
Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
1

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
2

Chapter 1 : A Pattern Language of Statecharts

Statecharts have been introduced to model the behavior of complex systems. Statecharts are used in

specifying the DICOIM UL in the Medical Informatics system discussed later in Chapter 14. The

formalized concepts and specifications of statecharts have been used in many applications. This

chapter discusses a design pattern language to solve recurring design problems in implementing a

statechart specification in an object-oriented design. The pattern language offers solutions to frequent

design problems that commonly confront a system designer. These problems include how to

implement specifications containing hierarchy, orthogonality, and broadcasting. The pattern language

maps the specification into object oriented design and hence code will be generated. Since statecharts

are frequently applicable to software applications, it is helpful for the system designer to directly

exercise the statechart pattern language in his application design.

In the next section, a brief background on statecharts is presented, then a pattern map summarizes the

statechart patterns, their relationships, and how they relate to finite state machine patterns. The rest of

the sections describe five new statechart patterns namely, Basic Statechart, Hierarchical Statechart,

Orthogonal Behavior, Broadcasting, and History State. Section 1.10 summarizes the patterns as

problem/solution pairs, and Appendix C of the thesis gives a summary of basic statecharts principles.

1.1 Background

David Harel [Harel87, Harel88] introduced statecharts to extend finite state machines for complex

behavior and to describe a visual formalism for behavior specification of an entity. Statecharts extend

finite state machines with new concepts such as hierarchy, orthogonality, broadcasting and history

states. The hierarchy principle introduces a more global state, referred to as a "superstate", that

includes other entity's states. The principle of statecharts that allows several behaviors to be

experienced at the same time is called orthogonality. The broadcasting principle allows events

produced in one state to be broadcasted to orthogonal states.

Objectcharts were then presented by Derek Coleman et.al. [Coleman+92] as an extension to describe

how to use statecharts in object-oriented environment to describe the lifecycle of an object.

Statecharts were used by Bran Selic [Selic98] as a mechanism for Recursive Control.

Several authors have documented solutions of recurring design problems in implementing finite state

machines. Erich Gamma et.al.[Gamma+95] documented the State as a basic pattern which delegates

the state-dependent behavior of an entity to separate state classes, and encapsulates the current state

object in the entity's interface. Paul Dyson and Bruce Anderson [Dyson+98] extended and refined this

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
3

basic pattern and presented several patterns to solve problems of assigning data members to state

classes, exposing an entity's state, implementing a default state, and alternatives in implementing state

transition mechanisms.

Alexander Ran [Ran96] discussed a family of design patterns to implement an entity with complex

behavior. He discussed how possible design decisions form a tree for models of object oriented design

of states (MOODS). The tree considered decomposition of methods and abstract states, possible

implementation of state transitions using conditions or state transition methods, and described how

single and multiple inheritance can be used to compose the entity's state classes. However, all these

patterns addressed problems related to state machines and none has been extended to support

statecharts principles.

Alternatively, we perceive that statecharts are frequently used as a behavior-description technique.

This chapter defines statecharts as design components that provide flexibility at the design level and

facilitates the design composition and maintenance. We explain how to deploy reusable design

solution to frequent statecharts concepts. A summary of statecharts principles and properties is

presented in Appendix C.

1.2 Road map of the Patterns

As a further extension to finite state machine patterns, a set of solutions to problems encountered in

implementing statecharts is presented. The Basic Statechart translates the elements of statechart

specification into an object-oriented design. Based on the statechart's hierarchy principal, the

Hierarchical Statechart extends the basic pattern to support hierarchical states in which a superstate is

composed of other states. Sometimes the entity's behavior is described using orthogonal non-

contradicting behaviors by means of the statechart's AND-decomposition specification; thus the

Hierarchical Statechart is extended to Orthogonal Behavior to support handling events to orthogonal

states. Using an Orthogonal Behavior may lead to the possibility of broadcasting the effect of an

event in a state to another orthogonal state, Broadcasting extends Orthogonal Behavior to support

event broadcasting. Finally, the statecharts' history specification is sometimes used in the superstates

of the Hierarchical pattern; History State addresses this problem. Figure 1.1 shows the relationship

between the statechart patterns in this language.

1.3 Example

The turnstyle coin machine specification discussed by Robert Martin [Martin95] is extended one step

at a time to illustrate the various patterns usage. Figure 1.2 summarizes a simplified version of the

machine specifications using a state transition diagram.

