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Abstract 

This paper proposes a methodology for embedded 
systems co-design, based on statechart models. The 
process starts with grabbing the system functionalities 
through use cases. A set of procedures addressing the 
implementation of Statechart models is presented. The 
main goal of this set of procedures is to lift the 
structuring mechanisms presented in statecharts to the 
top level. In this sense, the complexity of statechart 
implementation will be similar to the complexity of 
communicating concurrent state machines and the 
platforms selected to support implementation will not 
need to have specific capabilities to directly support the 
structuring mechanisms of Harel’s statecharts. As a 
consequence, full direct implementation of statecharts is 
possible considering different types of implementation 
platforms, ranging from hardware-centric or software-
centric to hardware-software partitioning through co-
design techniques. 

1. Introduction 

The concurrent design of hardware and software 
proved to be effective to improve cost-performance 
relation in the design of embedded systems when 
compared with the traditional way of separated design 
flows associated with hardware and software 
components.  

Many computational models have been referred in the 
literature to specify embedded systems, accommodating 
co-design techniques. 

In the present paper, we may roughly characterise an 
embedded system through the following equation: 

Embedded system  = 
 Reactive system 

 +  Real-time constraints  
 +  Data processing capabilities (1) 
In this sense, the selection of a model of computation 

should consider the reactive nature of the embedded 
system, without forgotten real-time and data processing 
constraints. 

From the point of view of the reactive system, ideally, 
a model of computation should include capabilities to 
represent concurrency and sequential behaviours, and to 
assure communication and synchronisation among 
concurrent components. 

Also, accommodating hierarchical model structuring 
mechanisms is a key convenience, from the engineering 
point of view, in order to enable a compact representation 
of the system model using different levels of abstraction. 

In the present paper, we propose a development 
methodology applicable for embedded system co-design, 
starting from high-level requirements, characterised in a 
very informal way, and ending-up with the 
implementation code, that is adequate to be used in 
different platforms, ranging from software-centric to 
hardware-oriented components. 

The paper starts with a brief description of the 
proposed methodology and characterisation of the 
statechart formalism. In the following section, an 
example is introduced in order to allow illustration of the 
referred procedures. Co-design specificities come into 
action in the next sections through the analysis of the 
model partitioning and statechart implementation issues, 
considering either hardware, software or mixed based 
implementation platforms. At the end, final remarks 
regarding the example is produced and conclusions are 
presented. 

2. Methodology overview 

According to [1], the specification of a system should 
accommodate several views, namely: 

- Functional view; this view is responsible to 
capture “what” should be implemented, in terms 
of inputs and outputs, functionalities and 
activities; 

- Behavioural view; this view is responsible to 
capture “when” should the system exhibit some 
specific behaviour or take some specific action; it 
is responsible to model the dynamics of the 
system, in terms of the control point of view and 
from the time dependency of events; aspects like 
concurrency and synchronisation should also find 
a way to be represented; 
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- Structural view; this view is responsible to 
capture “how” should the system be composed in 
terms of the components and interconnections 
between them. 

Also, according to [2], non-trivial systems should be 
modelled through a small set of independent sub-models. 

The referred roots allow us to propose a design 
methodology described by Figure 1.  

The system’ initial requirements are kept using UML 
use cases [2]. In this sense, capture of complex and also 
primitive functionalities are obtained in an informal way, 
constructing a set of use cases, which can be afterwards 
validated by users at the very beginning of the design 
process. In this process, different levels of perception of 
the system’s functionalities are possible, using 
hierarchical structuring mechanisms common in UML 
techniques. The different actors that interact with the 
system are identified, and their interrelations as well. 

Use case diagram

Sequence diagrams

Statechart

Component partitioning

Allocation of components
to hardware or software

Allocation to specific
platforms

Definition of
associated structure

Figure 1. Methodology overview. 

The next step is to produce a model of the system that 
can be used both for specification and for 
implementation. From the goals characterised in the 
introductory section, statecharts [3] [4] were selected to 
be the specification formalism to accommodate 
behavioural modelling. We can benefit from the fact that 
the same model that we use to produce a specification 
model can be also used as the basis for the 
implementation. 

