
A Framework for Statechart Based Component Reconfiguration

Xabier Elkorobarrutia, Mikel Muxika, Goiuria Sagardui
Mondragon Goi Eskola Politeknikoa

Informatika Saila
Loramendi 4, 20500 Arrasate, Spain

xelkorobarrutia,mmuxika,gsagardui@eps.mondragon.edu

Franck Barbier
Universite de Pau et des Pays de l’Adour

Laboratoire de Informatique
Pau, France

Franck.Barbier@FranckBarbier.com

Xabier Aretxandieta
Ulma Handling Systems

20560 Oñati, Spain
xaretxandieta@manutencion.ulma.es

Abstract

This article describes a reconfiguration mechanism
for statechart-based software components and presents a
framework that supports it. The reconfiguration capabil-
ity that each component acquires can be used as a a mech-
anism for self-healing and better adapting the component
to environmental condition variations. The latter can also
be considered as a support for coping with incomplete or
bad specifications due to the lack of exact knowledge of the
environment. It will also be shown that it can be used to
easier resolve composition issues when creating a system
by means of component-composition.

This framework helps creating statechart based compo-
nents that reside in the middle ground between a blackbox
component and an statechart interpreter. In addition to sup-
porting a Model Driven development style, the framework
creates a reflective architecture of the component without
any involvement from the developer. This reflectiveness
adds the ability to modify the component’s statechart model
at run-time and can be used as a basis for a self healing
mechanism.

1. Introduction

Reconfigurability provides the foundation upon which
autonomic systems can adapt to their changing environment
or to recover from errors and failures without human inter-
vention [20]. Reconfiguration mechanisms are the means
by which we can make the software adapt to varying envi-
ronmental conditions, incorrect hardware functioning, opti-

mization issues, etc. It groups a lot of different techniques
with different purposes.

When talking about reconfiguration at system level most
of times it is assumed that we have enough resources and
execution environments like J2EE that offer facilities to re-
store a particular application, to relocate it, to come back
to an older version, . . . But if we move to embedded sys-
tems there is no such resource availability nor such execu-
tion platforms. That means that any reconfiguration option
must be built-in within the application itself. In [2] there
is an observation of the stages that embedded systems are
going through with respect to adaptation: in a first stage
there is no kind of dynamic adaptation, in a second one it is
undistinguishable from functional aspects, in a third stage it
is explicitly considered but there is no adaptation engineer-
ing, and in a final stage, which we still have to reach, there
is an adaptation engineering. The same can be applied to
reconfiguration in embedded systems.

Focusing on reconfiguration mechanisms instead of on
the pursued goal, they have been focused on system level [7,
3] or component level [19, 8]. At system architecture level,
components are the smallest working units and the reconfig-
uration of the system consist of replacing, replicating, up-
dating, . . . components. Those mechanism are quite generic
and have been externalized to application environments like
J2EE. But when delving into a component, few generic
mechanisms have been proposed. In [12] a way to intro-
duce self-healing functionalities in java legacy code in a non
intrusive way has been defined. [13] has described a frame-
work to dynamically attach a repair engine to a managed
application without hardwiring and crosscutting it into the
application. The units at with those later works operate are
the language constructs: classes, operations, types, . . .

Fifth IEEE Workshop on Engineering of Autonomic and Autonomous Systems

978-0-7695-3140-3/08 $25.00 © 2008 IEEE
DOI 10.1109/EASe.2008.11

37

Fifth IEEE Workshop on Engineering of Autonomic and Autonomous Systems

978-0-7695-3140-3/08 $25.00 © 2008 IEEE
DOI 10.1109/EASe.2008.11

37

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

The works that focus on an architectural level, employ
a model of the system: the architecture. But most inside-
component reconfigurations are application dependent and
many times not distinguishable from the functional part.
This increases the software complexity because the recon-
figuration mechanism is hardwired with the functional as-
pects of the component. This paper proposes the usage of
models as the basis for component reconfiguration applying
it to statecharts in particular. Being able to define reconfigu-
ration plans in the same terms used at component modeling
permits the definition of general mechanism suitable to par-
ticularize to each application.

