
1

Design Patterns In Java Bob Tarr

The
Template Method

Pattern

 Bob TarrDesign Patterns In Java The Template Method Pattern
22

The Template Method PatternThe Template Method Pattern

l Intent
é Define the skeleton of an algorithm in an operation, deferring some steps to

subclasses. Template Method lets subclasses redefine certain steps of an
algorithm without changing the algorithm's structure.

l Motivation
é Sometimes you want to specify the order of operations that a method uses,

but allow subclasses to provide their own implementations of some of these
operations

é Consider:

2

 Bob TarrDesign Patterns In Java The Template Method Pattern
33

The Template Method PatternThe Template Method Pattern

l Motivation
é The OpenDocument() method might look like this:

 public void OpenDocument (String name) {

 if (!CanOpenDocument(name)) { return; }

 Document doc = DoCreateDocument();

 if (doc != null) {

 docs.AddDocument(doc);

 AboutToOpenDocument(doc);

 doc.Open();

 doc.DoRead();

 }

 }

é The OpenDocument() method is a Template Method

é The template method fixes the order of operations, but allows Application
subclasses to vary those steps as needed

 Bob TarrDesign Patterns In Java The Template Method Pattern
44

Template Method Pattern Example 1Template Method Pattern Example 1

l Suppose you had a PlainTextDocument class as follows:

 public class PlainTextDocument {

 ...

 public void printPage (Page page) {

 printPlainTextHeader(); // Unique to PlainTextDocument

 System.out.println(page.body());

 printPlainTextFooter(); // Unique to PlainTextDocument

 }

 ...

 }

3

 Bob TarrDesign Patterns In Java The Template Method Pattern
55

Template Method Pattern Example 1 (Continued)Template Method Pattern Example 1 (Continued)

l And then you wrote an HtmlTextDocument class like this:

 public class HtmlTextDocument {

 ...

 public void printPage (Page page) {

 printHtmlTextHeader(); // Unique to HtmlTextDocument

 System.out.println(page.body());

 printHtmlTextFooter(); // Unique to HtmlTextDocument

 }

 ...

 }

 Bob TarrDesign Patterns In Java The Template Method Pattern
66

Template Method Pattern Example 1 (Continued)Template Method Pattern Example 1 (Continued)

l The printPage() methods in the PlainTextDocument and
HtmlTextDocument classes look much alike

l Whenever we see two such similar methods in subclasses, it
makes sense to bring the methods together into a superclass
method

l We can write a printPage() template method in a superclass that
allows for PlainTextDocument and HtmlTextDocument to
provide their unique implementations of abstract methods to print
the header and footer

4

 Bob TarrDesign Patterns In Java The Template Method Pattern
77

Template Method Pattern Example 1 (Continued)Template Method Pattern Example 1 (Continued)

l Here is the TextDocument superclass:

 public abstract class TextDocument {

 ...

 public final void printPage (Page page) {

 printTextHeader();

 printTextBody(page);

 printTextFooter();

 }

 public abstract void printTextHeader();

 public final void printTextBody(Page page) {

 System.out.println(page.body());

 }

 public abstract void printTextFooter();

 ...

 }

 Bob TarrDesign Patterns In Java The Template Method Pattern
88

Template Method Pattern Example 1 (Continued)Template Method Pattern Example 1 (Continued)

l And here is the new PlainTextDocument class (the new
HtmlTextDocument class is similar):

 public class PlainTextDocument extends TextDocument {

 ...

 public void printTextHeader () {

 // Code for header plain text header here.

 }

 public void printTextFooter () {

 // Code for header plain text footer here.

 }

 ...

 }

l Note that all we have to do is provide the proper implementations
of the abstract methods in the TextDocument superclass

5

 Bob TarrDesign Patterns In Java The Template Method Pattern
99

The Template Method PatternThe Template Method Pattern

l Applicability
Use the Template Method pattern:

é To implement the invariant parts of an algorithm once and leave it up to
subclasses to implement the behavior that can vary

é To localize common behavior among subclasses and place it in a common
class (in this case, a superclass) to avoid code duplication. This is a classic
example of ”code refactoring.”

é To control how subclasses extend superclass operations. You can define a
template method that calls "hook" operations at specific points, thereby
permitting extensions only at those points.

The Template Method is a fundamental technique for code reuse.

 Bob TarrDesign Patterns In Java The Template Method Pattern
1010

The Template Method PatternThe Template Method Pattern

l Structure

6

 Bob TarrDesign Patterns In Java The Template Method Pattern
1111

The Template Method PatternThe Template Method Pattern

l Implementation Issues
é Operations which must be overridden by a subclass should be made

abstract

é If the template method itself should not be overridden by a subclass, it
should be made final

é To allow a subclass to insert code at a specific spot in the operation of the
algorithm, insert “hook” operations into the template method. These hook
operations may do nothing by default.

é Try to minimize the number of operations that a subclass must override,
otherwise using the template method becomes tedious for the developer

é In a template method, the parent class calls the operations of a subclass and
not the other way around. This is an inverted control structure that's
sometimes referred to as "the Hollywood principle," as in, "Don't call us,
we'll call you".

 Bob TarrDesign Patterns In Java The Template Method Pattern
1212

Template Method Pattern Example 2Template Method Pattern Example 2

l Suppose we have a Manufacturing class as follows:
 public class Manufacturing {

 ...

 // A template method!

 public final void makePart () {

 operation1();

 operation2();

 }

 public void operation1() {

 // Default behavior for Operation 1

 }

 public void operation2() {

 // Default behavior for Operation 2

 }

 ...

 }

7

 Bob TarrDesign Patterns In Java The Template Method Pattern
1313

Template Method Pattern Example 2 (Continued)Template Method Pattern Example 2 (Continued)

l And a subclass wants to do some behavior between operation1()
and operation2() of makePart(), so it overrides operation2() as
follows:

 public class MyManufacturing {

 ...

 // We want to do behavior between operation1() and

 // operation2() of makePart(), so we override operation2()

 // as follows. (Note: we could just as easily have

 // overridden operation1().)

 public void operation2() {

 // Put behavior we want to do BEFORE the normal Operation2

 // here!

 super.operation2();

 }

 ...

 }

 Bob TarrDesign Patterns In Java The Template Method Pattern
1414

Template Method Pattern Example 2 (Continued)Template Method Pattern Example 2 (Continued)

l If you find that many subclasses want to do this, it is wise to
modify the superclass and put in a hook operation:

 public class Manufacturing {

 ...

 // A template method!

 public final void makePart () {

 operation1();

 hook(); // A hook method

 operation2();

 }

 // Do nothing hook method.

 public void hook() {}

 ...

 }

l Now subclasses only need to provide an implementation for the
hook() method