In this sense, we need a way to produce the system 
model starting from the use cases description. Two ways 
are foreseen: 

- Directly translate each use case into a statechart 
(or a state diagram); 

- Translate each use case into a sequence diagram, 
which is in turn amenable to be represented by a 
statechart [5]. 

From our experience till the moment, we only used 
direct translation. However, for some applications, it is 
understood that sequence diagram usage seems to be very 
valuable. Procedures enabling the translation of sequence 

diagrams into statecharts are known from the literature 
and can be applied for this task. 

The system model will be built based on the parallel 
composition of the sub-models associated with each use 
case. 

The next (obvious) step is to face the partitioning of 
the system into several components. Each component will 
be afterwards mapped to software or hardware, according 
to the price and performance that one wants to reach. 

Statechart
model

Sub-
statechartComponent

partitioning
Statechart

model

Sub-
statechartComponent

partitioning

Figure 2. Partitioning of the model. 

In this sense, from the initial statechart, we will obtain 
a set of statecharts that will be the result of the 
decomposition of the initial model. This set of statecharts 
will be executed concurrently. 

The set of criteria applied to produce the desired 
partitioning may use, at some extend, ad-hoc techniques 
based on “engineering common sense practice” attitude. 
At the end of the process, the solution can be evaluated in 
terms of price and performance and different partitions 
can be tried. Analysis of specific metrics to produce the 
model partition is out of the scope of this paper. 

Each one of the sub-models produced will be allocated 
to a specific platform and the resulting implementation 
platform structure is illustrated in Figure 3. 

Inputs Outputs

State dependent conditions
(communication support)

Component
1

(state diag. 1)

Component
N

(state diag. N)

Inputs Outputs

State dependent conditions
(communication support)

Component
1

(state diag. 1)

Component
N

(state diag. N)

Figure 3. Implementation structure overview. 

We would like to emphasise that as a consequence of 
the model partitioning into different components, a new 
concern is created: communication resources among the 
different components. In this paper no special reference is 
explicitly produced regarding these issues. So, from the 
point of view of the presented works, the secure 
communication between the different components is 
always assured, through the explicitly modelling in the 
initial model of the handshake between the different 
components, either using a global synchronising signal 
(global clock) or as in the so-called GALS systems 
(Globally Asynchronous Locally Synchronous systems).  
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3. Statecharts 

Statecharts [3] [4] have been used for system 
modelling and also as implementation specification; 
different tools are available for their use, namely 
Statemate [1] and Rhapsody [6]. 

Statecharts are a graphical formalism based on state 
diagrams, plus the notions of hierarchy, parallelism and 
communication between parallel subsystems. Those 
characteristics were key points that supported its adoption 
as one of the specification formalisms within the UML 
community [7]. 

Statecharts defines two types of refinements, namely 
the XOR refinement and the AND refinement. The XOR 
refinement supports the hierarchy concept, through 
encapsulation of state machines. The AND refinement 
supports the concurrency concept, through parallel 
execution of XOR components. In this sense, it is 
common to consider three types of state instances: the set 
(associated with the AND refinement), the cluster 
(associated with the XOR refinement) and the simple 
state (named in this way in [8]).  

The default state, associated with every state diagram 
presented in the model, defines which state will take 
control when the associated state machine is activated, 
(for instance when a transition reaches a cluster state). 
Figure 4 shows the basic notation to represent a state 
diagram. 

Transition expressions, associated with arcs between 
states, are composed by events and conditions (see Figure 
4). Internal or output events can be generated as a 
consequence of the firing of the transition (Meally 
machine). Also, output actions can be associated with 
states (Moore machine). 

Transition expressions can use special events, special 
conditions and special actions. Examples of special 
events are the entered(state) event and exited(state)
event, which are generated whenever the system 
respectively enters or exits some state. Example of 
special conditions is in(state), which indicates that the 
system is currently in some state. Examples of special 
actions are clear history(state) and deep clear 
history(state), which initialises the history state of the 
cluster named state to the default state. 