The abstraction level at which our work operates resides
between the system architecture architecture and implemen-
tation languages’s constructs. There are many applications
domains where statecharts or other formalizations like Petri
nets or GRAFCETs could drive the specification, design
and implementation of each component. There are many
software patterns and implementations aiming to aid the
software development in case state machines are used. Stat-
echarts have also gained much attention in the context of
Model Driven Engineering (MDE). For example [18] has
defined a programming style for the efficient implementa-
tion of statechart for embedded systems. Commercial tools
exist that map statechart models to code skeletons. More re-
cently, W3C has published the SCXML working draft [6]
that consists of a JAVA engine capable of executing stat-
echart from a XML specification. Generally, the focus of
attention is on driving and facilitating component develop-
ment.

We will present a framework called FraC for the creation
of software components based on statecharts. In addition
to supporting a MDE style of development, it creates a re-
flective architecture of the software component without any
involvement of the developer. This reflectiveness gives to
software components the capability to modify their model
at run-time. We will take advantage of this reconfiguration
capability for various purposes like self healing and fault
tolerance. Section 2 will list some reasons and motivations
for component reconfiguration and will show our focus of
attention on each of them. Section 3 deals with some state
machine implementations revealing their lack of support at
run-time and will present out framework FraC, a library for
statechart based component development in a MDE style of
development which adds some run-time capabilities to soft-
ware components.

2 Self-Healing, Adaptation or Fault Toler-
ance

Self-healing can be defined as the ability to discover the
system’s malfunctions and find an alternate way (for exam-
ple reconfiguring the system) to keep the system working.

But its scope is not well defined yet [15]. Some authors see
it as a subset of traditional fault tolerance and others as a
complementary discipline. There is not disagreement in that
self-healing systems must have an error detecting and prob-
lem diagnosis capability. In order to add self-healing and
adaptation capabilities to a software component, it is neces-
sary to define which symptoms we are going to respond to
and how to monitor them.

The causes of system malfunctions could be very differ-
ent: processing hardware errors, the deployment of a new
version of some application, environment anomalies, sen-
sor and actuators errors, . . . Depending on each particular
system different considerations are taken. For example, in
enterprise information systems hardware fault tolerance can
be necessary because of availability reasons but if we move
to automatic manufacturing plants’ control systems, hard-
ware crashes occur much more frequently in sensors and ac-
tuator than in processing nodes. Also environmental condi-
tions may affect the sensors’ proper working. As mentioned
in [15], inexact requisites or lack of them can be the root
cause of system malfunctioning and thus, if the software
has some capability to cope with this situation, it also could
be considered a self-healing ability. Thus, self-healing be-
ing so broad, we have to delimit our area of actuation. In
our case we will not consider processing node’s failures but
only environment uncertainties or failures and software de-
fects.

The self-healing ability is an utopia toward which we are
moving. Self-* systems must have a control loop and to
implement that, it is mandatory to have what we are going
to monitor and how we are going to actuate on the system
well defined. In a first stage, human intervention is needed
to implement this control loop but it is hoped that in the
future systems will gain more autonomy. The traditional
software maintenance process can be considered the very
first control loop: we deploy a system and after detecting
some problems, we fix them, then redesign and reimplement
the system and finally we deploy a new version. When we
foresee some kinds of failures, we can design a system to
cope with them but in a heterogeneous systems and when
creating a system composing software components, failures
derived from the composition itself can arise that require the
refactoring of some components of the system. And what
is more important, not always are there clear the sources of
faults nor what to monitor. We learn about them through the
observation of the system’s operation. If we could speed up
this process, it would help in a human learning process that
would eventually automatize the adopted actions to heal the
system. Therefore, making the system able to self-heal.

Self-healing involves some dynamic ability and accord-
ing to a system’s dynamic capabilities for self-healing, we
can classify a system in one of the next groups: systems
with no dynamic ability, systems with application and prob-

3838

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

lem specific capabilities, systems with generic run-time re-
configuration capacities but static strategies for self-healing,
and finally, the systems whose healing strategies also can
vary at run-time. Our work is in the third group’s area,
giving software components run-time reconfiguration capa-
bilities and giving the final system developer or integrator
the possibility to define concrete healing plans according to
each system. We are trying to define reconfiguration mech-
anisms that are orthogonal to the functional aspects but that
works at model level.

