

From Use Cases to System Implementation: Statechart Based Co-design

Luís Gomes, Anikó Costa
Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia, Dep. of Elect. Eng.

& UNINOVA, Centro de Robótica Inteligente
2825 Monte de Caparica, Portugal

{lugo, akc}@uninova.pt

Abstract

This paper proposes a methodology for embedded
systems co-design, based on statechart models. The
process starts with grabbing the system functionalities
through use cases. A set of procedures addressing the
implementation of Statechart models is presented. The
main goal of this set of procedures is to lift the
structuring mechanisms presented in statecharts to the
top level. In this sense, the complexity of statechart
implementation will be similar to the complexity of
communicating concurrent state machines and the
platforms selected to support implementation will not
need to have specific capabilities to directly support the
structuring mechanisms of Harel’s statecharts. As a
consequence, full direct implementation of statecharts is
possible considering different types of implementation
platforms, ranging from hardware-centric or software-
centric to hardware-software partitioning through co-
design techniques.

1. Introduction

The concurrent design of hardware and software
proved to be effective to improve cost-performance
relation in the design of embedded systems when
compared with the traditional way of separated design
flows associated with hardware and software
components.

Many computational models have been referred in the
literature to specify embedded systems, accommodating
co-design techniques.

In the present paper, we may roughly characterise an
embedded system through the following equation:

Embedded system =
 Reactive system

 + Real-time constraints
 + Data processing capabilities (1)
In this sense, the selection of a model of computation

should consider the reactive nature of the embedded
system, without forgotten real-time and data processing
constraints.

From the point of view of the reactive system, ideally,
a model of computation should include capabilities to
represent concurrency and sequential behaviours, and to
assure communication and synchronisation among
concurrent components.

Also, accommodating hierarchical model structuring
mechanisms is a key convenience, from the engineering
point of view, in order to enable a compact representation
of the system model using different levels of abstraction.

In the present paper, we propose a development
methodology applicable for embedded system co-design,
starting from high-level requirements, characterised in a
very informal way, and ending-up with the
implementation code, that is adequate to be used in
different platforms, ranging from software-centric to
hardware-oriented components.

The paper starts with a brief description of the
proposed methodology and characterisation of the
statechart formalism. In the following section, an
example is introduced in order to allow illustration of the
referred procedures. Co-design specificities come into
action in the next sections through the analysis of the
model partitioning and statechart implementation issues,
considering either hardware, software or mixed based
implementation platforms. At the end, final remarks
regarding the example is produced and conclusions are
presented.

2. Methodology overview

According to [1], the specification of a system should
accommodate several views, namely:

- Functional view; this view is responsible to
capture “what” should be implemented, in terms
of inputs and outputs, functionalities and
activities;

- Behavioural view; this view is responsible to
capture “when” should the system exhibit some
specific behaviour or take some specific action; it
is responsible to model the dynamics of the
system, in terms of the control point of view and
from the time dependency of events; aspects like
concurrency and synchronisation should also find
a way to be represented;

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

- Structural view; this view is responsible to
capture “how” should the system be composed in
terms of the components and interconnections
between them.

Also, according to [2], non-trivial systems should be
modelled through a small set of independent sub-models.

The referred roots allow us to propose a design
methodology described by Figure 1.

The system’ initial requirements are kept using UML
use cases [2]. In this sense, capture of complex and also
primitive functionalities are obtained in an informal way,
constructing a set of use cases, which can be afterwards
validated by users at the very beginning of the design
process. In this process, different levels of perception of
the system’s functionalities are possible, using
hierarchical structuring mechanisms common in UML
techniques. The different actors that interact with the
system are identified, and their interrelations as well.

Use case diagram

Sequence diagrams

Statechart

Component partitioning

Allocation of components
to hardware or software

Allocation to specific
platforms

Definition of
associated structure

Figure 1. Methodology overview.

The next step is to produce a model of the system that
can be used both for specification and for
implementation. From the goals characterised in the
introductory section, statecharts [3] [4] were selected to
be the specification formalism to accommodate
behavioural modelling. We can benefit from the fact that
the same model that we use to produce a specification
model can be also used as the basis for the
implementation.

In this sense, we need a way to produce the system
model starting from the use cases description. Two ways
are foreseen:

- Directly translate each use case into a statechart
(or a state diagram);

- Translate each use case into a sequence diagram,
which is in turn amenable to be represented by a
statechart [5].

From our experience till the moment, we only used
direct translation. However, for some applications, it is
understood that sequence diagram usage seems to be very
valuable. Procedures enabling the translation of sequence

diagrams into statecharts are known from the literature
and can be applied for this task.

The system model will be built based on the parallel
composition of the sub-models associated with each use
case.

The next (obvious) step is to face the partitioning of
the system into several components. Each component will
be afterwards mapped to software or hardware, according
to the price and performance that one wants to reach.

Statechart
model

Sub-
statechartComponent

partitioning
Statechart

model

Sub-
statechartComponent

partitioning

Figure 2. Partitioning of the model.

In this sense, from the initial statechart, we will obtain
a set of statecharts that will be the result of the
decomposition of the initial model. This set of statecharts
will be executed concurrently.