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
4

Figure 1.1 Statechart Patterns Roadmap

Figure 1.2 Example: The state transition diagram of a coin machine

The machine starts in a locked state (Locked). When a coin is detected (Coin), the machine changes to

the unlocked state (UnLocked) and open the turnstyle gate for the person to pass. When the machine

detects that a person has passed through (Pass) it turns back to the locked state. If a coin is inserted

while the machine is unlocked, a (Thankyou) message is displayed. When the machine fails in

opening or closing the gate, a failure event (Failed) is generated and the machine enters the broken

state (Broken). When the machine is repaired, a fixed event (Fixed) is generated and the machine

returns to the locked state.

State

State Transition Mechanism

Finite State Machines

Basic Statechart

Hierarchical
Statechart

Orthogonal
Behavior

Broadcasting

History State

Basic Statechart Specification

Using Hierarchical States

Superstates with history property
Exercise independent behavior

 at the same time

Broadcast events to orthogonal states

Broken Locked

UnLocked

Failed

Coin

Coin

Fixed

Failed

Pass

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
5

1.4 Basic Statechart

Context

Your application contains an entity whose behavior depends on its state. You are using a statechart to

specify the entity's behavior.

Problem

How do you implement the statechart specification into design?

Forces

What factors motivate you to describe your entity's behavior in statecharts semantics?

• Limited capabilities of state transition diagrams for large systems: Finite state machines are

used to describe many reactive systems, but as the complexity of the system increases, the

complexity of state transition diagrams also increases because of their flat nature. These diagrams

become unreadable and difficult to comprehend.

• Orthogonal behaviors of an entity: Sometimes it is necessary to have orthogonal description of

non contradicting behaviors of an entity, and state transitions take place in each independent

behavior in response to the same event. State diagrams sequentially describe the behavior of an

entity and don't reveal the concurrent nature.

What factors motivate you to use the Basic Statechart pattern?

• Traceability from specification into design: Statechart is a specification language that enables

you to construct a model and further check it. Some case tools allow you to generate code from

your specification. Using the generated code might not be useful because it is usually bulky and

not comprehensible for the designer. Thus you want to translate the specification into design that

allows you to have a higher level of maintenance and to embed this design into your overall

application design.

Solution

Implement the statechart specification into object oriented design, define a state class for each entity's

state defined in the specification. Distinguish the events, conditions, actions, entry and exit procedures

in each state class.

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
6

Structure

Figure 1.3 illustrates the design solution structure. The design evolves around the FSM patterns

documented in Chapter 10. It has a layered organization separating the behavior (Actions and

Events) from the logic of the machine. A state-driven transition is chosen to implement the

transition mechanism.

Figure 1.3 The structure of the Basic Statechart pattern

Participants

Events

The Events class hosts declaration of events that the entity responds to. The response to each event

may differ according to the entity's current state. Events, that are handled differently by each state, are

specified as virtual methods in the Events class and each state class implements the adequate

functionality required in response to that particular event (ex. Event1() and Event2()).

Common events, that have the same implementation for the entity's states, can be implemented in this

base class and hence its implementation is sharable by all state classes (ex. Error Handlers).

Actions

The Actions class contains the output methods that can be executed by the entity and affect the

application environment. Action methods are invoked from event method implementations in each

concrete state class. Generally, action methods are static methods inherited by the state classes (such

that all class objects share the same implementation instance). Private actions that are only

meaningful in a particular state class context are declared within that state class scope.

Actions
Events

State1

Conditions

entry ()
exit ()
Condition_Evaluation

State2

Conditions

entry ()
exit ()
Condition_Evaluation

Entity_State
Entity_Interface

Entity_State : AState*
Event_Dispatcher (Event)
UpdateState(New_State : AState*)

AState

$ Entity_Ref : Entity_Interface *
Num_States : int
NextStates : AState**
$ Conditions

set entity state (New State : AState*)
exit()
entry ()

* *

Entity_Ref
NextStates

Event1()
Action1()

Event1()Event2()

Event2()

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
7

AState

It is the general abstract state class that groups the actions and events, and encapsulates the state-

driven transition (Chapter 10) mechanism. The entity's state will be changed when the

set_entity_state method is invoked, this provides a high-level state transition procedure that is

invoked from any state class. The class possesses pointers to self NextStates that allows each state

class to point to next possible states to be used in state transitions. The designer can also use an owner

driven transition [Dyson+98], in this case these pointers will not be needed in the Basic Statechart.

