
1

Design Patterns In Java Bob Tarr

Remote
Method

Invocation

 Bob TarrDesign Patterns In Java Remote Method Invocation
22

Distributed ComputingDistributed Computing

l Distributed Computing involves the design and implementation of
applications as a set of cooperating software entities (processes,
threads, objects) that are distributed across a network of machines

l Advantages to Distributed Computing
é Performance

é Scalability

é Resource Sharing

é Fault Tolerance

l Difficulties in developing Distributed Computing systems
é Latency

é Synchronization

é Partial Failure

2

 Bob TarrDesign Patterns In Java Remote Method Invocation
33

Client-Server ProgrammingClient-Server Programming

l Client-Server Model
é Client - entity that makes a request for a service

é Server - entity that responds to a request and provides a service

l The predominant networking protocol in use today is the Internet
Protocol (IP). The main API for writing client-server programs
using IP is the Berkeley socket API.

 Bob TarrDesign Patterns In Java Remote Method Invocation
44

Client-Server ProgrammingClient-Server Programming

l Dealing with all of the details of the socket library calls can be
tedious. (See, for example, Stevens’ Unix Network
Programming.)

l The java.net package provides classes to abstract away many of
the details of socket-level programming, making it simple to write
client-server applications

3

 Bob TarrDesign Patterns In Java Remote Method Invocation
55

Client ExampleClient Example

import java.net.*;

import java.io.*;

/**

 * Client Program.

 * Connects to a server which converts text to uppercase.

 * Server responds on port 2345.

 * Server host specified on command line: java Client server_host

 */

public class Client {

 public static void main(String args[]) {

 Socket s;

 String host;

 int port = 2345;

 DataInputStream is;

 DataInputStream ui;

 PrintStream os;

 String theLine;

 Bob TarrDesign Patterns In Java Remote Method Invocation
66

Client Example (Continued)Client Example (Continued)

 host = args[0];

 try {

 s = new Socket(host, port);

 is = new DataInputStream(s.getInputStream());

 os = new PrintStream(s.getOutputStream());

 ui = new DataInputStream(System.in);

 System.out.println("Enter Data");

 while(true) {

 theLine = ui.readLine();

 if (theLine.equals("end"))

 break;

 os.println(theLine);

 System.out.println(is.readLine());

 }

4

 Bob TarrDesign Patterns In Java Remote Method Invocation
77

Client Example (Continued)Client Example (Continued)

 os.close();

 is.close();

 ui.close();

 s.close();

 }

 catch(UnknownHostException e) {

 System.out.println(”Can’t find " + host);

 }

 catch(SocketException e) {

 System.out.println("Could not connect to ” + host);

 }

 catch(IOException e) {

 System.out.println(e);

 }

 }

}

 Bob TarrDesign Patterns In Java Remote Method Invocation
88

Server ExampleServer Example

import java.net.*;

import java.io.*;

/**

 * Server Program.

 * Converts incoming text to uppercase and sends converted

 * text back to client.

 * Accepts connection requests on port 2345.

 */

public class Server {

 public static void main(String args[]) {

 ServerSocket theServer;

 Socket con;

 PrintStream ps;

 DataInputStream dis;

 String input;

 int port = 2345;

 boolean flag = true;

5

 Bob TarrDesign Patterns In Java Remote Method Invocation
99

Server Example (Continued)Server Example (Continued)

 try {

 theServer = new ServerSocket(port);

 con = theServer.accept();

 dis = new DataInputStream(con.getInputStream());

 ps = new PrintStream (con.getOutputStream());

 while(flag == true) {

 input = dis.readLine();

 if (input == null) break;

 ps.println(uppers(input));

 }

 con.close();

 dis.close();

 ps.close();

 theServer.close();

 }

 catch(NullPointerException e){

 System.out.println("NPE" + e.getMessage());

 }

 Bob TarrDesign Patterns In Java Remote Method Invocation
1010

Server Example (Continued)Server Example (Continued)

 catch(IOException e) {

 System.out.println(e);

