becomes remote-enabled by implementing a remote
interface, which has these characteristics:
= A remote interface extends the interface java.rmi.Remote
= Each method of the interface declares java.rmi.RemoteException in its
throws clause, in addition to any application-specific exceptions
e StepsTo Develop An RMI Application
= 1. Design and implement the components of your distributed application
- Define the remote interface(s)
- Implement the remote object(s)
- Implement the client(s)
= 2. Compile sources and generate stubs (and skeletons)
= 3. Make required classes network accessible
= 4. Run the application

Remote M ethod I nvocation B
ob Tarr

Design Patterns In Java
18




RMI Example 1

e Theclassic “Hello, World” Example using RMI!
e First, define the desired remote interface:

inmport java.rm.*;

/**
* Hello Interface.
*/
public interface IHell o extends Renpte {
public String sayHello() throws RenpteException;

}

e A classthat implements this remote interface can be used as a
remote object. Clients can remotely invoke the sayHello()
method which will return the string “Hello, World” to the client.

Design Patternsin Java Remote Method Invocation Bob Tarr

19

RMI Example 1 (Continued)

¢ Next, provide an implementation of the remote object
o We'll implement the remote object as a server

e Theremote object server implementation should:
= Declare the remote interfaces being implemented
= Define the constructor for the remote object
= Provide an implementation for each remote method in the remote interfaces
= Create and install a security manager
= Create one or more instances of a remote object
= Register at |east one of the remote objects with the RMI remote object
registry (or some other naming service), for bootstrapping purposes
e To make things simple, our remote object implementation will
extend java.rmi.server.UnicastRemoteObject. This class provides
for the “exporting” of aremote object by listening for incoming
calls to the remote object on an anonymous port.

Design Patternsin Java Remote Method Invocation Bob Tarr

20

10



RMI Example 1 (Continued)

e Here' sthe server for our remote object:

inmport java.rm.*;
import java.rm.server.*;

/1 Hello Server.
public class HelloServer extends UnicastRenpteCbject
implenents IHello {

private String name;
public HelloServer(String nane) throws RenoteException {

super();
thi s. name = nane;

public String sayHello() {return "Hello, World!";}

Remote M ethod I nvocation

Design Patternsin Java 21 Bob Tarr
RMI Example 1 (Continued)
public static void main(String[] args) {
/1 Install a security manager!
Syst em set Securit yManager (new RM SecurityManager());
try {
/] Create the renpte object.
Hel | oServer obj = new Hell oServer("Hell oServer");
/! Register the renpte object as "Hell oServer".
Nam ng. rebi nd("rm ://serverhost/Hel | oServer", obj);
System out. println("HelloServer bound in registry!");
}
cat ch(Exception e) {
Systemout.println("HelloServer error: " + e.getMessage());
e.printStackTrace();
}
}
}
Design Patterns In Java Remote Method Invocation Bob Tarr

22

11



RMI Example 1 (Continued)

o Next, we need to write our client application:
inmport java.rm.*;

/1 Hello Cient.
public class Hellodient {

public static void main(String[] args) {

/1 Install a security manager!
Syst em set Securit yManager (new RM SecurityManager());

try {
/1l Get a reference to the renote object.
IHell o server =
(1 Hel I 0) Nam ng. | ookup("rmi://serverhost/HelloServer");
System out. println("Bound to: " + server);

Design Patterns|n Java Remote M ethod I nvocation

Bob Tarr
23

RMI Example 1 (Continued)

/11 nvoke the renote nethod.
System out. println(server.sayHello());
}
cat ch(Exception e) {
e.printStackTrace();

Design Patternsin Java Remote M etf;(jd Invocation Bob Tarr

12



RMI Example 1 (Continued)

o Now we can compile the client and server code:
javac lHello.java

javac Hel | oServer.java
javac HelloCient.java

e We next use the rmic utility to generate the required stub and
skeleton classes:

rmc Hell oServer

e Thisgenerates the stub and skeleton classes:

Hel | oServer _St ub. cl ass
Hel | oServer _Skel . cl ass (Not needed in Java 2)

Design Patternsin Java Remote Method Invocation Bob Tarr

25

RMI Example 1 (Continued)

o Our next step would be to make the class files network accessible.
For the moment, let’s assume that all these classfiles are
available locally to both the client and the server viatheir
CLASSPATH. That way we do not have to worry about dynamic
class downloading over the network. We'll seein the next
example how to properly handle that situation.

e Thefilesthat the client must havein its CLASSPATH are:
I Hel l 0. cl ass
Hel l oCl i ent.cl ass
Hel | oServer _St ub. cl ass

e Thefilesthat the server must havein its CLASSPATH are:

I Hel I 0. cl ass

Hel | oServer. cl ass

Hel | oServer _St ub. cl ass

Hel | oServer _Skel . cl ass (Not needed in Java 2)

Design Patternsin Java Remote Method Invocation Bob Tarr

26

13



RMI Example 1 (Continued)

¢ If you runthis examplein Java 2, you need a security policy file
that allows the downloading of classfiles

e Hereisan example policy file that allows anything!

grant {
perm ssion java.security. Al | Perm ssion;

}s

e Here'sapoalicy filethat allows the program to connect to or
accept connections from any host on ports greater than 1024 and
to connect to any host on port 80 (the default HTTP port):

grant {
perm ssion java. net. Socket Pernmi ssion "*:1024- 65535",
"connect, accept";
perm ssion java. net. Socket Perm ssion "*:80", "connect";

}s

Design Patterns|n Java Remote M ethod I nvocation

27

Bob Tarr

RMI Example 1 (Continued)

Now, we are ready to run the application:

e Ontheserver:
= Start the rmiregistry:

rmregistry &
= Start the server:
java -D ava. security.policy=policy HelloServer
e Ontheclient:
= Start the client:

java - Dj ava. security. policy=policy HelloClient

e Get thiswonderful output on the client:

Hel I o, World!

Design Patterns n Java Remote M ethod I nvocation

28

Bob Tarr

14



RMI Example 2

The server in this example implements a generic compute engine
Theideaisthat a client has some CPU-intensive job to do, but
does not have the horsepower to do it. So the client encapsul ates
the task to be done as an object and sends it over to a server to be
executed. The compute engine on the server runs the job and
returns the results to the client.

The compute engine on the server istotally generic and can
execute any kind of task requested by the client

This exampleillustrates one of our Design Patterns. Which one??

Remote M ethod I nvocation

Design Patterns In Java Bob Tarr

29

RMI Example 2 (Continued)

o First, define the remote interface:

package conpute;
inmport java.rm.*;

/**
* Generic Compute Interface.
*/
public interface Conpute extends Renpte {
Ohj ect executeTask(Task t) throws RenoteException;

}

Remote M ethod I nvocation

Design Patterns In Java Bob Tarr

30

15



RMI Example 2 (Continued)

e Here' sthe generic task interface we'll need for this example:

package conpute;
import java.io.Serializable;

/**
* Task Interface.
*/
public interface Task extends Serializable {
Obj ect execute();

Design Patternsin Java Remote Method Invocation Bob Tarr

31

RMI Example 2 (Continued)

e Here'sthe remote server:

package engi ne;

inmport java.rm.*;
import java.rm.server.*;
i mport compute. *;

/**

* Server that executes a task specified in a Task object.
*/
public cl ass Conput eEngi ne extends Uni cast Renot eObj ect

i mpl enents Conpute {

publ i ¢ Conput eEngi ne() throws RenpteException {
super();

Design Patternsin Java Remote Method Invocation Bob Tarr

32

16



RMI Example 2 (Continued)

public Object executeTask(Task t) {
return t.execute();

public static void main(String[] args) {

/1 Install a security manager!
if (System getSecurityManager() == null) {
Syst em set Securit yManager (new RM SecurityManager());