A

B

C / z

x (C) / k

Default state

Generated
action

Input
event

Generated
event

ConditionA

B

C / z

x (C) / k

Default state

Generated
action

Input
event

Generated
event

Condition

Figure 4. Statechart basic notation. 

Apart from the referred main characteristics, the 
statecharts formalism presents some convenient features, 
namely the concept of history. The history concept 
supports, among other things, the modelling of interrupts, 
allowing automatic context restoring after the completion 
of the interruption service procedures. The history 
concept can be associated to cluster state instances. When 
the system enters a cluster with history attribute, the state 
that will be active upon entrance will be the one that was 
active upon the last exit in time from that cluster. In the 
case of the first entrance in the cluster, the active state 
will then be the default one. The history attribute can be 
simple (in the way it was presented) or deep; deep-history 
means that all the clusters inside the cluster that has that 
property also have that property. 

So far we only characterised syntactic issues for the 
statecharts formalism. Its semantic characterisation 
includes, among other things, the characterisation of the 
step algorithm and the definition of the criteria for 
solving conflicts (namely choosing a set of triggering 
transitions among a set of conflicting transitions) [1] [9]. 

The step algorithm imposes the way in which the 
system evolves between two states and is dependent on 
the chose semantics. In [1], the simultaneous trigger of a 
finite set of transitions is called micro-step. Transitions 
fired in a micro-step can generate internal events that, in 
turn, can fire other transitions. Thus, the definition of step 
is a finite set of micro-steps, which means that after all 
the micro-steps take place, there will be no more active 
transitions and the system will remain in a stable state. 
External events are not considered during a step, so it is 
supposed that a system can completely react to an 
external event before the occurrence of the next external 
event. In this sense, the broadcast of events occurs in 
zero-delay time. Different semantics associated with the 
handling of broadcasted event are discussed in [9].  

4. Running example – presentation 

The present section briefly describes part of an 
application that used the presented methodology for the 
implementation of an embedded system targeted for 
image acquisition, storage and visualization, including a 
user interface for navigation on the acquired image. In a 
broad sense, it is a monitoring system composed by a set 
of cameras and a user interface that enables navigation 
through the set of images acquired from the set of 
cameras (where an output image can be composed by 
parts of images obtained from different cameras). The 
emphasis was put on the hardware-software co-design of 
the system. 

Although, according to the specific very tight time 
constraints of the system, the focus of most of the 
component implementation is on the hardware part. The 
software part of the system was chosen to be associated 
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mostly with the user-interface, which is not hard real-
time constrained. For future extensions of the system, 
namely implementation of remote communications, 
emphasis on software-based components is foreseen. 

The modelling process starts with the identification of 
the relevant use cases. Figure 5 presents a diagram of the 
produced use cases. 

Image
acquisition

Image
presentation

User interface

Zoom Navigation

Operator

Camera

Windowing
system

<include> <include>

Horizontal
movement 

Vertical
movement 

generalization
generalization

Image
acquisition

Image
presentation

User interface

Zoom Navigation

Operator

Camera

Windowing
system

<include> <include>

Horizontal
movement 

Vertical
movement 

generalization
generalization

Figure 5. Use cases diagram. 

For every use case identified, a specific statechart was 
built. The top-level statechart model is presented in 
Figure 6, where the three main activities are associated 
with the three main use cases: image acquisition, image 
visualization and user interface. 

Figure 7 presents a refinement of the top-level model 
and Figure 8 a further refinement. More specifically, 
Figure 7 presents the refinement associated with the set 
Acquisition of Figure 6, and Figure 8 presents the 
refinement of the Pixel_counter state of Figure 7. 

In both figures, a parameterised representation of a 
statechart is used (which is an extension to the syntax 
used in common statechart development commercial 
environments), as far as it enables a very compact 
representation of the specific functionality to be 
modelled. 

Most of the states at the second level models need to 
be refined into a third level model. In this way, we can 
conclude that the referred system needs to be modelled 
using several levels of decomposition (we may eventually 
conclude that it is a medium complexity system). 