 }

 }

 public static String uppers(String input) {

 char let;

 StringBuffer sb = new StringBuffer(input);

 for (int i = 0; i < sb.length(); i++) {

 let = sb.charAt(i);

 let = Character.toUpperCase(let);

 sb.setCharAt(i,let);

 }

 return sb.toString();

 }

}

6

 Bob TarrDesign Patterns In Java Remote Method Invocation
1111

Remote ProceduresRemote Procedures

l In the previous example, the client communicated to the server
over a socket connection using a protocol known to both parties

l But both the client and server had to be aware of the socket level
details

l Wouldn’t it be nice if even these details were abstracted away and
the request to the server looked like a local procedure call from
the viewpoint of the client?

l That’s the idea behind a Remote Procedure Call (RPC), a
technology introduced in the late 1970’s

l Two RPC specifications:
é SUN’s Open Network Computing (ONC) RPC

é OSF’s Distributed Computing Environment (DCE) RPC

 Bob TarrDesign Patterns In Java Remote Method Invocation
1212

Distributed Object TechnologyDistributed Object Technology

l But RPC is not object-oriented. In the OO world, we’d like to
have distributed objects and remote method calls.

l While there are many Distributed Object Technologies available
today, three are widely available:

é RMI

é CORBA

é SOAP

l Remote Method Invocation (RMI)
é Developed by SUN

é Available as part of the core Java API

é Java-centric

é Object interfaces defined as Java interfaces

é Uses object serialization

7

 Bob TarrDesign Patterns In Java Remote Method Invocation
1313

Distributed Object TechnologyDistributed Object Technology

l Common Object Request Broker Architecture (CORBA)
é Developed by the Object Management Group (OMG)

é Language and platform independent

é Object interfaces defined in an Interface Definition Language (IDL)

é An Object Request Broker (ORB) facilitates the client-server
request/response action

é ORBs communicate via a binary protocol called the Internet Inter-ORB
Protocol (IIOP)

l SOAP
é Simple Object Access Protocol

é XML-Based

é Developed from an earlier spec called XML-RPC

é Standardized by the W3C

é Many implementations available

 Bob TarrDesign Patterns In Java Remote Method Invocation
1414

RMIRMI

l Provides a distributed object capability for Java applications

l Allows a Java method to obtain a reference to a remote object and
invoke methods of the remote object nearly as easily as if the
remote object existed locally

l The remote object can be in another JVM on the same host or on
different hosts across the network

l Uses object serialization to marshal and unmarshal method
arguments

l Supports the dynamic downloading of required class files across
the network

8

 Bob TarrDesign Patterns In Java Remote Method Invocation
1515

RMI ApplicationRMI Application

l RMI Application

 Bob TarrDesign Patterns In Java Remote Method Invocation
1616

RMI Stubs And SkeletonsRMI Stubs And Skeletons

l RMI uses stub and skeleton objects to provide the connection
between the client and the remote object

l A stub is a proxy for a remote object which is responsible for
forwarding method invocations from the client to the server
where the actual remote object implementation resides

l A client's reference to a remote object, therefore, is actually a
reference to a local stub. The client has a local copy of the stub
object.

l A skeleton is a server-side object which contains a method that
dispatches calls to the actual remote object implementation

l A remote object has an associated local skeleton object to
dispatch remote calls to it

9

 Bob TarrDesign Patterns In Java Remote Method Invocation
1717

RMI Stubs And SkeletonsRMI Stubs And Skeletons

l Note: Java 2 (JDK1.2) does not require an explicit skeleton class.
The skeleton object is automatically provided on the server side.

l A method can get a reference to a remote object
é by looking up the remote object in some directory service. RMI provides a

simple directory service called the RMI registry for this purpose.