/! Create the renote object.
/!l Register the renpte object as "Conpute".
String nane = "rm://serverhost/ Conpute";

Remote M ethod I nvocation B
ob Tarr

Design Patterns In Java
33

RMI Example 2 (Continued)

try {
Conput e engi ne = new Conput eEngi ne() ;
Nam ng. r ebi nd( name, engine);
System out. printl n(" Conput eEngi ne bound");
}
catch (Exception e) {
System err. println("Conput eEngi ne exception: " +
e. get Message());
e.printStackTrace();

Remote M ethod I nvocation B
ob Tarr

Design Patterns In Java
34

17



RMI Example 2 (Continued)

e Here'saclient which asks the server to compute the value of pi:

package client;

inmport java.rm.*;
i mport java.nmath.*;
i mport compute. *;

/**

* Client that asks the Generic Conmpute Server to conpute pi.
* The first conmand-line argument is the server hostnane.

* The second command-|ine argument is the nunber of required
* digits after the decimal point for the conputation.

*/

public class ConputePi {

Design Patternsin Java Remote Method Invocation Bob Tarr

35

RMI Example 2 (Continued)

public static void main(String args[]) {

/1 Install a security manager!

if (System getSecurityManager() == null) {

Syst em set Securit yManager (new RM SecurityManager());
}
try {

String nane = "//" + args[0] + "/Conpute";

/]l Get a reference to the renote object fromthe registry.
Conmput e conp = (Conpute) Nami ng. | ookup(nane);

/] Create a Task object.
Pi task = new Pi (I nteger.parselnt(args[1]));

Design Patternsin Java Remote Method Invocation Bob Tarr

36

18



RMI Example 2 (Continued)

/1 Ask the server to performthe conputation.
Bi gDeci mal pi = (Bi gbeci mal ) (conp. execut eTask(task));

System out. println(pi);
}
catch (Exception e) {
System err. println("ConmputePi exception:
e. get Message());
e.printStackTrace();

Design Patterns|n Java Remote M etk31(73d Invocation

Bob Tarr

RMI Example 2 (Continued)

e Here'spart of the Pi classused in the client:

package client;

i mport compute. *;

i mport java.nmath.*;

public class Pi inplements Task {
private int digits;

public Pi(int digits) {this.digits = digits;}

public Object execute() {
/1 Pi calculation code goes here!

Design Patterns n Java Remote M etggd Invocation

Bob Tarr

19



RMI Example 2 (Continued)

Host: ford Host: zaphod
.
Computafi —
ComputeEngine_Stub ™. patetngine ; ConputeEngine_Stub
- - + Conipute

 Task

Wb server ¥ e o Web server

Design Patternsin Java Remote Method Invocation Bob Tarr

39

RMI Example 2 (Continued)

o Now we are ready to build the application. First, build ajar file
of the interface classes:

cd /home/ wal do/ src

javac conput e/ Conpute.java

javac conput e/ Task. java

jar cvf conpute.jar conpute/*.class

o Next, build the server classes:

= Let'ssay that, ann, the devel oper of the ComputeEngine class, has placed
ComputeEnginejavain the /home/ann/src/engine directory and is
deploying the classfiles for clients to use in a subdirectory of her
public_html directory, /home/ann/public_html/classes. Let's assume that
the compute.jar fileislocated in the directory
/home/ann/public_html/classes. To compile the ComputeEngine class, your
class path must include the compute.jar file and the source directory itself.