There is an overlapping area among self-healing, adap-
tation, fault-tolerance, . . . But reconfiguration can consti-
tute a basis layer upon which those properties can be con-
structed. For now on, we will focus on a reconfiguration
mechanism for a components’ model. The framework that
we will present in the next section is applicable for soft-
ware components suitable to be modeled by means of stat-
echarts. This framework will offer some mechanisms to
monitor and reconfigure these software components in stat-
echarts’ terms. Not in an application dependent way. These
will be constructed based on the formers.

3 Statechart Implementation and the Frame-
work “FraC”

When implementing statecharts multiple criteria can be
applied: memory consumption, execution overhead, devel-
opment simplicity, extensibility, etc. Even prior to hierar-
chical state-machines (statecharts), lots of work had been
done on state machine implementations. The history begins
with two nested switch statements, where depending on
the actual state first and the received event second, the ac-
tion to be executed is chosen. With a state table having a
function for every [event, state] pair, the event dispatching
is externalized a bit. With the advent of object orientation,
appeared the famous State pattern and many others like the
Three Level FSM whose intent was to facilitate the devel-
opment and extension of state machines.

With statecharts (hierarchical state machines, [14]), be-
ing a formalism to facilitate the modeling of state machines,
implementation becomes more complicated. With the adop-
tion of statecharts as part of the UML formalism and the
wave of MDA, a synergy has occurred among them while
trying to facilitate statechart development. The designer
need only work at model level, fill some well defined partic-
ularizations and automatically obtains the statechart imple-
mentation. Any complex decision is delegated to a CASE
tool (like IAR Visual State) or a framework. [18] has de-
fined an optimal statechart implementation for C/C++ that
can be seen as a collection of programming idioms, there
is a little deviation from UML standard, though. [16] has
filled those gaps but also has the idea of automatic code gen-
eration in mind. In [1] an extensive list of design patterns

for finite state machine implementation is presented.
The common factor among most implementations is

their intent to facilitate software development. They pro-
vide facilities to separate behavior from logic and context
interface at development time, but the product code could
result in a mess of them making the model get lost at run-
time.

One of the patterns that has some run-time ability is the
“Reflective State” pattern [11]. For example, in case of a
software component controlling some hardware element, it
helps modify the state machine behavior at run-time to re-
flect mode changes. For example from “correct” to “ab-
normal” working. Even if it helps to reduce software com-
plexity, this run-time capability has to have been contem-
plated at design time.

3.1 The FraC Framework

In this section we are going to describe the FraC frame-
work which is oriented to the development of statechart
based components written in JAVA. Those components
communicate through asynchronous messages with recep-
tion receipt in order to maintain a low coupling. The con-
nectors among them have been implemented as message
queues and the messages are transmitted using CORBA but
any other middleware could be used.

As it can be seen in Listing 1, state machines are cre-
ated inheriting from StateMachine and filling the shown
methods. initStructure serves to create the hierarchi-
cal state structure and initBehaviour defines the be-
havior that the statechart must have in response to defined
events.

public abstract class StateMachine
{

........
protected abstract void initStructure();
protected abstract void initBehaviour();

}

Listing 1. Statechart base.

First of all, following the same philosophy of [5], it per-
mits a Model Driven style of development. To illustrate this,
consider the statechart of Figure 1. Listings 2 and 3 show
some code snippets of its implementation.

s0=new XorState();
s1=new XorState();
s0.addState(s1);
s2=new AndState();
s0.addInitialState(s2);
r1=new Region();
s2.addRegion(r1);
s21=new XorState();
r1.addInitialState(s21);

3939

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

Figure 1. An statechart example.

........

Listing 2. State structure definition.

s24.addReaction(EvC.class,
new SimpleReaction(s23,null,"evC24_23"));
s2.addReaction(EvC.class,
new SimpleReaction(s1,null,"evC2_1"));
s24.setExitAction("exit_24");
s0.setEntryAction("entry_0");
s1.setEntryAction("entry_1");
.......

Listing 3. Statechart behaviour definition.