The set of criteria applied to produce the desired
partitioning may use, at some extend, ad-hoc techniques
based on “engineering common sense practice” attitude.
At the end of the process, the solution can be evaluated in
terms of price and performance and different partitions
can be tried. Analysis of specific metrics to produce the
model partition is out of the scope of this paper.

Each one of the sub-models produced will be allocated
to a specific platform and the resulting implementation
platform structure is illustrated in Figure 3.

Inputs Outputs

State dependent conditions
(communication support)

Component
1

(state diag. 1)

Component
N

(state diag. N)

Inputs Outputs

State dependent conditions
(communication support)

Component
1

(state diag. 1)

Component
N

(state diag. N)

Figure 3. Implementation structure overview.

We would like to emphasise that as a consequence of
the model partitioning into different components, a new
concern is created: communication resources among the
different components. In this paper no special reference is
explicitly produced regarding these issues. So, from the
point of view of the presented works, the secure
communication between the different components is
always assured, through the explicitly modelling in the
initial model of the handshake between the different
components, either using a global synchronising signal
(global clock) or as in the so-called GALS systems
(Globally Asynchronous Locally Synchronous systems).

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

3. Statecharts

Statecharts [3] [4] have been used for system
modelling and also as implementation specification;
different tools are available for their use, namely
Statemate [1] and Rhapsody [6].

Statecharts are a graphical formalism based on state
diagrams, plus the notions of hierarchy, parallelism and
communication between parallel subsystems. Those
characteristics were key points that supported its adoption
as one of the specification formalisms within the UML
community [7].

Statecharts defines two types of refinements, namely
the XOR refinement and the AND refinement. The XOR
refinement supports the hierarchy concept, through
encapsulation of state machines. The AND refinement
supports the concurrency concept, through parallel
execution of XOR components. In this sense, it is
common to consider three types of state instances: the set
(associated with the AND refinement), the cluster
(associated with the XOR refinement) and the simple
state (named in this way in [8]).

The default state, associated with every state diagram
presented in the model, defines which state will take
control when the associated state machine is activated,
(for instance when a transition reaches a cluster state).
Figure 4 shows the basic notation to represent a state
diagram.

Transition expressions, associated with arcs between
states, are composed by events and conditions (see Figure
4). Internal or output events can be generated as a
consequence of the firing of the transition (Meally
machine). Also, output actions can be associated with
states (Moore machine).

Transition expressions can use special events, special
conditions and special actions. Examples of special
events are the entered(state) event and exited(state)
event, which are generated whenever the system
respectively enters or exits some state. Example of
special conditions is in(state), which indicates that the
system is currently in some state. Examples of special
actions are clear history(state) and deep clear
history(state), which initialises the history state of the
cluster named state to the default state.

A

B

C / z

x (C) / k

Default state

Generated
action

Input
event

Generated
event

ConditionA

B

C / z

x (C) / k

Default state

Generated
action

Input
event

Generated
event

Condition

Figure 4. Statechart basic notation.

Apart from the referred main characteristics, the
statecharts formalism presents some convenient features,
namely the concept of history. The history concept
supports, among other things, the modelling of interrupts,
allowing automatic context restoring after the completion
of the interruption service procedures. The history
concept can be associated to cluster state instances. When
the system enters a cluster with history attribute, the state
that will be active upon entrance will be the one that was
active upon the last exit in time from that cluster. In the
case of the first entrance in the cluster, the active state
will then be the default one. The history attribute can be
simple (in the way it was presented) or deep; deep-history
means that all the clusters inside the cluster that has that
property also have that property.

So far we only characterised syntactic issues for the
statecharts formalism. Its semantic characterisation
includes, among other things, the characterisation of the
step algorithm and the definition of the criteria for
solving conflicts (namely choosing a set of triggering
transitions among a set of conflicting transitions) [1] [9].

The step algorithm imposes the way in which the
system evolves between two states and is dependent on
the chose semantics. In [1], the simultaneous trigger of a
finite set of transitions is called micro-step. Transitions
fired in a micro-step can generate internal events that, in
turn, can fire other transitions. Thus, the definition of step
is a finite set of micro-steps, which means that after all
the micro-steps take place, there will be no more active
transitions and the system will remain in a stable state.
External events are not considered during a step, so it is
supposed that a system can completely react to an
external event before the occurrence of the next external
event. In this sense, the broadcast of events occurs in
zero-delay time. Different semantics associated with the
handling of broadcasted event are discussed in [9].

4. Running example – presentation

The present section briefly describes part of an
application that used the presented methodology for the
implementation of an embedded system targeted for
image acquisition, storage and visualization, including a
user interface for navigation on the acquired image. In a
broad sense, it is a monitoring system composed by a set
of cameras and a user interface that enables navigation
through the set of images acquired from the set of
cameras (where an output image can be composed by
parts of images obtained from different cameras). The
emphasis was put on the hardware-software co-design of
the system.

Although, according to the specific very tight time
constraints of the system, the focus of most of the
component implementation is on the hardware part. The
software part of the system was chosen to be associated

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

mostly with the user-interface, which is not hard real-
time constrained. For future extensions of the system,
namely implementation of remote communications,
emphasis on software-based components is foreseen.