Design Patternsin Java Remote Method Invocation Bob Tarr

40

20



RMI Example 2 (Continued)

set env CLASSPATH
/' home/ ann/ src:/honme/ ann/ public_htm /cl asses/conpute.jar
cd /home/ ann/ src
javac engi ne/ Conput eEngi ne. j ava
rmc -d . engine. Conput eEngi ne
nmkdi r /home/ ann/ public_htm/classes/engi ne
cp engi ne/ Conput eEngi ne*. cl ass
/ home/ ann/ publ i c_htm / cl asses/ engi ne

= The-d option tells the rmic compiler to place the generated classfiles,
ComputeEngine_Stub and ComputeEngine_Skel, in the directory
/home/ann/src/engine. Y ou also need to make the stubs and skeletons
network accessible, so you must copy the stub and skeleton class to the
public_html/classes area.

Design Patternsin Java Remote Method Invocation Bob Tarr

41

RMI Example 2 (Continued)

= Since the ComputeEngine's stub implements the Compute interface, which
refersto the Task interface, you need to make these two interface class files
network accessible along with the stub. So, the final step isto unpack the
compute.jar file in the directory /home/ann/public_html/classes to make the
Compute and Task interfaces available for downloading.

cd /home/ ann/ public_htm/cl asses
jar xvf conpute.jar

Design Patternsin Java Remote Method Invocation Bob Tarr

42

21



RMI Example 2 (Continued)

o Finally, build the client classes:

= Let'sassume that user jones has created the client code in the directory
/home/jones/src/client and will deploy the Pi class (so that it can be
downloaded to the compute engine) in the network-accessible directory
/home/jones/public_html/classes (also available via some web servers as
http://host/~jones/classes/). The two client-side classes are contained in the
files Pi.javaand ComputePi.javain the client subdirectory.

= In order to build the client code, you need the compute.jar file that contains
the Compute and Task interfaces that the client uses. Let's say that the
compute.jar fileislocated in /home/jones/public_html/classes. The client
classes can be built as follows:

Design Patternsin Java Remote Method Invocation Bob Tarr

43

RMI Example 2 (Continued)

set env CLASSPATH
/ hone/ j ones/ src:/ hone/jones/public_htnl/classes/conpute.jar
cd /home/jones/src
javac client/ConputePi.java
javac -d /hone/jones/public_htnl/classes client/Pi.java

= Only the Pi class needs to be placed in the directory
public_html/classes/client (the client directory is created by javac if it does
not exist). That is because only the Pi class needs to be available for
downloading to the compute engine's virtual machine.

Design Patternsin Java Remote Method Invocation Bob Tarr

44

22



RMI Example 2 (Continued)

o Start the RMI Registry:

unset env CLASSPATH
rmregistry &

e Why do we make sure that rmiregistry hasno CLASSPATH set
when we start it??

= |If the rmiregistry can find the stub classesin its CLASSPATH, it will not
remember that the stub class can be loaded from the server's code base, as
specified by the java.rmi.server.codebase property. Therefore, the
rmiregistry will not tell the client the proper codebase when the client
downloads the stub object from the rmiregistry. Consequently, the client
will not be able to download the stub class.

Design Patternsin Java Remote Method Invocation Bob Tarr

45

RMI Example 2 (Continued)

o Start the server:

java -D ava.rm . server. codebase=http://zaphod/ ~ann/ cl asses/
-Djava. rn . server. host nane=zaphod. east . sun. com
-Dj ava. security. policy=policyfile
engi ne. Comput eEngi ne

= When you start the compute engine, you need to specify, using the
java.rmi.server.codebase property, where the server's classes will be made
available. Inthisexample, the server-side classes to be made available for
downloading are the ComputeEngine's stub and the Compute and Task
interfaces, available in ann's public_html/classes directory.

Design Patternsin Java Remote Method Invocation Bob Tarr

46

23



RMI Example 2 (Continued)

o Start theclient:

set env CLASSAPTH
/ hone/ j ones/ src:/ home/jones/public_htm/classes/conpute.jar
java -D ava.rm . server.codebase=http://ford/ ~j ones/cl asses/
-Djava. security. policy=policyfile
client. Conput ePi zaphod. east.sun.com 20

Design Patternsin Java Remote Method Invocation Bob Tarr

a7

24