Even if the developer was unaware of its internals, the
framework implicitly creates a reflective architecture of the
component. The component we employ that communicates
asynchronously and the main part of a software component
created with FraC are illustrated in Figure 2.

Figure 2. The component structure with FraC.

• Timer is an element that serves as a facility for time-
out events.

• Session is a component’s global repository that
stores the current active state and the message being
processed.

• MessageBuffer is where incoming messages are
deposited through FunctionalPort.

• Dispatcher is the element that once the statechart
gets stationary, picks the next message and interro-
gating the StatechartDefinition part, instructs
the ActionExecutor to carry out the correspond-
ing actions in a precise order. In the interrogation
phase ActionExecutor is also required to evaluate
guards.

• ReconfigurationPort is an element by which
the component can be externally instructed to make
changes in the model.

The two main parts of our components are
StatechartDefinition and ActionExecutor.
The first is an assembly of objects that reflects the statechart
model. It constitutes a meta-level of the component. The
second is the one that evaluates the guards and executes the
pertinent actions. The StatechartDefinition part
has the information about the structure and behavior but
the dispatcher is the one that has all the knowledge of how
to fire actions as a reaction to incoming messages. This di-
vision permits us to adjust the statechart model at run-time
modifying the StatechartDefinition, provided that
the ActionExecutor has enough capability of guard
evaluation and action execution.

Figure 3 illustrates in a simplified manner the interac-
tion among different parts in response to the reception of a
message. The :State and :Reaction multiobjets are
elements of the StatechartDefinition part.

Comparing this structure with others like the one pro-
posed in the Reflective State pattern [10, 11], in this second
one the states’ internal behavior is what can be changed but
not the overall state machine behavior. For that, it is nec-
essary to be able to add/delete states, transitions, etc. In
short to change the model. There is another point that makes
other patterns more restrictive, most of them have hardwired
the logic for transition making inside states, making it im-
possible to change the statechart model.

3.2 Model Changing

First of all, let us say what we mean by model
changing. In section 3.1 we have seen how the
StatechartDefinition holds the model and
the Dispatcher interrogates it in order to in-
struct the ActionExecutor to evaluate the perti-
nent guards and execute the pertinent actions. The
StatechartDefinition is an object structure that

4040

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

Figure 3. Event Processing

reflects the statechart model. Thus, within our framework,
changing the model means changing this object structure.

To illustrate this with a small example let us imagine that
we have a distributed system to control the temperature of
the rooms of an entire building. Each room has a local con-
troller that when receives an order from an scheduler is re-
sponsible for monitoring the assigned room and actuating
in the heating/cooling devices. We have an element whose
design is shown in Figure 4 in a simplified way.

Let us assume now that we want to extend this compo-
nent’s behavior to prevent the heater or cooler from work-
ing when the windows are opened by detecting those abnor-
mal situations as an excessive permanence in the heating or
cooling state as partially illustrated by Fig. 5. The imme-
diate solution is to develop a new version and replace the
older. But now, we wonder if a more agile way of develop-
ing a new version of the component exits. This new version
only requires to change the statechart model part. Let us
see in the next example how can we obtain this without re-
designing the component.

Listing 4 shows how the extension illustrated in Figure
5 can be done without accessing the source code by means
of inheritance. In this case we use the base component as a
white box. However, realize that the reflection of the state-
chart model is created in the constructor of the class. There-
fore, at initialization time. That means that the component
has the ability to change the model at run-time. This abil-
ity can be the basis for a more structured run-time model
change. The real benefit is that we can change the run-time

Figure 4. Room temperature controller.

Figure 5. Extended Room Temperature Con-
troller.

model, that can be seen as a mode change, without envis-
aging those modes at design time. The infrastructure that

4141

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

FraC creates allows it.

class InheritedSM extends BaseSM
{

protected XorState sWatch01,
sWatch02,sWaitReset;

public void initStructure()
{

super.initStructure();
sWatch01=new XorState("watching01");
sWatch01.setTimeout(2*60*60);
sHeating.addState(sWatch01);
sWatch02=new XorState("watching02");
sWatch02.setTimeout(2*60*60);
sCooling.addState(sWatch02);
sWaitReset=new XorState("waitingForReset");

}
public void initBehavior()
{

super.initBehavior();
sWatch01.addReaction(EvTimeout.class,

new SimpleReaction(sWaitReset);
sWatch01.addReaction(EvTimeout.class,

new SimpleReaction(sWaitReset);
sWaitReset.addReaction(EvReset.class,

new SimpleReaction(sIdle);
}

}

Listing 4. Code for the statechart extension of
Figure 5 in order to fulfill new requirements.