é by receiving the remote object reference as a method argument or return
value

 Bob TarrDesign Patterns In Java Remote Method Invocation
1818

Developing An RMI ApplicationDeveloping An RMI Application

l An object becomes remote-enabled by implementing a remote
interface, which has these characteristics:

é A remote interface extends the interface java.rmi.Remote

é Each method of the interface declares java.rmi.RemoteException in its
throws clause, in addition to any application-specific exceptions

l Steps To Develop An RMI Application
é 1. Design and implement the components of your distributed application

Ý Define the remote interface(s)

Ý Implement the remote object(s)

Ý Implement the client(s)

é 2. Compile sources and generate stubs (and skeletons)

é 3. Make required classes network accessible

é 4. Run the application

10

 Bob TarrDesign Patterns In Java Remote Method Invocation
1919

RMI Example 1RMI Example 1

l The classic “Hello, World” Example using RMI!

l First, define the desired remote interface:

 import java.rmi.*;

 /**

 * Hello Interface.

 */

 public interface IHello extends Remote {

 public String sayHello() throws RemoteException;

 }

l A class that implements this remote interface can be used as a
remote object. Clients can remotely invoke the sayHello()
method which will return the string “Hello, World” to the client.

 Bob TarrDesign Patterns In Java Remote Method Invocation
2020

RMI Example 1 (Continued)RMI Example 1 (Continued)

l Next, provide an implementation of the remote object

l We’ll implement the remote object as a server

l The remote object server implementation should:
é Declare the remote interfaces being implemented

é Define the constructor for the remote object

é Provide an implementation for each remote method in the remote interfaces

é Create and install a security manager

é Create one or more instances of a remote object

é Register at least one of the remote objects with the RMI remote object
registry (or some other naming service), for bootstrapping purposes

l To make things simple, our remote object implementation will
extend java.rmi.server.UnicastRemoteObject. This class provides
for the “exporting” of a remote object by listening for incoming
calls to the remote object on an anonymous port.

11

 Bob TarrDesign Patterns In Java Remote Method Invocation
2121

RMI Example 1 (Continued)RMI Example 1 (Continued)

l Here’s the server for our remote object:

 import java.rmi.*;

 import java.rmi.server.*;

 // Hello Server.

 public class HelloServer extends UnicastRemoteObject

 implements IHello {

 private String name;

 public HelloServer(String name) throws RemoteException {

 super();

 this.name = name;

 }

 public String sayHello() {return "Hello, World!";}

 Bob TarrDesign Patterns In Java Remote Method Invocation
2222

RMI Example 1 (Continued)RMI Example 1 (Continued)

 public static void main(String[] args) {

 // Install a security manager!

 System.setSecurityManager(new RMISecurityManager());

 try {

 // Create the remote object.

 HelloServer obj = new HelloServer("HelloServer");

 // Register the remote object as "HelloServer".

 Naming.rebind("rmi://serverhost/HelloServer", obj);

 System.out.println("HelloServer bound in registry!");

 }

 catch(Exception e) {

 System.out.println("HelloServer error: " + e.getMessage());

 e.printStackTrace();

 }

 }

 }

12

 Bob TarrDesign Patterns In Java Remote Method Invocation
2323

RMI Example 1 (Continued)RMI Example 1 (Continued)

l Next, we need to write our client application:

 import java.rmi.*;

 // Hello Client.

 public class HelloClient {

 public static void main(String[] args) {

 // Install a security manager!

 System.setSecurityManager(new RMISecurityManager());

 try {

 // Get a reference to the remote object.

 IHello server =

 (IHello)Naming.lookup("rmi://serverhost/HelloServer");

 System.out.println("Bound to: " + server);

 Bob TarrDesign Patterns In Java Remote Method Invocation
2424

RMI Example 1 (Continued)RMI Example 1 (Continued)

 //Invoke the remote method.

