The
State and Strategy
Patterns

Design Patternsn Java Bob Tarr

The State Pattern

e Intent

= Allow an object to alter its behavior when itsinternal state changes. The
object will appear to changeits class.

o Motivation
TCPCannestian i':"“‘" TCFState
Capani) D—-—-—-: ey}
Clognd) 1 (= e
Mo edgal] : Aknoveeaae

| | '
TEPEntablinhed TCPListon TEPClosed

Oipend} Open|) Opan)
Clcesai] ekl Clasal]
A kncrad rigel] Aknnwledge() Ackreratatgel)

Design Patterns n Java The State and Sztrategy Patterns

Bob Tarr

The State Pattern

o Applicability
Use the State pattern whenever:

= An object's behavior depends on its state, and it must change its behavior at
run-time depending on that state

= Operations have large, multipart conditional statements that depend on the

object's state. The State pattern puts each branch of the conditional in a
separate class.

Design Patterns In Java

The State and Strategy Patterns
3

Bob Tarr
The State Pattern
e Structure
Context state State
Request() 9 Handlef}
5 A
1
state—=Handle() |
ConcreteStateA ConcreteStateB
Handle() Handie()
Design PatternsIn Java The State and S;ralegy Patterns Bob Tarr

The State Pattern

e Consequences
= Benefits
- Puts all behavior associated with a state into one object

- Allows state transition logic to be be incorporated into a state object rather than
inamonoalithic if or switch statement

- Helps avoid inconsistent states since state changes occur using just the one
state object and not several objects or attributes

= Liabilities
- Increased number of objects

The State and Strategy Patterns
5

Design Patterns In Java Bob Tarr

State Pattern Example 1

e Consider aclassthat has two methods, push() and pull(), whose
behavior changes depending on the state of the object

e To send the push and pull requests to the object, we'll use the
following GUI with "Push" and "Pull" buttons:

g rroer =1

G | i

e The state of the object will be indicated by the color of the canvas
in the top part of the GUI

e The states are: black, red, blue and green

Bob Tarr

Design Patterns n Java The State and Séralegy Patterns

State Pattern Example 1 (Continued)

o Firgt, let's do this without the State pattern:

/**

* Cl ass Cont ext NoSP has behavi or dependent on its state.
* The push() and pull () nethods do different things

* dependi ng on the state of the object.

* This class does NOT use the State pattern.

*/

public class ContextNoSP {

/1 The state!
private Color state = null;

/1 Creates a new ContextNoSP with the specified state (color).
publ i c Cont ext NoSP(Col or color) {state = color;}

/] Creates a new ContextNoSP with the default state

public Context NoSP() {this(Color.red);}

Design Patterns In Java

The State and Strategy Patterns Bob Tarr
7

State Pattern Example 1 (Continued)

/1 Returns the state.
public Color getState() {return state;}

/'l Sets the state.
public void setState(Col or state) {this.state = state;}

/**
* The push() nethod perforns different actions dependi ng
* on the state of the object. Actually, right now
* the only action is to nmake a state transition.
*/
public void push() {
if (state == Color.red) state = Col or. bl ue;
else if (state == Color.green) state = Col or. bl ack;
else if (state == Color.black) state = Color.red;
else if (state == Color.blue) state = Col or. green;

Design Patterns In Java

The State and Strategy Patterns Bob Tarr
8

State Pattern Example 1 (Continued)

/**
* The pull () nmethod perforns different actions dependi ng

* on the state of the object. Actually, right now
* the only action is to nmake a state transition.