The modelling process starts with the identification of
the relevant use cases. Figure 5 presents a diagram of the
produced use cases.

Image
acquisition

Image
presentation

User interface

Zoom Navigation

Operator

Camera

Windowing
system

<include> <include>

Horizontal
movement

Vertical
movement

generalization
generalization

Image
acquisition

Image
presentation

User interface

Zoom Navigation

Operator

Camera

Windowing
system

<include> <include>

Horizontal
movement

Vertical
movement

generalization
generalization

Figure 5. Use cases diagram.

For every use case identified, a specific statechart was
built. The top-level statechart model is presented in
Figure 6, where the three main activities are associated
with the three main use cases: image acquisition, image
visualization and user interface.

Figure 7 presents a refinement of the top-level model
and Figure 8 a further refinement. More specifically,
Figure 7 presents the refinement associated with the set
Acquisition of Figure 6, and Figure 8 presents the
refinement of the Pixel_counter state of Figure 7.

In both figures, a parameterised representation of a
statechart is used (which is an extension to the syntax
used in common statechart development commercial
environments), as far as it enables a very compact
representation of the specific functionality to be
modelled.

Most of the states at the second level models need to
be refined into a third level model. In this way, we can
conclude that the referred system needs to be modelled
using several levels of decomposition (we may eventually
conclude that it is a medium complexity system).

5. Partitioning into components

At this point, we come to the next step: the
partitioning of the model.

The goal is to start with a statechart model and end-up
with a set of concurrent statecharts, obtained from the
partitioning of the initial one.

Initialization

Horizontal sync
generator

Operation
Vertical sync

generator

Acquisition Visualisation User Interface

Video Line
counter

Video line
acquisition

VGA Line
counter

System

Initialization

Horizontal sync
generator

Operation
Vertical sync

generator

Acquisition Visualisation User Interface

Video Line
counter

Video line
acquisition

VGA Line
counter

System

Figure 6. High-level statechart model.

Wait_new_image

New_image_come

C_sync_counter

Pixel_counter

New_line_1

New_line_2

V_sync = 0
V_sync = 0

V_sync = 1

V_sync = 1

Comp_sync = 1

New_line = 1

New_line = 0

New_frame = 1

Last_line = 0
& C_sync = 0

New_line = 1

C_sync = 1

Line i

i + 1
mod 256

@else

@else

Acquisition

Main Line_counter

New_frame = 1

Wait_new_image

New_image_come

C_sync_counter

Pixel_counter

New_line_1

New_line_2

V_sync = 0
V_sync = 0

V_sync = 1

V_sync = 1

Comp_sync = 1

New_line = 1

New_line = 0

New_frame = 1

Last_line = 0
& C_sync = 0

New_line = 1

C_sync = 1

Line i

i + 1
mod 256

@else

@else

Acquisition

Main Line_counter

New_frame = 1

Wait_new_image

New_image_come

C_sync_counter

Pixel_counter

New_line_1

New_line_2

V_sync = 0
V_sync = 0

V_sync = 1

V_sync = 1

Comp_sync = 1

New_line = 1

New_line = 0

New_frame = 1

Last_line = 0
& C_sync = 0

New_line = 1

C_sync = 1

Line i

i + 1
mod 256

@else

@else

Acquisition

Main Line_counter

New_frame = 1

Figure 7. Second level model.