 System.out.println(server.sayHello());

 }

 catch(Exception e) {

 e.printStackTrace();

 }

 }

 }

13

 Bob TarrDesign Patterns In Java Remote Method Invocation
2525

RMI Example 1 (Continued)RMI Example 1 (Continued)

l Now we can compile the client and server code:

javac IHello.java

javac HelloServer.java

javac HelloClient.java

l We next use the rmic utility to generate the required stub and
skeleton classes:

rmic HelloServer

l This generates the stub and skeleton classes:

HelloServer_Stub.class

HelloServer_Skel.class (Not needed in Java 2)

 Bob TarrDesign Patterns In Java Remote Method Invocation
2626

RMI Example 1 (Continued)RMI Example 1 (Continued)

l Our next step would be to make the class files network accessible.
For the moment, let’s assume that all these class files are
available locally to both the client and the server via their
CLASSPATH. That way we do not have to worry about dynamic
class downloading over the network. We’ll see in the next
example how to properly handle that situation.

l The files that the client must have in its CLASSPATH are:
IHello.class

HelloClient.class

HelloServer_Stub.class

l The files that the server must have in its CLASSPATH are:
IHello.class

HelloServer.class

HelloServer_Stub.class

HelloServer_Skel.class (Not needed in Java 2)

14

 Bob TarrDesign Patterns In Java Remote Method Invocation
2727

RMI Example 1 (Continued)RMI Example 1 (Continued)

l If you run this example in Java 2, you need a security policy file
that allows the downloading of class files

l Here is an example policy file that allows anything!

 grant {

 permission java.security.AllPermission;

 };

l Here’s a policy file that allows the program to connect to or
accept connections from any host on ports greater than 1024 and
to connect to any host on port 80 (the default HTTP port):

 grant {

 permission java.net.SocketPermission "*:1024-65535",

 "connect,accept";

 permission java.net.SocketPermission "*:80", "connect";

 };

 Bob TarrDesign Patterns In Java Remote Method Invocation
2828

RMI Example 1 (Continued)RMI Example 1 (Continued)

l Now, we are ready to run the application:

l On the server:
é Start the rmiregistry:

rmiregistry &

é Start the server:

java -Djava.security.policy=policy HelloServer

l On the client:
é Start the client:

java -Djava.security.policy=policy HelloClient

l Get this wonderful output on the client:

Hello, World!

15

 Bob TarrDesign Patterns In Java Remote Method Invocation
2929

RMI Example 2RMI Example 2

l The server in this example implements a generic compute engine

l The idea is that a client has some CPU-intensive job to do, but
does not have the horsepower to do it. So the client encapsulates
the task to be done as an object and sends it over to a server to be
executed. The compute engine on the server runs the job and
returns the results to the client.

l The compute engine on the server is totally generic and can
execute any kind of task requested by the client

l This example illustrates one of our Design Patterns. Which one??

 Bob TarrDesign Patterns In Java Remote Method Invocation
3030

RMI Example 2 (Continued)RMI Example 2 (Continued)

l First, define the remote interface:

 package compute;

 import java.rmi.*;

 /**

 * Generic Compute Interface.

 */

 public interface Compute extends Remote {

 Object executeTask(Task t) throws RemoteException;

 }

16

 Bob TarrDesign Patterns In Java Remote Method Invocation
3131

RMI Example 2 (Continued)RMI Example 2 (Continued)

l Here’s the generic task interface we'll need for this example:

 package compute;

 import java.io.Serializable;

 /**

 * Task Interface.

 */

 public interface Task extends Serializable {

 Object execute();

 }

 Bob TarrDesign Patterns In Java Remote Method Invocation
3232

RMI Example 2 (Continued)RMI Example 2 (Continued)

l Here's the remote server:

 package engine;

 import java.rmi.*;

 import java.rmi.server.*;

 import compute.*;

 /**

 * Server that executes a task specified in a Task object.