*/

public void pull () {
if (state == Color.red) state = Col or. green;
else if (state == Color.green) state = Col or. bl ue;
else if (state == Color.black) state = Col or. green;
else if (state == Color.blue) state = Col or.red;

}

Bob Tarr

Design Patterns|n Java The State and S;ralegy Patterns

State Pattern Example 1 (Continued)

e Here's part of the GUI test program:

/**

* Test program for the ContextNoSP cl ass
* whi ch does NOT use the State pattern.
*/
public class Test NoSP extends Frane

i mpl ements ActionListener {

/1 QU attributes.

private Button pushButton = new Button("Push Operation");
private Button pullButton = new Button("Pull Operation");
private Button exitButton = new Button("Exit");

private Canvas canvas = new Canvas();

/1 The Context.
private Context NoSP context = null;

The State and Strategy Patterns
10

Design Patterns In Java Bob Tarr

State Pattern Example 1 (Continued)

public TestNoSP() {
super("No State Pattern");
context = new Cont ext NoSP();
set upW ndow() ;

private void setupWndow) { // Setup GU }

/1 Handle GU actions.
public void actionPerfornmed(Acti onEvent event) {
Obj ect src = event.get Source();
if (src == pushButton) {
cont ext . push();
canvas. set Background(context.getState());

The State and Strategy Patterns

Design Patterns In Java
11

Bob Tarr

State Pattern Example 1 (Continued)

else if (src == pullButton) {
context.pull ();
canvas. set Background(context.getState());

}

else if (src == exitButton) {
System exit (0);

/1 Main nethod.

public static void main(String[] argv) {
Test NoSP gui = new Test NoSP() ;
gui . setVisible(true);

The State and Strategy Patterns

Design Patterns In Java
12

Bob Tarr

State Pattern Example 1 (Continued)

o Now let's use the State pattern!
e Here'sthe class diagram:

Context state State

BlackState GreenState

RedState BlueState

The State and Strategy Patterns
13

Design Patterns In Java Bob Tarr

State Pattern Example 1 (Continued)

o First, well define the abstract State class:

/**
* Abstract class which defines the interface for the
* behavi or of a particular state of the Context.
*/
public abstract class State {
public abstract void handl ePush(Context c);
public abstract void handl ePul | (Context c);
public abstract Col or getColor();
}

o Next, we'll write concrete State classes for al the different states:
RedState, BlackState, BlueState and GreenState

The State and Strategy Patterns
14

Design Patterns In Java Bob Tarr

State Pattern Example 1 (Continued)

e For example, here's the BlackState class:

public class BlackState extends State {
/'l Next state for the Black state:
/1 On a push(), go to "red"
/1 On a pull(), go to "green"

public void handl ePush(Context c) {
c.set State(new RedState());

public void handl ePul | (Context c) {
c.setState(new GreenState());

public Color getColor() {return (Color.black);}

The State and Strategy Patterns
15

Design Patterns In Java Bob Tarr

State Pattern Example 1 (Continued)

¢ And, here'sthe new Context class that uses the State pattern and
the State classes:

/**

* Class Context has behavior dependent on its state.

* This class uses the State pattern.

* Now when we get a pull () or push() request, we

* del egate the behavior to our contained state object!
*/

public class Context {

/1 The contained state.
private State state = null; // State attribute

/] Creates a new Context with the specified state.
public Context(State state) {this.state = state;}

The State and Strategy Patterns
16

Design Patterns In Java Bob Tarr

Design Patterns In Java

State Pattern Example 1 (Continued)

/1 Creates a new Context with the default state.
public Context() {this(new RedState());}

/1 Returns the state.
public State getState() {return state;}

/'l Sets the state.
public void setState(State state) {this.state = state;}

The State and Strategy Patterns

Bob Tarr
17

Design Patterns In Java

State Pattern Example 1 (Continued)

/**

* The push() nethod perforns different actions dependi ng

* on the state of the object. Using the State pattern,

* we del egate this behavior to our contained state object.
*/

public void push() {state.handl ePush(this);}

/**

* The pull () nmethod perforns different actions dependi ng

* on the state of the object. Using the State pattern,

* we del egate this behavior to our contained state object.
*/

public void pull () {state.handl ePull (this);}

The State and Strategy Patterns

Bob Tarr
18

The State Pattern

e Implementation Issues
= Who defines the state transitions?
- The Context class => ok for simple situations

- The ConcreteState classes => generally more flexible, but causes
implementation dependencies between the ConcreteState classes

- Example 1 has the ConcreteState classes define the state transitions
= When are the ConcreteState objects created?
- Create ConcreteState objects as needed

- Create all ConcreteState objects once and have the Context object keep
references to them

- Example 1 creates them as needed

= Can't we just use a state-transition table for all this?
- Harder to understand
- Difficult to add other actions and behavior

The State and Strategy Patterns

Design Patterns In Java
19

Bob Tarr

State Pattern Example 2

e Situation: A bank account can change from an open account to a
closed account and back to an open account again. The behavior

of the two types of accountsis different.
e Solution: Use the State pattern!