pixel_clk

i + 1
mod 512

Pixel i

Busy and mh

S0
Convert

celh

S1
Convert

celh

S2l
Convert

Celh
cell

S2h
Convert

S3
celh

S4
celh

S5
celh

S6
Celh

Pixel_c lk

S2b
Convert

celh

S3lb
Celh
cell

S3hb

S3b
celh

S4lb
Celh
cell

S4hb S4b
celh

S5lb
Celh
cell S5hb

S5b
celh

S6lb
Cell
Celh

Pixel_clk

S6hb
Pixel_c lk

Busy and
not mh

Busy and mh

not Busy

Busy and
not mh Busy and mh

not Busy

Busy and
not mh

Busy and mh

not Busy

not Busy

not Busy

Busy and
not mh

Busy and
not mh

Busy and mh

Pixel_counter

pixel_clk

i + 1
mod 512

Pixel i

Busy and mh

S0
Convert

celh

S1
Convert

celh

S2l
Convert

Celh
cell

S2h
Convert

S3
celh

S4
celh

S5
celh

S6
Celh

Pixel_c lk

S2b
Convert

celh

S3lb
Celh
cell

S3hb

S3b
celh

S4lb
Celh
cell

S4hb S4b
celh

S5lb
Celh
cell S5hb

S5b
celh

S6lb
Cell
Celh

Pixel_clk

S6hb
Pixel_c lk

Busy and
not mh

Busy and mh

not Busy

Busy and
not mh Busy and mh

not Busy

Busy and
not mh

Busy and mh

not Busy

not Busy

not Busy

Busy and
not mh

Busy and
not mh

Busy and mh

Pixel_counter

pixel_clk

i + 1
mod 512

Pixel i

Busy and mh

S0
Convert

celh

S0
Convert

celh

S1
Convert

celh

S1
Convert

celh

S2l
Convert

Celh
cell

S2h
Convert

S2h
Convert

S3
celh

S3
celh

S4
celh

S4
celh

S5
celh

S5
celh

S6
Celh

Pixel_c lk

S2b
Convert

celh

S2b
Convert

celh

S3lb
Celh
cell

S3hb

S3b
celh

S3b
celh

S4lb
Celh
cell

S4hb S4b
celh

S4b
celh

S5lb
Celh
cell S5hb

S5b
celh

S5b
celh

S6lb
Cell
Celh

Pixel_clk

S6hb
Pixel_c lk

Busy and
not mh

Busy and mh

not Busy

Busy and
not mh Busy and mh

not Busy

Busy and
not mh

Busy and mh

not Busy

not Busy

not Busy

Busy and
not mh

Busy and
not mh

Busy and mh

Pixel_counter

Figure 8. Third level model.

In this sense, we can find two situations:
- Decompose a state diagram into several

concurrent state diagrams (“state sub-diagrams”);
- Decompose a statechart into several concurrent

statecharts (“sub-statecharts”).
Next subsections address these two goals.

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

5.1. State diagram partitioning

The partitioning of a state diagram into N concurrent
communicating state diagrams, obtained from the first
one, is a simple task (as far as we consider that the
communication between the obtained components is
secure, it was solved long time ago, and will be revisited
here through a new perspective). From a formal point of
view, we want to obtain a result that is equivalent to a
statechart (with only one AND set). Of course, that is
assured that the behaviourally equivalent state space
associated with the obtained statechart is isomorphic with
the initial state diagram. Figure 9 illustrates the process.

State
diagram

Communicating
state diagram

Partitioning
procedures

Statechart
(with one
AND set)

Behaviourally
equivalent
state space

State
diagram

Communicating
state diagram

Partitioning
procedures

Statechart
(with one
AND set)

Behaviourally
equivalent
state space

Figure 9. State diagram partition.

Considering that we can identify strong connected
components in the original state diagram, and use them as
our criteria to split the model, we may consider two
typical situations:

- Existence of two strong connected sub-diagrams,
interconnected by one arc (elementary case);

- Existence of N strong connected sub-diagrams,
interconnected by an arbitrary number of arcs
between them (general case).

Even we are not able to identify strong connected
components, and we produce a partition based on other
criteria, the translation procedures presented will be
applicable, as far as the cutting transition set is defined.

Let’s start by the elementary case, where the goal is to
obtain a statechart with two concurrent communicating
state diagrams. The procedures to apply are the
following:

- Each of the decomposed state diagrams is
composed by the set of states and arcs of each
strong connected component;

- In the state diagram associated with the first
strong connected component (the one which has
the default state), one new state is added
representing the second strong connected
component (from the point of view of the first
strong connected component, the whole second
strong connected component collapses into this
new state);

- In the state diagram associated with the second
strong connected component, one new state is
added representing the first strong connected
component; this new state is the default state of
the second state diagram (from the point of view
of the second strong connected component, the
whole first strong connected component collapses
into this new state); the condition associated with
the arc connecting the new state and the entering
state of the second strong connected component
will include a condition on the activation of the
origin state.

Figure 10 illustrates the procedure.

A1 A2

A3

B1 B2

B3

y

A B

BA

B1 B2

B3

y (in(A3))

A1 A2

A3

AB

y

A B

A1 A2

A3

B1 B2

B3

y

A B

BA

B1 B2

B3

y (in(A3))

A1 A2

A3

AB

y

A B

A1 A2

A3

B1 B2

B3

y

A B

A1 A2

A3

B1 B2

B3

y

A B

BA

B1 B2

B3

y (in(A3))

A1 A2

A3

AB

y

A B

BA

B1 B2

B3

y (in(A3))

A1 A2

A3

AB

y

A B

Figure 10. State diag. partition: elementary case.

Coming to the general case, consider Figure 11 where
three strong connected components is presented,
containing arcs interconnecting any one of the
components to any other. The procedures to apply result
from the observation of the elementary case, just
presented, and can be summarised by the following:

- Each of the new concurrent state diagrams is
composed by the set of states and arcs of each
strong connected component;

A1 A2

A3

B1 B2

B3

C1 C2

C3

x

y

y

z

z

z

x

A1 A2

A3
AB

AC

x

y

y

z (in(B1))

z (in(C2))
x (in(C3))

z (in(B3))

BA B1 B2

B3

BC

y (in(A2))

y (in(A3))

z

z

z (in(C2))
x (in(C3))

x (in(A1))

A B C

.

.

.

A1 A2

A3

B1 B2

B3

C1 C2

C3

x

y

y

z

z

z

x

A1 A2

A3
AB

AC

x

y

y

z (in(B1))

z (in(C2))
x (in(C3))

z (in(B3))

BA B1 B2

B3

BC

y (in(A2))

y (in(A3))

z

z

z (in(C2))
x (in(C3))

x (in(A1))

A B C

.

.

.

A1 A2

A3

B1 B2

B3

C1 C2

C3

x

y

y

z

z

z

x

A1 A2

A3

B1 B2

B3

C1 C2

C3

x

y

y

z

z

z

x

A1 A2

A3
AB

AC

x

y

y

z (in(B1))

z (in(C2))
x (in(C3))

z (in(B3))

BA B1 B2

B3

BC

y (in(A2))

y (in(A3))

z

z

z (in(C2))
x (in(C3))

x (in(A1))

A B C

.