5. Partitioning into components 

At this point, we come to the next step: the 
partitioning of the model. 

The goal is to start with a statechart model and end-up 
with a set of concurrent statecharts, obtained from the 
partitioning of the initial one. 

Initialization

Horizontal sync
generator

Operation
Vertical sync

generator

Acquisition Visualisation User Interface

Video Line
counter

Video line
acquisition

VGA Line
counter

System

Initialization

Horizontal sync
generator

Operation
Vertical sync

generator

Acquisition Visualisation User Interface

Video Line
counter

Video line
acquisition

VGA Line
counter

System

Figure 6. High-level statechart model. 
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Figure 7. Second level model. 
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Figure 8. Third level model. 

In this sense, we can find two situations: 
- Decompose a state diagram into several 

concurrent state diagrams (“state sub-diagrams”); 
- Decompose a statechart into several concurrent 

statecharts (“sub-statecharts”). 
Next subsections address these two goals. 
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5.1. State diagram partitioning 

The partitioning of a state diagram into N concurrent 
communicating state diagrams, obtained from the first 
one, is a simple task (as far as we consider that the 
communication between the obtained components is 
secure, it was solved long time ago, and will be revisited 
here through a new perspective). From a formal point of 
view, we want to obtain a result that is equivalent to a 
statechart (with only one AND set). Of course, that is 
assured that the behaviourally equivalent state space 
associated with the obtained statechart is isomorphic with 
the initial state diagram. Figure 9 illustrates the process. 

State
diagram

Communicating
state diagram

Partitioning
procedures

Statechart
(with one 
AND set)

Behaviourally 
equivalent
state space

State
diagram

Communicating
state diagram

Partitioning
procedures
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(with one 
AND set)

Behaviourally 
equivalent
state space

Figure 9. State diagram partition. 

Considering that we can identify strong connected 
components in the original state diagram, and use them as 
our criteria to split the model, we may consider two 
typical situations: 

- Existence of two strong connected sub-diagrams, 
interconnected by one arc (elementary case); 

- Existence of N strong connected sub-diagrams, 
interconnected by an arbitrary number of arcs 
between them (general case). 

Even we are not able to identify strong connected 
components, and we produce a partition based on other 
criteria, the translation procedures presented will be 
applicable, as far as the cutting transition set is defined. 

Let’s start by the elementary case, where the goal is to 
obtain a statechart with two concurrent communicating 
state diagrams. The procedures to apply are the 
following: 

- Each of the decomposed state diagrams is 
composed by the set of states and arcs of each 
strong connected component; 

- In the state diagram associated with the first 
strong connected component (the one which has 
the default state), one new state is added 
representing the second strong connected 
component (from the point of view of the first 
strong connected component, the whole second 
strong connected component collapses into this 
new state); 

- In the state diagram associated with the second 
strong connected component, one new state is 
added representing the first strong connected 
component; this new state is the default state of 
the second state diagram (from the point of view 
of the second strong connected component, the 
whole first strong connected component collapses 
into this new state); the condition associated with 
the arc connecting the new state and the entering 
state of the second strong connected component 
will include a condition on the activation of the 
origin state. 

Figure 10 illustrates the procedure. 
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Figure 10. State diag. partition: elementary case. 

Coming to the general case, consider Figure 11 where 
three strong connected components is presented, 
containing arcs interconnecting any one of the 
components to any other. The procedures to apply result 
from the observation of the elementary case, just 
presented, and can be summarised by the following: 

- Each of the new concurrent state diagrams is 
composed by the set of states and arcs of each 
strong connected component; 
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Figure 11. State diagram partition: general case. 
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- For each new state diagram, a new state is added 
for every component connected to the associated 
component; arcs are created accordingly to the 
initial model; 

- Default state for each component is elected 
according to the default state of the initial model; 

- The condition associated with every arc belonging 
to the cut set will include a condition on the 
activation of the origin state. 

Figure 11 shows an example of application of the 
referred procedures. 