Account state AccountState

OpenState ClosedState

The State and Strategy Patterns

Design Patterns In Java
20

Bob Tarr

10

State Pattern Example 3 - SPOP

e Thisexample comes from Roger Whitney, San Diego State
University

e Consider asimplified version of the Post Office Protocol used to
download e-mail from amail server

¢ Simple POP (SPOP) supports the following command:
= USER username
- The USER command with a username must be the first command issued
= PASS password

- The PASS command with a password or the QUIT command must come after
USER. If the username and password are valid, then the user can use other
commands.

= LIST <message number>

- The LIST command returns the size of all messagesin the mail box. If the
optional message number is specified, then it returns the size of that message.

The State and Strategy Patterns
21

Design Patterns In Java Bob Tarr

State Pattern Example 3 - SPOP (Continued)

= RETR <message number>
- The RETR command retrieves all message in the mail box. If the optional
message number is specified, then it retrieves that message.
= QUIT

- The QUIT command updates the mail box to reflect transactions taken, then
logs the user out.

The State and Strategy Patterns
22

Design Patterns In Java Bob Tarr

11

State Pattern Example 3 - SPOP (Continued)

e Here'saversion of an SPop class without using the State pattern:

public class SPop {
static final int QUT = 1;
static final int HAVE _USER NAME = 2;
static final int START = 3;
static final int AUTHORI ZED = 4,
private int state = START;
String user Nane;
String password;

The State and Strategy Patterns

Design Patterns In Java
23

Bob Tarr

State Pattern Example 3 - SPOP (Continued)

public void user(String userNane) {
switch (state) {
case START: {
this.userNane = user Nane;
state = HAVE_USER_NAME;
br eak;
}
default: { // Invalid comand
sendEr r or MessageOr What Ever () ;
endLast Sessi onW t hout Updat e() ;
user Name = nul | ;
password = nul|;
state = START;

The State and Strategy Patterns

Design Patterns In Java
24

Bob Tarr

12

State Pattern Example 3 - SPOP (Continued)

public void pass(String password) {
switch (state) {
case HAVE _USER NAME: ({

thi s. password = password;

if (validateUser())
state = AUTHORI ZED;

el se {
sendEr r or MessageOr What Ever () ;
user Name = nul | ;
password = null;
state = START;

}
}
Design PatternsIn Java The State and gg ategy Patterns Bob Tarr
State Pattern Example 3 - SPOP (Continued)
default: { // Invalid command
sendEr r or MessageOr What Ever () ;
endLast Sessi onW t hout Updat e() ;
state = START,
}
}
}
}
Design PatternsIn Java The State and Strategy Patterns Bob Tarr

26

13

State Pattern Example 3 - SPOP (Continued)

o Now let's use the State pattern!

e Here'sthe class diagram:

SPop

Design Patterns In Java

state

SPopState

Start

Quit

HaveUserName

Authorized

The State and Strategy Patterns

27

Bob Tarr

State Pattern Example 3 - SPOP (Continued)

o First, we'll define the SPopState class. Notice that thisclassisa

concrete class that defines default actions.

public class SPopState {

public SPopState user(String userName) {default action here}

public SPopState pass(String password) {default action here}

public SPopState list(int messageNunber) {default action here}

public SPopState retr(int messageNunmber) {default action here}

public SPopState quit() {default action here}

Design Patterns In Java

The State and Strategy Patterns

28

Bob Tarr

14

State Pattern Example 3 - SPOP (Continued)

e Here sthe Start class:

public class Start extends SPopState {

public SPopState user(String userNanme) {
return new HaveUser Nane(user Nane) ;