3.3 Composition

When creating a system by assembling components,
many problems can arise: platform incompatibility,
required/provided interface mismatch, semantic diver-
gence,. . . Apart from the verification of each component
by itself, the composition itself must be verified and some
components must be adapted to fulfill system requirements.
This adaptation can be done with centralized controllers,
wrappers or other kinds of glue code, or each component
can be programmed to adjust itself to each particular system
it is going to be part of. The key problem is that the devel-
oper of the component can not foresee all the situations in
which the component will participate.

Our framework offers a complementary alternative in do-
ing such an adaptation as demonstrated in [4]. Let us con-
tinue with the previous example and imagine that we spec-
ify a new requirement for the room temperature controlling
system. Suppose that we put a presence detector in each
room and we want the temperature controller to stop if the
presence detector has been detecting nobody for more than
5 minutes. The initial presence detector working is shown
in Figure 6.

Figure 6. Presence detector statechart.

We can formulate this new specification saying that the
room controller must go to idle state if the presence de-
tector has been more than 5 minutes in noPerson state.
Let us see a solution which does not need to refactor each
component nor insert glue code, but upgrades each compo-
nent changing their behavioral model. As can be seen in
Figure 7, we have enhanced the initial room controller with
a new transition from working to idle upon the recep-
tion of event stop(Figure 8). And the presence detector
has been upgraded with two substates so that it can notify
the room controller the event of being detecting no person
for more than 5 minutes. Remember that our framework has
a timeout option that sends a timeout event after some time
from the entry of the associated state. Even if this example
is very simple and incomplete, it illustrates an alternative
to resolve some composition issues exclusively working at
model level. The facilities that FraC offers can be seen as
composition primitives.

Figure 7. Upgraded room controller behavior.

3.4 Software Fault-Tolerance

N-versioning and Recovery-Block approaches are gen-
eral mechanisms to cope with software failures that need
to be particularized for each application. For example the
granularity of the module to be replicated or that can have
a failure must be determined . Due to this the next doubt

4242

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

Figure 8. Upgraded presence detector behav-
ior.

arises: if we knew that a component followed the structure
above mentioned, could this serve in the determination of
those modules.

In [9] there is an extensive field study and classification
of software faults. In this study the assignment, checking
and algorithm defects are around 82%. These kinds of er-
rors are the ones that can be made in the guards and actions
of a statechart. In the presented statechart structure all these
are gathered in the action executor part. Thus, it is enough
to change or replicate this executor as a support for software
fault-tolerance.

In the executor part we have put an interceptor as il-
lustrated in Figure 9. This extra indirection is to catch
the exceptions that are thrown when executing an action
or evaluating a guard. In response to those situations, Fig-
ure 10 shows how our framework implements a recovery-
block strategy changing the actual executor part at run-time.
When the executor handler receives a command from the
dispatcher, it redirects it to the responsible executor. If this
one can not process it, the executor handler knows it and
decides to redirect the command to another executor if this
redundancy has been procured. Of course, this mechanism
must be enhanced with some other patterns depending on
the particular application. For example, the “pseudostate”
variables must be restored to a value prior to the first com-
mand processing. Memento pattern can be used for this is-
sue.

The most general event processing that a statechart can
have to execute is when it has to make a transition: it has
to evaluate some guards, it must exit some states, then the
actions associated with the transition must be executed and
eventually, it must entry the target state and possibly, some
of its superstates and substates. The granularity for fault de-
tection the framework offers is the one offered by each of
those individual actions. For example, if we catch an ex-
ception when exiting a particular state, the executor handler
will replace the executor, retry the failed action and follow

Figure 9. Executor Handler governs the ex-
ecutor part.

