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The Template Method PatternThe Template Method Pattern

l Intent
é Define the skeleton of an algorithm in an operation, deferring some steps to

subclasses.  Template Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm's structure.

l Motivation
é Sometimes you want to specify the order of operations that a method uses,

but allow subclasses to provide their own implementations of some of these
operations

é Consider:
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The Template Method PatternThe Template Method Pattern

l Motivation
é The OpenDocument() method might look like this:

   public void OpenDocument (String name) {

     if (!CanOpenDocument(name)) { return; }

     Document doc = DoCreateDocument();

     if (doc != null) {

       docs.AddDocument(doc);

       AboutToOpenDocument(doc);

       doc.Open();

       doc.DoRead();

     }

   }

é The OpenDocument() method is a Template Method

é The template method fixes the order of operations, but allows Application
subclasses to vary those steps as needed
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Template Method Pattern Example 1Template Method Pattern Example 1

l Suppose you had a PlainTextDocument class as follows:

   public class PlainTextDocument {

     ...

     public void printPage (Page page) {

       printPlainTextHeader();   // Unique to PlainTextDocument

       System.out.println(page.body());

       printPlainTextFooter();   // Unique to PlainTextDocument

     }

     ...

   }
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Template Method Pattern Example 1 (Continued)Template Method Pattern Example 1 (Continued)

l And then you wrote an HtmlTextDocument class like this:

   public class HtmlTextDocument {

     ...

     public void printPage (Page page) {

       printHtmlTextHeader();     // Unique to HtmlTextDocument

       System.out.println(page.body());

       printHtmlTextFooter();     // Unique to HtmlTextDocument

     }

     ...

   }
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Template Method Pattern Example 1 (Continued)Template Method Pattern Example 1 (Continued)

l The printPage() methods in the PlainTextDocument and
HtmlTextDocument classes look much alike

l Whenever we see two such similar methods in subclasses, it
makes sense to bring the methods together into a superclass
method

l We can write a printPage() template method in a superclass that
allows for PlainTextDocument and HtmlTextDocument to
provide their unique implementations of abstract methods to print
the header and footer
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Template Method Pattern Example 1 (Continued)Template Method Pattern Example 1 (Continued)

l Here is the TextDocument superclass:

   public abstract class TextDocument {

     ...

     public final void printPage (Page page) {

       printTextHeader();

       printTextBody(page);

       printTextFooter();

     }

     public abstract void printTextHeader();

     public final void printTextBody(Page page) {

       System.out.println(page.body());

     }

     public abstract void printTextFooter();

     ...

   }
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Template Method Pattern Example 1 (Continued)Template Method Pattern Example 1 (Continued)

l And here is the new PlainTextDocument class (the new
HtmlTextDocument class is similar):

   public class PlainTextDocument extends TextDocument {

     ...

     public void printTextHeader () {

       // Code for header plain text header here.

     }

     public void printTextFooter () {

       // Code for header plain text footer here.

     }

     ...

   }

l Note that all we have to do is provide the proper implementations
of the abstract methods in the TextDocument superclass
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The Template Method PatternThe Template Method Pattern

l Applicability
Use the Template Method pattern:

é To implement the invariant parts of an algorithm once and leave it up to
subclasses to implement the behavior that can vary

é To localize common behavior among subclasses and place it in a common
class (in this case, a superclass) to avoid code duplication. This is a classic
example of  ”code refactoring.”

é To control how subclasses extend superclass operations. You can define a
template method that calls "hook" operations at specific points, thereby
permitting extensions only at those points.

The Template Method is a fundamental technique for code reuse.
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The Template Method PatternThe Template Method Pattern

l Structure
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The Template Method PatternThe Template Method Pattern

l Implementation Issues
é Operations which must be overridden by a subclass should be made

abstract

é If the template method itself should not be overridden by a subclass, it
should be made final

é To allow a subclass to insert code at a specific spot in the operation of the
algorithm, insert “hook” operations into the template method.  These hook
operations may do nothing by default.

é Try to minimize the number of operations that a subclass must override,
otherwise using the template method becomes tedious for the developer

é In a template method, the parent class calls the operations of a subclass and
not the other way around.  This is an inverted control structure that's
sometimes referred to as "the Hollywood principle," as in, "Don't call us,
we'll call you".
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Template Method Pattern Example 2Template Method Pattern Example 2

l Suppose we have a Manufacturing class as follows:
   public class Manufacturing {

     ...

     // A template method!

     public final void makePart () {

       operation1();

       operation2();

     }

     public void operation1() {

       // Default behavior for Operation 1

     }

     public void operation2() {

       // Default behavior for Operation 2

     }

     ...

   }
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Template Method Pattern Example 2 (Continued)Template Method Pattern Example 2 (Continued)

l And a subclass wants to do some behavior between operation1()
and operation2() of makePart(), so it overrides operation2() as
follows:

   public class MyManufacturing {

     ...

     // We want to do behavior between operation1() and

     // operation2() of makePart(), so we override operation2()

     // as follows.  (Note: we could just as easily have

     // overridden operation1().)

     public void operation2() {

       // Put behavior we want to do BEFORE the normal Operation2

       //  here!

       super.operation2();

     }

     ...

   }
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Template Method Pattern Example 2 (Continued)Template Method Pattern Example 2 (Continued)

l If you find that many subclasses want to do this, it is wise to
modify the superclass and put in a hook operation:

   public class Manufacturing {

     ...

     // A template method!

     public final void makePart () {

       operation1();

       hook();  // A hook method

       operation2();

     }

     // Do nothing hook method.

     public void hook() {}

     ...

   }

l Now subclasses only need to provide an implementation for the
hook() method