.

.

A1 A2

A3
AB

AC

x

y

y

z (in(B1))

z (in(C2))
x (in(C3))

z (in(B3))

BA B1 B2

B3

BC

y (in(A2))

y (in(A3))

z

z

z (in(C2))
x (in(C3))

x (in(A1))

A B C

.

.

.

Figure 11. State diagram partition: general case.

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

- For each new state diagram, a new state is added
for every component connected to the associated
component; arcs are created accordingly to the
initial model;

- Default state for each component is elected
according to the default state of the initial model;

- The condition associated with every arc belonging
to the cut set will include a condition on the
activation of the origin state.

Figure 11 shows an example of application of the
referred procedures.

5.2. Statechart partitioning

Considering that the system is modelled by a
statechart, the goal of the partitioning procedure is to
obtain a set of concurrent communicating state diagrams,
as obtained in the previous subsection. Figure 12
illustrates the goal.

Statechart

Communicating
state diagram

Partitioning and
lifting translation

procedures

Statechart
(with one
AND set)

Statechart

Communicating
state diagram

Partitioning and
lifting translation

procedures

Statechart
(with one
AND set)

Figure 12. Statechart partition.

We can consider two situations:
- When the cut is coincident with the parallel

components of the statechart (and the problem is
solved, directly or using the procedures presented
in the next section);

- When the cut needs to consider the splitting of
some state diagram component, and the
procedures of the previous section applies.

6. Implementation of statecharts

Several references can be found in the literature,
addressing statechart implementation. However, most of
them only address software-based implementations.

Figure 13 presents a roadmap for possible design
flows based on statechart modelling [10]. While
specification, simulation and verification of proprieties
tasks are carried on based on the statechart diagram and
on the associated state space, the tasks associated with the
implementation can be spited into two main groups:

- Direct implementations: based on translation of
the statechart components;

- Indirect implementations: based on a previous
“translation” of the statechart into the associated
state space.

The second strategy is particularly interesting
whenever one wants to implement a statechart
specification into a very low-cost platform (low-cost
micro-controller, for instance); in this situation one does
not have the necessary resources to support non-trivial
statechart characteristics implementation (like broadcast
communication and multilevel clustering); also, most of
the time in these cases, we do not want to implement a
complex design, but only a small to medium complexity
system. In this sense, the implementation specification is
based on the flat model that is behaviourally equivalent to
the original statechart. For those low-cost platforms
cases, the state space based implementation proved to be
effective [11].

Specification, simulation
and/or verification

Specification, simulation
and/or verification

ImplementationImplementation

Statechart
specification

Associated
state space

State machine
code

Statechart
code

Specific platform
executable code

Specific platform
executable code

Specification, simulation
and/or verification

Specification, simulation
and/or verification

ImplementationImplementation

Statechart
specification

Associated
state space

State machine
code

Statechart
code

Specific platform
executable code

Specific platform
executable code

Figure 13. Statechart implementation strategies.

The first strategy (direct implementation) is the most
common, by far. It is the case for two of the most well-
known development environment that use statecharts,
namely Statemate [1] and Rhapsody [6].

One can identify three main strategies for direct
implementations, targeted for software-based
implementations [5]:

- via switch-statements [2]; applicable only for
simple cases;

- via State Pattern [6]; classical object-oriented
replacement of switch-statements (one class for
any state), and statechart structure becomes class
hierarchy (static code);

- via State Table [7] [12] [13]; statechart structure
becomes runtime object structure.

In the present work, we propose to, in some sense, stay
at the middle of the two strategies, as far as we do not
want to pay the price for a flat specification loosing
concurrency (as for state space based), but we also want
to address hardware implementation (and also low-cost
platforms).

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

The proposed “balanced” attitude is targeted to
accomplish statechart execution through a direct
implementation strategy (to avoid flattening the model),
but, at the same time, do not rely on complex features
like zero-time delay communication and hierarchical
refinements. This goal is accomplished using several
translation procedures of the initial statechart model
allowing the lifting of the statechart structuring
characteristics, in order to obtain a top-level model
composed by a set of concurrent components

Using the already presented techniques for partitioning
statechart models, we can identify different components,
each one amenable to be implemented in hardware or
software.

We argue that in this way we have a coherent usage of
statecharts in a co-design framework, enabling formal
verification prior to implementation.

The different characteristics translation procedures
will be presented individually in the following sections,
in a informal way. In [14] most of them were introduced.

6.1. Depth

Let’s start with XOR refinement. From the modelling
point of view, it supports the capability to interrupt an
activity modelled through the usage of a cluster.

Consider the case of a two-level model (the simplest
one). At the upper-level we have simple states and one
cluster containing a dependent state diagram at the lower
level (refer to Figure 14). The proposed translation
procedures take advantage on the fact that we can have
concurrent activity at both levels; although, activity at the
upper-level will deactivate the cluster state activity and
the dependent state diagram will be non active.