Figure 10. Executor part change in response
to a exception.

executing the previously mentioned sequence.

Finally, some assumptions must be made about the pos-
sibilities of faults in the statechart definition or the control
part. In this experimental implementation the control struc-
ture of the component is defined using a framework and po-
tentially helped by an automatic code generation tool. This
framework is supposed to be tested much more than any
particular application that uses it. Thus, the possibilities of
software defects in it are far fewer. The possibility to have a
bug in a particular control definition is more probable from
incorrect specification than from software fault. For that, we
will belittle the possible fault in control related to the exe-
cution part witch is more sensible to implementation bugs.

4343

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

3.5 Self-Healing

Having described the run-time capabilities that the FraC
framework provides to statechart based software compo-
nents, let us explain our formula to give self-healing abil-
ities to software systems. From our point of view not only
self-healing but any other run-time ability needs to be sup-
ported by reconfiguration mechanisms. When an abnormal
situation is detected the system must fire a reconfiguration
action to deal with it. As we have said in section 2, our
work is directed toward defining a generic reconfiguration
mechanism that operates at model level upon which we can
construct application specific healing plans. We have de-
fined a reconfiguration mechanism that is orthogonal to the
functional aspects but that works at model level.

We want to materialize and particularize for statecharts
the mechanism described in [19] for adding self-healing ca-
pability to a system. This mechanism is distributed in each
of the system’s components. It monitors each of them and
upon detecting an abnormal situation, it isolates the compo-
nent be means of the connector it uses and restores the com-
ponent. In the meanwhile, the healing layer of one compo-
nent can notify other components to such situation because
some local problems has to be accomplished globally.

The reconfigurationPort that appears in Figure
2 serves for the same purpose. At the moment it has the
capability to modify the model at run-time. Those modi-
fications are the same as the ones that we have previously
shown using inheritance: add states, transitions, generate
new timeout events, . . . This group of facilities by itself is
not really useful when accomplishing a system wide recon-
figuration at run-time or even for a unique component re-
configuration. They serve as a basic layer upon which the
final system integrator can construct particular healing ac-
tions.

Those healing actions are application dependent and in
consequence, very variable. In some cases we need to
change the interaction among multiple components. In
other cases, we must change some components’ statechart
model in order to change its behavior mode. Each com-
ponent can be supplied with many and related statechart
models, each of those corresponding to a different work-
ing mode. Upon the detection of an abnormal situation the
component can fire an especial event that instructs the com-
ponent to swap to another statechart and if necessary, it
can notify other components through their reconfiguration
port and cause in other components a mode (model) change.
When a software failure is detected, in addition to procur-
ing redundancy, we can fire some of the previous actions.
Those capabilities that FraC gives to software components
have been described throughout section 3.

Let us say that many times the self-healing term is not
clearly enough distinguished form other terms like adapta-

tion. In [17] an environmental fault is defined as an error
in the state of the environment. In the previous example, it
could be that the thermometer does not work properly. In
aggressive environments like industrial ones, control sys-
tems have to deal with many exceptional situations mostly
caused by sensors and actuator failures and environmental
uncertain conditions. For this kind of situations FraC offers
a support for easier adapt the system by means of reconfig-
urating some of its components.

4. Conclusions and Future Work

Model driven engineering has advanced during the last
years but it main focus has been the improvement of soft-
ware development. Few initiatives aim at maintaining mod-
els till run-time. Reflective architectures provides mecha-
nisms for changing structure and behavior of software sys-
tems dynamically. This paper is positioned in model driven
engineering context aiming at transforming the model in a
reflective architecture.

This reflective architecture permit us to make reconfigu-
ration actions in the same terms used when modeling soft-
ware components. Even if it is not used at run-time, it
makes easier to extend or modify existing components if
those modifications can be expressed as model variations.
Furthermore, the developer of the original component need
not to contemplate the possibilities of such modifications.
The used framework, provides this ability in an implicit
way.

It is not clear how advantage of the presented run-time
capability can be taken. It can constitute a generic basic
layer in which reconfiguration strategies particularized for
each concrete application can be defined. Its main benefit
would be that the original software components’ designer
need not consider any reconfiguration mechanism at design
time. The FraC framework offers a basic language by which
the integrator of the components, the one will build the final
system, can define concrete reconfiguration plans.