5.2. Statechart partitioning 

Considering that the system is modelled by a 
statechart, the goal of the partitioning procedure is to 
obtain a set of concurrent communicating state diagrams, 
as obtained in the previous subsection. Figure 12 
illustrates the goal. 
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Figure 12. Statechart partition. 

We can consider two situations: 
- When the cut is coincident with the parallel 

components of the statechart (and the problem is 
solved, directly or using the procedures presented 
in the next section); 

- When the cut needs to consider the splitting of 
some state diagram component, and the 
procedures of the previous section applies. 

6. Implementation of statecharts 

Several references can be found in the literature, 
addressing statechart implementation. However, most of 
them only address software-based implementations. 

Figure 13 presents a roadmap for possible design 
flows based on statechart modelling [10]. While 
specification, simulation and verification of proprieties 
tasks are carried on based on the statechart diagram and 
on the associated state space, the tasks associated with the 
implementation can be spited into two main groups: 

- Direct implementations: based on translation of 
the statechart components; 

- Indirect implementations: based on a previous 
“translation” of the statechart into the associated 
state space. 

The second strategy is particularly interesting 
whenever one wants to implement a statechart 
specification into a very low-cost platform (low-cost 
micro-controller, for instance); in this situation one does 
not have the necessary resources to support non-trivial 
statechart characteristics implementation (like broadcast 
communication and multilevel clustering); also, most of 
the time in these cases, we do not want to implement a 
complex design, but only a small to medium complexity 
system. In this sense, the implementation specification is 
based on the flat model that is behaviourally equivalent to 
the original statechart. For those low-cost platforms 
cases, the state space based implementation proved to be 
effective [11]. 
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Figure 13. Statechart implementation strategies. 

The first strategy (direct implementation) is the most 
common, by far. It is the case for two of the most well-
known development environment that use statecharts, 
namely Statemate [1] and Rhapsody [6]. 

One can identify three main strategies for direct 
implementations, targeted for software-based 
implementations [5]: 

- via switch-statements [2]; applicable only for 
simple cases; 

- via State Pattern [6]; classical object-oriented 
replacement of switch-statements (one class for 
any state), and statechart structure becomes class 
hierarchy (static code); 

- via State Table [7] [12]  [13]; statechart structure 
becomes runtime object structure. 

In the present work, we propose to, in some sense, stay 
at the middle of the two strategies, as far as we do not 
want to pay the price for a flat specification loosing 
concurrency (as for state space based), but we also want 
to address hardware implementation (and also low-cost 
platforms). 
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The proposed “balanced” attitude is targeted to 
accomplish statechart execution through a direct 
implementation strategy (to avoid flattening the model), 
but, at the same time, do not rely on complex features 
like zero-time delay communication and hierarchical 
refinements. This goal is accomplished using several 
translation procedures of the initial statechart model 
allowing the lifting of the statechart structuring 
characteristics, in order to obtain a top-level model 
composed by a set of concurrent components 

Using the already presented techniques for partitioning 
statechart models, we can identify different components, 
each one amenable to be implemented in hardware or 
software. 

We argue that in this way we have a coherent usage of 
statecharts in a co-design framework, enabling formal 
verification prior to implementation. 

The different characteristics translation procedures 
will be presented individually in the following sections, 
in a informal way. In [14] most of them were introduced. 

6.1. Depth 

Let’s start with XOR refinement. From the modelling 
point of view, it supports the capability to interrupt an 
activity modelled through the usage of a cluster. 

Consider the case of a two-level model (the simplest 
one). At the upper-level we have simple states and one 
cluster containing a dependent state diagram at the lower 
level (refer to Figure 14). The proposed translation 
procedures take advantage on the fact that we can have 
concurrent activity at both levels; although, activity at the 
upper-level will deactivate the cluster state activity and 
the dependent state diagram will be non active. 