The translation procedure to be applied to a cluster is
the following (if we consider a state diagram with N
clusters, the referred procedure can be applied
considering N+1 resulting components):

- The model will be translated to an AND set at the top-
level, composed by two components

- The first component is composed by the initial upper-
level state machine (original simple states and a
simple state representing the original cluster and by
all the associated transitions);

- The second component is the result of the lifting of
the contents of the cluster state to the upper-level,
and is composed by a state diagram generated as
follows:
- A simple state (A0, for instance), representing

“Cluster A no active” is added to the state machine
and considered as the default state;

- All the simple states of the dependent state
diagram are kept;

- A transition is added from the new default state to
the original default state of the cluster A; the

expression entering (A) is associated with that
transition;

- Transitions are created from every state in the
cluster to the “Cluster A no active” state;
expression leaving (A) will be associated with
those transitions; those transitions are considered
to have higher priority regarding the original
transitions already presented in the model (in
order to avoid non-determinism).

One simple situation of lifting one XOR cluster is
presented in Figure 14.

A

B
A1

A2

A3

C

SYS

A
B

A1

A2

A3

C

A0
entering(A)

SYS A_PAR
exit(A)

exit(A)

exit(A)

A

B
A1

A2

A3

C

SYS

A
B

A1

A2

A3

C

A0
entering(A)

SYS A_PAR
exit(A)

exit(A)

exit(A)

A

B
A1

A2

A3

C

SYS

A

B
A1

A2

A3

C

SYS

A
B

A1

A2

A3

C

A0
entering(A)

SYS A_PAR
exit(A)

exit(A)

exit(A)

A
B

A1

A2

A3

C

A0
entering(A)

SYS A_PAR
exit(A)

exit(A)

exit(A)

Figure 14. Lifting depth concept.

As far as the associated state spaces can prove to be
isomorphic, the resulting model is behaviourally
equivalent to the initial one.

G

B
C D

E

F

A

H

G

H

D0
E

F

C0

A

B

C_PAR D_PAR

G

B
C D

E

F

A

H

G

H

D0
E

F

C0

A

B

C_PAR D_PAR

G

B
C D

E

F

A

H

G

B
C D

E

F

A

H

G

H

D0
E

F

C0

A

B

C_PAR D_PAR

G

H

D0
E

F

C0

A

B

C_PAR D_PAR

Figure 15. Lifting orthogonality concept.

6.2. Orthogonality

Let’s come to AND refinement. In this case, the
translation procedures proposed for lifting of the XOR
cluster will be applied for every parallel component of
the AND cluster. Figure 15 illustrates a simple example.

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

6.3. Multilevel models

The simultaneously usage of AND and XOR
refinements does not put new situations, as far as the
referred procedures still be valid and should be applied
iteratively starting from the inner levels, lifting level by
level till reaching the top-level with a set of parallel
components grouped in a AND set.

(a) (b)

(c)

E

F

D

B

C
A

SYS

C

D

C0

E
F

CD C_PAR_0
A

Bentering(C)

exit(C)

exit(C)

SYS

A

B

C

D

CD_PAR

CD0

C0

E

F

C_PAR_1

CPAR0

exit(A)

exit(A)

exit(A)

exit(A)exit(A)

entering(A)

entering(A) exit(C)

exit(C)
entering(C)

SYS

(a) (b)

(c)

E

F

D

B

C
A

SYS

C

D

C0

E
F

CD C_PAR_0
A

Bentering(C)

exit(C)

exit(C)

SYS

A

B

C

D

CD_PAR

CD0

C0

E

F

C_PAR_1

CPAR0

exit(A)

exit(A)

exit(A)

exit(A)exit(A)

entering(A)

entering(A) exit(C)

exit(C)
entering(C)

SYS

A

B

C

D

CD_PAR

CD0

C0

E

F

C_PAR_1

CPAR0

exit(A)

exit(A)

exit(A)

exit(A)exit(A)

entering(A)

entering(A) exit(C)

exit(C)
entering(C)

SYS

Figure 16. Lifting of inner levels.

Figure 16 shows an example:
- We should start by the lifting of the contents of

cluster C, {E, F}; in this sense, cluster A
contents will be translated into a set of two
parallel components (composed by states {C, D}
and {C0, E, F}, accordingly);

- After that, we will take care of the lifting of the
set A, obtaining a set composed by three parallel
components, {A, B}, {CD0, C, D} and
{CPAR0, C0, E, F}.

6.4. History concept

Other statechart feature, the history concept can be
associated with every cluster state. Its usage allows the
definition of complex procedures like interruption,
enabling automatic context restoring after completion of
the interrupt service procedure.

The associated translation procedures add the
following to the already proposed procedures for lifting a
cluster:

- The “Cluster no active” added state has the meaning
of “Cluster no active and never activated before”;

- For every state Si of the dependent state machine, a
simple state Si’ is added to the state machine, as a
phantom of Si, representing “Cluster no active and
the last active state was Si”;

- A transition, with the associated expression
entering(Cluster), is added from Si’ to Si; another
transition is added from Si to Si’, with the
expression leaving(Cluster) attached; in this way,
the set of phantom states will be used to store the
last active state within the cluster;

- As an optimizing step, the phantom state of the
initial state can be suppressed (merged with “Cluster
no active and never activated before”).