 */

 public class ComputeEngine extends UnicastRemoteObject

 implements Compute {

 public ComputeEngine() throws RemoteException {

 super();

 }

17

 Bob TarrDesign Patterns In Java Remote Method Invocation
3333

RMI Example 2 (Continued)RMI Example 2 (Continued)

 public Object executeTask(Task t) {

 return t.execute();

 }

 public static void main(String[] args) {

 // Install a security manager!

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 // Create the remote object.

 // Register the remote object as "Compute".

 String name = "rmi://serverhost/Compute";

 Bob TarrDesign Patterns In Java Remote Method Invocation
3434

RMI Example 2 (Continued)RMI Example 2 (Continued)

 try {

 Compute engine = new ComputeEngine();

 Naming.rebind(name, engine);

 System.out.println("ComputeEngine bound");

 }

 catch (Exception e) {

 System.err.println("ComputeEngine exception: " +

 e.getMessage());

 e.printStackTrace();

 }

 }

 }

18

 Bob TarrDesign Patterns In Java Remote Method Invocation
3535

RMI Example 2 (Continued)RMI Example 2 (Continued)

l Here's a client which asks the server to compute the value of pi:

 package client;

 import java.rmi.*;

 import java.math.*;

 import compute.*;

 /**

 * Client that asks the Generic Compute Server to compute pi.

 * The first command-line argument is the server hostname.

 * The second command-line argument is the number of required

 * digits after the decimal point for the computation.

 */

 public class ComputePi {

 Bob TarrDesign Patterns In Java Remote Method Invocation
3636

RMI Example 2 (Continued)RMI Example 2 (Continued)

 public static void main(String args[]) {

 // Install a security manager!

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());

 }

 try {

 String name = "//" + args[0] + "/Compute";

 // Get a reference to the remote object from the registry.

 Compute comp = (Compute) Naming.lookup(name);

 // Create a Task object.

 Pi task = new Pi(Integer.parseInt(args[1]));

19

 Bob TarrDesign Patterns In Java Remote Method Invocation
3737

RMI Example 2 (Continued)RMI Example 2 (Continued)

 // Ask the server to perform the computation.

 BigDecimal pi = (BigDecimal)(comp.executeTask(task));

 System.out.println(pi);

 }

 catch (Exception e) {

 System.err.println("ComputePi exception: " +

 e.getMessage());

 e.printStackTrace();

 }

 }

 }

 Bob TarrDesign Patterns In Java Remote Method Invocation
3838

RMI Example 2 (Continued)RMI Example 2 (Continued)

l Here's part of the Pi class used in the client:

 package client;

 import compute.*;

 import java.math.*;

 public class Pi implements Task {

 private int digits;

 public Pi(int digits) {this.digits = digits;}

 public Object execute() {

 // Pi calculation code goes here!

 }

 }

20

 Bob TarrDesign Patterns In Java Remote Method Invocation
3939

RMI Example 2 (Continued)RMI Example 2 (Continued)

 Bob TarrDesign Patterns In Java Remote Method Invocation
4040

RMI Example 2 (Continued)RMI Example 2 (Continued)

l Now we are ready to build the application. First, build a jar file
of the interface classes:

 cd /home/waldo/src

 javac compute/Compute.java

 javac compute/Task.java

 jar cvf compute.jar compute/*.class

l Next, build the server classes:
é Let's say that, ann, the developer of the ComputeEngine class, has placed

ComputeEngine.java in the /home/ann/src/engine directory and is
deploying the class files for clients to use in a subdirectory of her
public_html directory, /home/ann/public_html/classes. Let's assume that
the compute.jar file is located in the directory
/home/ann/public_html/classes. To compile the ComputeEngine class, your
class path must include the compute.jar file and the source directory itself.