References

[1] P. Adamczyk. The anthology of the finite state machine de-
sign patterns. The 10th Conference on Pattern Languages of
Programs, 2003.

[2] R. Adler, D. Schneider, and M. Trapp. Development of s&r
embedded systems using dynamic adaptation. In M-ADAPT,
1st Workshop on Model Driven Software Adaptation, 2007.

[3] J. Apavoo, K. Hui, C. Soules, R. Wisniewski, D. D. Silva,
O. Krieger, M. Auslander, D. J. Edelsohn, B. Gamsa,
G. Ganger, P. McKenney, M. Ostrowski, B. Rosenburg,
M. Stumm, and J. Xenidis. Enabling autonomic behavior
in systems software with hot swapping. IBM Systems Jour-
nal, 42(1), 2003.

4444

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

[4] X. Aretxandieta, X. Elkorobarrutia, and F. Barbier. Com-
ponent adaptation for correctness in composite systems.
To be published in 7th IEEE International Conference on
Composition-based Software Systems, ICCBSS, Feb 2008.

[5] F. Barbier. Mde-based design and implementation of auto-
nomic software components. International Conference on
Cognitive Informatics (ICCI), 2006.

[6] W. Consortium. State chart xml (scxml): State ma-
chine notation for control abstraction. working draft.
http://commons.apache.org/scxml/, February 2007.

[7] E. M. Dashofy, A. van der Hoek, and R. N. Taylor. Towards
architecture-based self healing systems. Proceedings of the
first workshop on Self-healing systems, pages 21–26, 2002.

[8] P. A. de C. Guerra and C. M. F. Rubira. An idealized soft-
ware fault-tolerant architecture component. In Workshop
on Architecting Dependable Systems, ICSE’02 International
Conference on Software Engineering, 2002.

[9] J. A. Duraes and H. S. Madeira. Emulation of softwatre
faults: A field data study and a practical approach. IEEE
Transactions on Software Engineering, 32:849–867, Nov
2006.

[10] L. L. Ferreira and C. M. Rubira. Reflective design patterns
to implement fault tolerance. Workshop on Reflective Pro-
gramming in C++ and Java, OOPSLA98, 1998.

[11] L. L. Ferreira and C. M. Rubira. The reflective state pattern.
Pattern Languages of Programs, PLoP’98, 1998.

[12] M. M. Fuad, D. Deb, and M. J. Oudshoorn. Adding
self-healing capabilities into legacy object oriented applica-
tions. 2006 International Conference on Autonomic and Au-
tonomous Systems ICAS ’06, jul 2006.

[13] R. Griffith and G. Kaiser. Manipulating managed execution
runtimes to support self-healing systems. Workshop on the
Design and Evolution of Autonomic Application Software
(DEAS 2005), 2005.

[14] D. Harel. Statecharts: A visual formalism for complex sys-
tems. Science of Computer Programming, pages 231–274,
1987.

[15] P. Koopman. Elements of the self-healing problem space.
Workshop on Software Architectures for Dependable Sys-
tems(WADS2003), 2003.

[16] G. Pinter and I. Mazjik. Program code generation based
on uml statecharts models. Periodica Politechnica, 47(3-
4):187–204, 2003.

[17] C. M. Rubira. Structuring fault tolerant object oriented sys-
tems using inheritance and delegation. PhD Thesis, Dept of
Computing Science, University of Newcastle upon Tyne, Oct
1994.

[18] M. Samek. Practical Statecharts in C/C++: An Introduction
to Quantum Programming. CMP Books, 2002.

[19] M. E. Shin. Self-healing components in robust software ar-
chitecture for concurrent and distributed systems. Science of
Computer Programming, 57(1):27–44, jul 2005.

[20] K. Whisnant, Z. T. Kalbarczyk, and R. K. Iyer. A system
model for dynamically reconfigurable software. IBM Sys-
tems Journal, 42(1):45 – 59, Jan 2003.

4545

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 17:50 from IEEE Xplore. Restrictions apply.