The translation procedure to be applied to a cluster is 
the following (if we consider a state diagram with N 
clusters, the referred procedure can be applied 
considering N+1 resulting components): 

- The model will be translated to an AND set at the top-
level, composed by two components 

- The first component is composed by the initial upper-
level state machine (original simple states and a 
simple state representing the original cluster and by 
all the associated transitions);  

- The second component is the result of the lifting of 
the contents of the cluster state to the upper-level, 
and is composed by a state diagram generated as 
follows: 
- A simple state (A0, for instance), representing 

“Cluster A no active” is added to the state machine 
and considered as the default state; 

- All the simple states of the dependent state 
diagram are kept; 

- A transition is added from the new default state to 
the original default state of the cluster A; the 

expression entering (A) is associated with that 
transition; 

- Transitions are created from every state in the 
cluster to the “Cluster A no active” state; 
expression leaving (A) will be associated with 
those transitions; those transitions are considered 
to have higher priority regarding the original 
transitions already presented in the model (in 
order to avoid non-determinism). 

One simple situation of lifting one XOR cluster is 
presented in Figure 14. 
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Figure 14. Lifting depth concept. 

As far as the associated state spaces can prove to be 
isomorphic, the resulting model is behaviourally 
equivalent to the initial one. 
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Figure 15. Lifting orthogonality concept. 

6.2. Orthogonality 

Let’s come to AND refinement. In this case, the 
translation procedures proposed for lifting of the XOR 
cluster will be applied for every parallel component of 
the AND cluster. Figure 15 illustrates a simple example. 
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6.3. Multilevel models 

The simultaneously usage of AND and XOR 
refinements does not put new situations, as far as the 
referred procedures still be valid and should be applied 
iteratively starting from the inner levels, lifting level by 
level till reaching the top-level with a set of parallel 
components grouped in a AND set. 
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Figure 16. Lifting of inner levels. 

Figure 16 shows an example: 
- We should start by the lifting of the contents of 

cluster C, {E, F}; in this sense, cluster A 
contents will be translated into a set of two 
parallel components (composed by states {C, D} 
and {C0, E, F}, accordingly); 

- After that, we will take care of the lifting of the 
set A, obtaining a set composed by three parallel 
components, {A, B}, {CD0, C, D} and 
{CPAR0, C0, E, F}. 

6.4. History concept 

Other statechart feature, the history concept can be 
associated with every cluster state. Its usage allows the 
definition of complex procedures like interruption, 
enabling automatic context restoring after completion of 
the interrupt service procedure. 

The associated translation procedures add the 
following to the already proposed procedures for lifting a 
cluster: 

- The “Cluster no active” added state has the meaning 
of “Cluster no active and never activated before”; 

- For every state Si of the dependent state machine, a 
simple state Si’ is added to the state machine, as a 
phantom of Si, representing “Cluster no active and 
the last active state was Si”; 

- A transition, with the associated expression 
entering(Cluster), is added from Si’ to Si; another 
transition is added from Si to Si’, with the 
expression leaving(Cluster) attached; in this way, 
the set of phantom states will be used to store the 
last active state within the cluster; 

- As an optimizing step, the phantom state of the 
initial state can be suppressed (merged with “Cluster 
no active and never activated before”). 

Figure 17 illustrates the procedure. 
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Figure 17. History concept. 

For deep-history concept translation, similar 
procedures are applicable, considering its specific 
semantics (applied for every cluster contained in the 
cluster receiving the deep-history attribute). 

6.5. Communication support 

From the implementation point of view, the zero-delay 
time paradigm is the most challenging and “dangerous” 
concept proposed within statecharts. 

Several semantics have been proposed for its 
implementation [1] [9]. As far as we intend to use 
statechart models for the specification of systems 
independently of the type of implementation platforms to 
be used, namely software-only, hardware-only and 
including hardware-software partitioning (through co-
design techniques), issues associated with event 
broadcast have to be adequately prepared. 

Considering that the evolution of the model will be 
accomplished only at specific instants in time, it is 
necessary to assure that all the evolutions associated with 
the broadcast events to be generated during the associated 
micro-steps will be accomplished using a “look-ahead” 
technique, in order to foreseen its occurrence. We have to 
consider two types of situations: 
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- When the generated event and further generated 
events (associated with the consequences of its 
occurrence) only affects new parallel components; 

- When generated events will affect the evolution of 
state diagrams already changed in the current step 
of analysis. 