21

 Bob TarrDesign Patterns In Java Remote Method Invocation
4141

RMI Example 2 (Continued)RMI Example 2 (Continued)

 setenv CLASSPATH

 /home/ann/src:/home/ann/public_html/classes/compute.jar

 cd /home/ann/src

 javac engine/ComputeEngine.java

 rmic -d . engine.ComputeEngine

 mkdir /home/ann/public_html/classes/engine

 cp engine/ComputeEngine*.class

 /home/ann/public_html/classes/engine

é The -d option tells the rmic compiler to place the generated class files,
ComputeEngine_Stub and ComputeEngine_Skel, in the directory
/home/ann/src/engine. You also need to make the stubs and skeletons
network accessible, so you must copy the stub and skeleton class to the
public_html/classes area.

 Bob TarrDesign Patterns In Java Remote Method Invocation
4242

RMI Example 2 (Continued)RMI Example 2 (Continued)

é Since the ComputeEngine's stub implements the Compute interface, which
refers to the Task interface, you need to make these two interface class files
network accessible along with the stub. So, the final step is to unpack the
compute.jar file in the directory /home/ann/public_html/classes to make the
Compute and Task interfaces available for downloading.

 cd /home/ann/public_html/classes

 jar xvf compute.jar

22

 Bob TarrDesign Patterns In Java Remote Method Invocation
4343

RMI Example 2 (Continued)RMI Example 2 (Continued)

l Finally, build the client classes:
é Let's assume that user jones has created the client code in the directory

/home/jones/src/client and will deploy the Pi class (so that it can be
downloaded to the compute engine) in the network-accessible directory
/home/jones/public_html/classes (also available via some web servers as
http://host/~jones/classes/). The two client-side classes are contained in the
files Pi.java and ComputePi.java in the client subdirectory.

é In order to build the client code, you need the compute.jar file that contains
the Compute and Task interfaces that the client uses. Let's say that the
compute.jar file is located in /home/jones/public_html/classes. The client
classes can be built as follows:

 Bob TarrDesign Patterns In Java Remote Method Invocation
4444

RMI Example 2 (Continued)RMI Example 2 (Continued)

 setenv CLASSPATH

 /home/jones/src:/home/jones/public_html/classes/compute.jar

 cd /home/jones/src

 javac client/ComputePi.java

 javac -d /home/jones/public_html/classes client/Pi.java

é Only the Pi class needs to be placed in the directory
public_html/classes/client (the client directory is created by javac if it does
not exist). That is because only the Pi class needs to be available for
downloading to the compute engine's virtual machine.

23

 Bob TarrDesign Patterns In Java Remote Method Invocation
4545

RMI Example 2 (Continued)RMI Example 2 (Continued)

l Start the RMI Registry:

 unsetenv CLASSPATH

 rmiregistry &

l Why do we make sure that rmiregistry has no CLASSPATH set
when we start it??

é If the rmiregistry can find the stub classes in its CLASSPATH, it will not
remember that the stub class can be loaded from the server's code base, as
specified by the java.rmi.server.codebase property. Therefore, the
rmiregistry will not tell the client the proper codebase when the client
downloads the stub object from the rmiregistry. Consequently, the client
will not be able to download the stub class.

 Bob TarrDesign Patterns In Java Remote Method Invocation
4646

RMI Example 2 (Continued)RMI Example 2 (Continued)

l Start the server:

java -Djava.rmi.server.codebase=http://zaphod/~ann/classes/

 -Djava.rmi.server.hostname=zaphod.east.sun.com

 -Djava.security.policy=policyfile

 engine.ComputeEngine

é When you start the compute engine, you need to specify, using the
java.rmi.server.codebase property, where the server's classes will be made
available. In this example, the server-side classes to be made available for
downloading are the ComputeEngine's stub and the Compute and Task
interfaces, available in ann's public_html/classes directory.

24

 Bob TarrDesign Patterns In Java Remote Method Invocation
4747

RMI Example 2 (Continued)RMI Example 2 (Continued)

l Start the client:

 setenv CLASSAPTH

 /home/jones/src:/home/jones/public_html/classes/compute.jar

 java -Djava.rmi.server.codebase=http://ford/~jones/classes/

 -Djava.security.policy=policyfile

 client.ComputePi zaphod.east.sun.com 20