The State and Strategy Patterns

Design Patterns In Java
29

Bob Tarr

State Pattern Example 3 - SPOP (Continued)

e Here' sthe HaveUserName class:

public class HaveUser Nane extends SPopState {
String user Nane;

publ i c HaveUser Name(String userNane) {
thi s.userNane = user Naneg;

public SPopState pass(String password) {
if (validateUser(userNane, password)
return new Aut hori zed(user Nane) ;
el se
return new Start();

The State and Strategy Patterns

Design Patterns In Java
30

Bob Tarr

15

State Pattern Example 3 - SPOP (Continued)

o Finally, hereisthe SPop class that uses these state classes:

public class SPop {
private SPopState state = new Start();

public void user(String userNanme) ({
state = state.user(userNane);

}

public void pass(String password) ({
state = state.pass(password);

}

public void list(int nmessageNunber) {
state = state.list(nessageNunber);

}

}

Design Patterns In Java

The State and Strategy Patterns

Bob Tarr
31

State Pattern Example 3 - SPOP (Continued)

¢ Note, that in this example, the state classes specify the next state

e We could have the SPop classitself determine the state transition
(the state classes now return true of false):

public class SPop {
private SPopState state = new Start();
public void user(String userNanme) {
state. user (user Nane) ;
state = new HaveUser Nane(user Nane) ;
}
public void pass(String password) {
if (state.pass(password))
state = new Authorized();
el se
state = new Start();
}
}

Design Patterns In Java

The State and Strategy Patterns

Bob Tarr
32

16

State Pattern Example 3 - SPOP (Continued)

e Multipleinstances of SPop could share state objectsif the state
objects have no required instance variables or the state objects
store their instance variables el sewhere

e Such sharing of objectsis an example of the Flyweight Pattern

e How can the state object store its state el sewhere?
= Have the Context store this data and passit to the state object (a push
model)
= Have the Context store this data and have the state object retrieve it when
needed (a pull model)

The State and Strategy Patterns Bob Tarr

Design Patterns In Java
33

State Pattern Example 3 - SPOP (Continued)

e Here'san example of the Context storing the state and passing it
to the state objects:

public class SPop {
private SPopState state = new Start();
String user Nane;
String password;

public void user(String newNane) ({
t hi s. user Nane = newNane;
state. user (newNane) ;

}

public void pass(String password) ({
stat e. pass(user Narme, password);

}

The State and Strategy Patterns Bob Tarr

Design Patterns In Java
34

17

State Pattern Example 3 - SPOP (Continued)

¢ Herethe Context stores the state and the state objects retrieve it:

public class SPop {
private SPopState state = new Start();
String user Nane;
String password;

public String getUserName() {return userNane;}
public String getPassword() {return password;}
public void user(String newNane) ({

thi s. userNane = newNane ;

state. user(this);

}

}

Design PatternsIn Java The State and gtt': ategy Patterns Bob Tarr

State Pattern Example 3 - SPOP (Continued)

e And hereis how the HaveUserName state object retrieves the
state in its user() method:

public class HaveUser Nane extends SPopState {

public SPopState user(SPop nail Server) {
String userName = mail Server. get User Nane() ;

Design PatternsIn Java The State and gtﬁr ategy Patterns Bob Tarr

18

The Strategy Pattern

e Intent

= Define afamily of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from
clientsthat useit.

e Motivation
Composition Gwrnpos:[rlr Compositor
Traverse() Compose()
Hepaie() P

SimpleCompositor TeXCompositor ArrayCompositor

compesitor->Compose()

Compose() Compose() Compose()

The State and Strategy Patterns
37

Design Patterns In Java Bob Tarr

The Strategy Pattern

o Applicability
Use the Strategy pattern whenever:
- Many related classes differ only in their behavior
- You need different variants of an algorithm

- An algorithm uses data that clients shouldn't know about. Use the Strategy
pattern to avoid exposing complex, algorithm-specific data structures.