The last situation will not be further commented, as far 
as it is considered as a “bad modelling practice” [14]. 

So, we only address the first situation and all the 
references to a generated event (which will be received 
through the broadcast mechanism) should be replaced by 
an equivalent expression that can be completely 
evaluated at the beginning of the step (which means the 
clock period for hardware implementations or the 
execution cycle for software implementations). 

This expression will include references to the external 
event that causes the beginning of the step and to 
conditions reflecting the internal structure of the model 
that can be evaluated at the beginning of the step 
(implementing the desired look-ahead behaviour). 

Figure 18 illustrates the procedure for simple 
situations. 
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Figure 18. Event look-ahead generation. 

As far, the proposed set of translation procedures for 
the different statecharts characteristics relies on the usage 
of the internal events entering(state) and leaving(state).

These events can be defined based on the conditions of 
activation and deactivation of the state. 

Regarding the entering(state) event, it can be 
computed considering the incoming arcs that reach state,
which means 

entering(state) = Σ (all event/conditions that causes 
activation of state) 

In a similar way, the leaving(state) event can be 
determined considering the outgoing arcs leaving state,
namely 

leaving(state)= Σ (all event/conditions that causes 
deactivation of state) 

For Figure 19, the events associated with state A are: 
entering(A) = v (in(B)) or z (p and in(E) 
leaving(A)= (x or y (K)) and in(A) 
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Figure 19. Special events. 

6.6. Non-well-structured statecharts 

Finally, as far as the designer has plenty of freedom to 
produce non-structured models, we should consider the 
existence of “non-well-structured” transitions to or from 
the cluster or set states. 

For these situations, additional steps have to be 
included to the proposed procedures. 

Let’s start with the existence of incoming arcs that will 
end in internal states of the cluster (and not at the border, 
as in a structured model). The proposed procedures will 
be changed in the following way: 

- For every incoming arc at the cluster, a 
transition will be created from the “Cluster no 
active” state to the corresponding destination 
state (initial procedures foreseen to use default 
state for arcs ending at the border of the cluster);  

- The expression associated with a new transition 
is composed by entering(A) (as in the initial 
procedure), anded with the original associated 
expression.  

Figure 20 illustrates one example. 
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Figure 20. Lifting of multi-incoming (activating) 
arcs. 

The second case is associated with outgoing arcs, 
leaving from internal states. 
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In this case, the procedure includes the lifting to the 
border of the cluster of every outgoing arcs that starts at 
an internal state; the transition expression associated with 
every arc will include the condition of being in the 
starting state, through the inclusion of in(starting_state)
to the expression. Figure 21 illustrates the situation. 
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Figure 21. Lifting of multi-outgoing 
(deactivating) arcs. 

The steps presented in the present section have to be 
performed before the previously mentioned procedures of 
lifting of the cluster contents. 

8. Running example - closure 

The referred procedures were successfully applied to 
the described monitoring system. From the point of view 
of the implementation platform, it contains 
programmable logic devices (one 95144 CPLD per 
camera and one Spartan-II FPGA from Xilinx), and a 
high-performance dual-port RAM per camera (apart from 
other hardware, specific for video acquisition and 
generation). VHDL was used as the implementation 
language. Some parts of the user interface were 
implemented using a micro-controller IP from Xilinx 
(Picoblaze) [15]. 

9. Conclusions 

The proposed methodology starts from grabbing user 
requirement based on use cases and translate them to 
statecharts allowing the embedded system designer to use 
formal techniques for propriety verification. 

Afterwards a set of procedures for the translation of 
statecharts into a behaviourally equivalent statechart was 
presented. The resulted statechart is amenable to be 
implemented either in software or in hardware. In this 
sense, the usage of co-design techniques is fully 
supported. 

The methodology proved to be effective in the design 
of a monitoring system. 
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