Figure 17 illustrates the procedure.

A

B

A1

A2

SYS

H

B

A

A1

A2

A0

entering(A)

exit(A)

A2S

entering(A)

exit(A)

A_PARSYS

B

A

A1

A2

A0 A1S

entering(A)

entering(A)

exit(A)

A2S

entering(A)

exit(A)

A_PARSYS

(a) (b)

(c)

A

B

A1

A2

SYS

H

B

A

A1

A2

A0

entering(A)

exit(A)

A2S

entering(A)

exit(A)

A_PARSYS

B

A

A1

A2

A0 A1S

entering(A)

entering(A)

exit(A)

A2S

entering(A)

exit(A)

A_PARSYS

(a) (b)

(c)

A

B

A1

A2

SYS

H

B

A

A1

A2

A0

entering(A)

exit(A)

A2S

entering(A)

exit(A)

A_PARSYS

B

A

A1

A2

A0 A1S

entering(A)

entering(A)

exit(A)

A2S

entering(A)

exit(A)

A_PARSYS

(a) (b)

(c)

Figure 17. History concept.

For deep-history concept translation, similar
procedures are applicable, considering its specific
semantics (applied for every cluster contained in the
cluster receiving the deep-history attribute).

6.5. Communication support

From the implementation point of view, the zero-delay
time paradigm is the most challenging and “dangerous”
concept proposed within statecharts.

Several semantics have been proposed for its
implementation [1] [9]. As far as we intend to use
statechart models for the specification of systems
independently of the type of implementation platforms to
be used, namely software-only, hardware-only and
including hardware-software partitioning (through co-
design techniques), issues associated with event
broadcast have to be adequately prepared.

Considering that the evolution of the model will be
accomplished only at specific instants in time, it is
necessary to assure that all the evolutions associated with
the broadcast events to be generated during the associated
micro-steps will be accomplished using a “look-ahead”
technique, in order to foreseen its occurrence. We have to
consider two types of situations:

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

- When the generated event and further generated
events (associated with the consequences of its
occurrence) only affects new parallel components;

- When generated events will affect the evolution of
state diagrams already changed in the current step
of analysis.

The last situation will not be further commented, as far
as it is considered as a “bad modelling practice” [14].

So, we only address the first situation and all the
references to a generated event (which will be received
through the broadcast mechanism) should be replaced by
an equivalent expression that can be completely
evaluated at the beginning of the step (which means the
clock period for hardware implementations or the
execution cycle for software implementations).

This expression will include references to the external
event that causes the beginning of the step and to
conditions reflecting the internal structure of the model
that can be evaluated at the beginning of the step
(implementing the desired look-ahead behaviour).

Figure 18 illustrates the procedure for simple
situations.

x/y

A

B

y(k)/z

C

D

z

E

F

x

A

B

x (k and in(A))

C

D

E

F

x (k and in(A) and in(C))
or w (in(G))

w/z

G

H

w

G

H

x/y

A

B

y(k)/z

C

D

z

E

F

x

A

B

x (k and in(A))

C

D

E

F

x (k and in(A) and in(C))
or w (in(G))

w/z

G

H

w

G

H

Figure 18. Event look-ahead generation.

As far, the proposed set of translation procedures for
the different statecharts characteristics relies on the usage
of the internal events entering(state) and leaving(state).

These events can be defined based on the conditions of
activation and deactivation of the state.

Regarding the entering(state) event, it can be
computed considering the incoming arcs that reach state,
which means

entering(state) = Σ (all event/conditions that causes
activation of state)

In a similar way, the leaving(state) event can be
determined considering the outgoing arcs leaving state,
namely

leaving(state)= Σ (all event/conditions that causes
deactivation of state)

For Figure 19, the events associated with state A are:
entering(A) = v (in(B)) or z (p and in(E)
leaving(A)= (x or y (K)) and in(A)

x

y (k)

z (p)

v B

C

D

E

A x

y (k)

z (p)

v B

C

D

E

A

Figure 19. Special events.

6.6. Non-well-structured statecharts

Finally, as far as the designer has plenty of freedom to
produce non-structured models, we should consider the
existence of “non-well-structured” transitions to or from
the cluster or set states.

For these situations, additional steps have to be
included to the proposed procedures.

Let’s start with the existence of incoming arcs that will
end in internal states of the cluster (and not at the border,
as in a structured model). The proposed procedures will
be changed in the following way:

- For every incoming arc at the cluster, a
transition will be created from the “Cluster no
active” state to the corresponding destination
state (initial procedures foreseen to use default
state for arcs ending at the border of the cluster);

- The expression associated with a new transition
is composed by entering(A) (as in the initial
procedure), anded with the original associated
expression.

Figure 20 illustrates one example.

A

A1

A2

x

y

A0

A2

A1

A

x

y

A_PAR
entering(A)
and x

entering(A)
and y

leaving(A)

leaving(A)

A

A1

A2

x

y

A0

A2

A1

A

x

y

A_PAR
entering(A)
and x

entering(A)
and y

leaving(A)

leaving(A)

A

A1

A2

x

y

A0A0

A2A2

A1A1

A

x

y

A_PAR
entering(A)
and x

entering(A)
and y

leaving(A)

leaving(A)

Figure 20. Lifting of multi-incoming (activating)
arcs.