- A class defines many behaviors, and these appear as multiple conditional
statements in its operations. Instead of many conditionals, move related
conditional branchesinto their own Strategy class.

The State and Strategy Patterns
38

Design Patterns In Java Bob Tarr

19

The Strategy Pattern

e Structure
Context i Strategy
Contextinterface) Algorithminteriace(}

\

ConcreteStrategyA | | ConcreteStralegyB | | ConcreteStrategyC

Algonthininterfacef) Algarithminterface() Algorhminterface()

The State and Strategy Patterns
39

Design Patterns In Java Bob Tarr

The Strategy Pattern

e Consequences
= Benefits

- Provides an alternative to subclassing the Context classto get a variety of
algorithms or behaviors

- Eliminates large conditional statements

- Provides a choice of implementations for the same behavior
= Liabilities

- Increases the number of objects

- All algorithms must use the same Strategy interface

The State and Strategy Patterns
40

Design Patterns In Java Bob Tarr

20

Strategy Pattern Example 1

e Situation: A class wants to decide at run-time what algorithm it
should use to sort an array. Many different sort algorithms are
already available.

¢ Solution: Encapsulate the different sort algorithms using the
Strategy pattern!

SortArray SortStrategy
sortStrategy
sort() sort()
BubbleSort QuickSort InsertionSort
sort() sort() sort()

The State and Strategy Patterns

Design Patterns In Java
41

Bob Tarr

Strategy Pattern Example 2

e Situation: A GUI container object wants to decide at run-time
what strategy it should use to layout the GUI components it
contains. Many different layout strategies are already available.

¢ Solution: Encapsulate the different layout strategies using the
Strategy pattern!

e Hey! Thisiswhat the Java AWT does with its LayoutM anagers!

Container layoutManager LayoutManager
FlowLayout BorderLayout CardLayout

The State and Strategy Patterns

Design Patterns In Java
42

Bob Tarr

21

Strategy Pattern Example 2 (Continued)

e Someclient code:

Frame f = new Frane();
f.set Layout (new Fl owLayout ());
f.add(new Button(“Press”));

The State and Strategy Patterns

Design Patterns In Java
43

Bob Tarr

Strategy Pattern Example 3

e Situation: A GUI text component object wants to decide at run-
time what strategy it should use to validate user input. Many
different validation strategies are possible: numeric fields,
alphanumeric fields, telephone-number fields, etc.

¢ Solution: Encapsulate the different input validation strategies
using the Strategy pattern!

TextComponent validator Validator
Numeric Alphanumeric TelNumber

The State and Strategy Patterns

Design Patterns In Java
44

Bob Tarr

22

Strategy Pattern Example 3 (Continued)

e Thisisthetechnique used by the Java Swing GUI text
components. Every text component has areferenceto a
document model which provides the required user input
validation strategy.

The State and Strategy Patterns

Design Patterns In Java
45

Bob Tarr

The Null Object Pattern

e Sometimes the Context may not want to use the strategy provided
by its contained Strategy object. That is, the Context wants a“do-
nothing” strategy.

e Oneway to do thisisto have the Context assign a null reference
to its contained Strategy object. In this case, the Context must
aways check for this null value:

if (strategy != null)
strategy. doOperation();

The State and Strategy Patterns

Design Patterns In Java
46

Bob Tarr

23

The Null Object Pattern

e Another way to accomplish thisisto actually have a“do-nothing”
strategy class which implements all the required operations of a
Strategy object, but these operations do nothing. Now clients do
not have to distinguish between strategy objects which actually do
something useful and those that do nothing.

e Using a“do-nothing” object for this purpose is known as the Null
Object Pattern

Design PatternsIn Java The State and it; ategy Patterns Bob Tarr

The Strategy Pattern

¢ Note the similarities between the State and Strategy patterns! The
difference is one of intent.

= A State object encapsulates a state-dependent behavior (and possibly state
transitions)

= A Strategy object encapsulates an algorithm
¢ And they are both examples of Composition with Delegation!

Design PatternsIn Java The State and ig ategy Patterns Bob Tarr

24

