The
Template M ethod
Pattern

Design Patternsn Java Bob Tarr

The Template Method Pattern

e Intent

= Define the skeleton of an agorithm in an operation, deferring some steps to
subclasses. Template Method |ets subclasses redefine certain steps of an
algorithm without changing the algorithm's structure.

e Motivation

= Sometimes you want to specify the order of operations that a method uses,
but allow subclasses to provide their own implementations of some of these

operations
. Ll
< Consider: it T oo

Bassdi AddDaadmaTi’

Dyl Cpmarierarraad |

Chery PR L T

Dl G|
Asou T pasfopumeny |

e ettty N]

[T [S NE————Y Fiai® i Ay [N Ten
Carlysnccsman
LT o T |

The Template Method Pattern
2

Design Patterns In Java Bob Tarr

The Template Method Pattern

e Motivation
= The OpenDocument() method might look like this:

public void OpenDocunment (String name) ({
if (!CanOpenDocunent(nane)) { return; }
Docurment doc = DoCreat eDocument () ;
if (doc !'=null) {
docs. AddDocunent (doc) ;
About ToOpenDocunent (doc) ;
doc. Open();
doc. DoRead() ;
}
}

= The OpenDocument() method is a Template Method

= The template method fixes the order of operations, but allows Application
subclasses to vary those steps as needed

The Template Method Pattern
3

Design Patterns In Java Bob Tarr

Template Method Pattern Example 1

e Suppose you had a PlainTextDocument class as follows:

public class PlainTextDocurment {

public void printPage (Page page) ({

print Pl ai nText Header () ; /1 Unique to PlainTextDocunment
System out . println(page. body());
print Pl ai nText Footer () ; /1 Unique to PlainTextDocunment

}

The Template Method Pattern
4

Design Patterns In Java Bob Tarr

Template Method Pattern Example 1 (Continued)

¢ And then you wrote an Html TextDocument class like this:

public class H m Text Docunment {

public void printPage (Page page) ({

print Ht m Text Header () ; /1 Unique to Htm Text Docunent
System out . println(page. body());
print H m Text Footer(); /1 Unique to Htm Text Docunent

}

The Template Method Pattern
5

Design Patterns In Java Bob Tarr

Template Method Pattern Example 1 (Continued)

e The printPage() methods in the PlainTextDocument and
HtmlTextDocument classes look much alike

o Whenever we see two such similar methods in subclasses, it
makes sense to bring the methods together into a superclass
method

e We can write a printPage() template method in a superclass that
alows for PlainTextDocument and Html TextDocument to
provide their unique implementations of abstract methods to print
the header and footer

The Template Method Pattern
6

Design Patterns In Java Bob Tarr

Template Method Pattern Example 1 (Continued)

e Hereisthe TextDocument superclass:

public abstract class TextDocunent {

public final void printPage (Page page) {
pri nt Text Header () ;
pri nt Text Body(page) ;
pri nt Text Footer ();
}
public abstract void printText Header ();
public final void printTextBody(Page page) {
System out . println(page. body());
}

public abstract void printTextFooter();

The Template Method Pattern

Design Patterns In Java 7

Bob Tarr

Template Method Pattern Example 1 (Continued)

¢ And hereisthe new PlainTextDocument class (the new
HtmITextDocument classis similar):

public class PlainText Document extends Text Docunment {

public void printTextHeader () {
/] Code for header plain text header here.

}

public void printTextFooter () {
/] Code for header plain text footer here.

}

}

¢ Notethat al we haveto do is provide the proper implementations

of the abstract methods in the TextDocument superclass

The Template Method Pattern

Design Patterns In Java s

Bob Tarr

The Template Method Pattern

o Applicability
Use the Template Method pattern:

= To implement the invariant parts of an algorithm once and leaveit up to
subclasses to implement the behavior that can vary

= To localize common behavior among subclasses and placeit in acommon
class (in this case, a superclass) to avoid code duplication. Thisisaclassic
example of ”code refactoring.”

= To control how subclasses extend superclass operations. Y ou can define a
template method that calls "hook" operations at specific points, thereby
permitting extensions only at those points.

The Template Method is a fundamental technique for code reuse.

The Template Method Pattern

Design Patterns In Java 9

Bob Tarr

The Template Method Pattern

e Structure

ANSIACICIASS

=]

TemplateMathod() O - === -======"| GrmgyrOpemtoni()
Privfius patafion (7 A
Prmiamaranandy Prmave Oparedon)

¢

ConcaeteClasy

Primitweliperatoni|)
Primiinellperaton2|)

The Template Method Pattern

Design Patterns In Java
10

Bob Tarr

The Template Method Pattern

e Implementation Issues

>

Design Patterns In Java

Operations which must be overridden by a subclass should be made
abstract

If the template method itself should not be overridden by a subclass, it
should be made final

To alow asubclass to insert code at a specific spot in the operation of the
algorithm, insert “hook” operations into the template method. These hook
operations may do nothing by default.

Try to minimize the number of operations that a subclass must override,
otherwise using the template method becomes tedious for the devel oper

In atemplate method, the parent class calls the operations of a subclass and
not the other way around. Thisis an inverted control structure that's
sometimes referred to as "the Hollywood principle,” asin, "Don't call us,
well call you".

The Template Method Pattern
11

Bob Tarr

Template Method Pattern Example 2

e Suppose we have aManufacturing class as follows:

pu

Design Patterns In Java

blic class Manufacturing {

/1 A tenplate nethod!

public final void makePart () {
operationl();
operation2();

}

public void operationl() {
/1 Default behavior for Operation 1

}

public void operation2() {
/1 Default behavior for Operation 2

}

The Template Method Pattern
12

Bob Tarr

Template Method Pattern Example 2 (Continued)

¢ And asubclass wants to do some behavior between operationl()
and operation2() of makePart(), so it overrides operation2() as
follows:

public class MyManufacturing {

/1 We want to do behavi or between operationl() and
/1 operation2() of makePart(), so we override operation2()
/Il as follows. (Note: we could just as easily have
/1 overridden operationl().)
public void operation2() {
/1 Put behavior we want to do BEFORE the nornmal Operation2
/'l here!
super. operation2();

}

}

Design Patterns|n Java The Template Method Pattern

Bob Tarr
13

Template Method Pattern Example 2 (Continued)

e If you find that many subclasses want to do this, it iswise to
modify the superclass and put in a hook operation:

public class Manufacturing {

/1 A tenplate nethod!

public final void makePart () {
operationl();
hook(); // A hook method
operation2();

}

/1 Do not hing hook nethod.

public void hook() {}

}

e Now subclasses only need to provide an implementation for the
hook() method

The Template Method Pattern

Design Patterns In Java
14

Bob Tarr