The second case is associated with outgoing arcs,
leaving from internal states.

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

In this case, the procedure includes the lifting to the
border of the cluster of every outgoing arcs that starts at
an internal state; the transition expression associated with
every arc will include the condition of being in the
starting state, through the inclusion of in(starting_state)
to the expression. Figure 21 illustrates the situation.

A

A1

A2

x

y

A

A1

A2

x

y (in(A2))

A

A1

A2

x

y

A

A1

A2

x

y (in(A2))

A

A1

A2

x

y

A

A1

A2

x

y (in(A2))

Figure 21. Lifting of multi-outgoing
(deactivating) arcs.

The steps presented in the present section have to be
performed before the previously mentioned procedures of
lifting of the cluster contents.

8. Running example - closure

The referred procedures were successfully applied to
the described monitoring system. From the point of view
of the implementation platform, it contains
programmable logic devices (one 95144 CPLD per
camera and one Spartan-II FPGA from Xilinx), and a
high-performance dual-port RAM per camera (apart from
other hardware, specific for video acquisition and
generation). VHDL was used as the implementation
language. Some parts of the user interface were
implemented using a micro-controller IP from Xilinx
(Picoblaze) [15].

9. Conclusions

The proposed methodology starts from grabbing user
requirement based on use cases and translate them to
statecharts allowing the embedded system designer to use
formal techniques for propriety verification.

Afterwards a set of procedures for the translation of
statecharts into a behaviourally equivalent statechart was
presented. The resulted statechart is amenable to be
implemented either in software or in hardware. In this
sense, the usage of co-design techniques is fully
supported.

The methodology proved to be effective in the design
of a monitoring system.

References

[1] David Harel, Michal Politi; “Modeling Reactive Systems
with Statecharts – The STATEMATE Approach”;
McGraw-Hill; 1998; ISBN 0-07-026205-5

[2] Grady Booch, James Rumbaugh, Ivar Jacobson; “The
Unified Modeling Language User Guide”; Object
Technology Series, Addison-Wesley; ISBN 0-201-57168-
4, 1999

[3] David Harel, “On Visual Formalisms”, Communications
of the ACM, vol. 31, number 5, May 1988, pp. 514-530.

[4] David Harel, “Statecharts: A Visual Formalism for
Complex Systems”, Science of computer Programming,
vol. 8, 1987, pp. 231-274.

[5] Albert Zundorf, “Code Generation from UML Behavioral
Diagrams”, Tutorial F, Fifth International Conference on
the Unified Modeling Language, Sep.30 – Oct 4, 2002,
Dresden, Germany

[6] Rhapsody; “The Rhapsody case tool reference manual;
Ilogix, http://www.ilogix.com/

[7] Bruce Powel Douglass, “Real-time UML – developing
efficient objects for embedded systems”, Object
Technology Series, Addison-Wesley, 1998, ISBN 0-201-
32579-9

[8] Paul Jay Lucas; “An object-oriented language system for
implementing concurrent, hierarchical, finite state
machines”; MSc Thesis; Graduate College of the
University of Illinois at Urbana-Champaign; 1993.

[9] Michael von der Beeck, “A Comparison of Statechart
Variants”, in Formal Techniques in Real-Time and Fault-
Tolerant Systems, Lecture Notes in Computer Science,
vol. 863, Springer-Verlag, 1994, pp. 128-148.

[10] Luís Gomes, Carlos Soares; "Low-cost embedded systems
design using Statecharts"; 2001; 5th WSES/IEEE World
Multiconference on Circuits, Systems, Communications
& Computers, CSCC’2001; 8-15 July 2001; Crete, Greece

[11] Carlos Soares, "Utilização de Statecharts em
Controladores Programáveis - da especificação à
implementação" (Statecharts usage for programmable
controllers – from specification to implementation) (in
Portuguese), MSc Thesis, Univ. Nova Lisboa, 1998.

[12] Bruce Powel Douglass, “Doing Hard Time – Developing
Real-Time Systems with UML, Objects, Frameworks, and
Patterns”, Object Technology Series, Addison-Wesley,
1999, ISBN 0-201-49837-5

 [13] H. Köhler, U. Nickel, J. Niere, A. Zündorf; “Integrating
UML Diagrams for Production Control Systems”;
Proceedings of ICSE’2000 – The 22nd International
Conference on Software Engineering, June 4-11,
Limerick, Ireland, ACM Press; 2000

[14] Luís Gomes, Anikó Costa; "On Lifting of Statechart
Structuring Mechanisms"; Proceedings of ACSD’2003
Third International Conference on Application of
Concurrency to System Design ; 18-20 June 2003;
Guimarães, Portugal

[15] Ken Chapman; “Picoblaze”; www.xilinx.com

Proceedings of the First ACM and IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE’03) ISBN 0-7695-1923-7/03 $17.00 © 2003 IEEE

Authorized licensed use limited to: West Virginia University. Downloaded on October 8, 2008 at 15:27 from IEEE Xplore. Restrictions apply.