Multiple inheritance from Actions and Events is used to build the behavior of the states. These

classes can be merged with the AState class. However, it is preferred to separate them for large

systems where the number of events and actions are enormous and distinction between outputs and

events makes the design more comprehensive and easily maintainable.

States

These are the actual implementation of the entity's states, they inherit from the general AState class

and have the following tasks:

• Implement event methods that the state responds to and invoke appropriate actions accordingly.

• Keep knowledge of possible upcoming states and perform the state transition by invoking the

set_entity_state method.

• Host state specific conditions which can be implemented by:

a. Using a Boolean data member of a state class. For example if you want to implement whether

a link is established between two communicating entities, you can use a simple Boolean data

member LinkEstablished.

b. Using data member variables of a state class. For example, a simple conditions such as

[Amount>=50] can be implemented using a data member Amount and a condition check

statement (If (Amount>=50){..}). The condition check statement is implemented in the

event method of the state class that needs to evaluate the condition to take action accordingly,

as shown latter in the coin insertion event in the coin machine.

c. Compound conditions, which are longer expressions and require more effort in evaluation, can

also be evaluated in the same manner. But if the expression is oftenly checked then to simplify

the implementation you would rather evaluate it in a Condition_Evaluation method

that returns whether the expression is true or false and hence save the effort of repeating the

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
8

code in several other methods. For example, an IsEmpty method of a queue class can be

considered a condition evaluation method that checks whether a queue is empty or not.

You can also use static data members in the AState class for conditions that are common to all

state classes.

• The entry and exit specification of each state are implemented in its entry and exit methods,

which are called on transitions to enter or leave a state. The UpdateState method in the entity's

interface invokes the exit method of the old state and the entry method of the new one.

Entity_Interface

The Entity_Interface class acts as an interface to the logic encapsulated in the statechart

pattern. The Entity_Interface holds the current entity's state, the Event_Dispatcher

method receives events from the application environment and calls the state implementation of that

event accordingly. The entity's state is updated when UpdateState is invoked by the

set_entity_state method.

Example

Consider the example of the turnstyle coin machine in its simplest form. The specification is shown in

the following chart

Figure 1.4 The turnstyle coin machine specification

So, how do you use the Basic Statechart pattern to design the coin machine?

1. Identify the state classes Locked, Unlocked, and Broken

2. Implement the events methods Coin for coin insertion, Pass for person passage, a Failed

method for machine failure and a Fixed method after being fixed.

3. Identify action methods. The specification shows that the following actions are taken by the state

machine in various states: Unlock method allows a person to pass, Lock prevents a person from

passing, a method to display a Thankyou message, another to give an alarm Alarm, display an

Locked
Entry : InsertCoin
On Coin : Accumulate
Exit : Amount=0

Fixed/Inorder

Failed/OutofOrder & Locked

Broken Locked

Unlocked

Failed/OutofOrder

Coin[Amount>=CorrectAmount]/Unlock

Coin/ThankYou

Coin[Amount< CorrectAmount]

Pass/Lock

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
9

out-of-order message Outoforder, and Inorder method when the machine is repaired.

Implement these specified methods in the Actions class.

4. Implement the entry and exit specification as methods in each state class. For example, the coin

machine should keep track of the amount of coins inserted. So, in the Locked state the machine

keeps counting the amount inserted using Accumulate() method. On entering the Locked

state the machine displays a message telling the user to insert coins to pass, thus on the entry()

method the message is displayed. Each time the machine leaves the lock state it should clear the

amount of accumulated amount to zero, thus the exit() method clears the amount.

5. Identify the conditions in each state class. For example, the condition Amount>=

CorrectAmount is true whenever the accumulated sum is greater than a predefined value

CorrectAmount. Thus, in the Locked state, you declare the attribute Amount to hold the

accumulated sum and the condition checking is implemented in the coin insertion event (

coin() method). If the condition is true, the person is allowed to pass; i.e. the Unlock action

method is called and the transition to UnLocked state is activated, otherwise the machine will

still maintain its Locked state.

Figure 1.5 shows the statechart design of the coin machine based on the basic pattern structure. Only a

simplified portion of the full design is presented for illustration purposes.

Figure 1.5 The coin machine design using the Basic Statechart pattern

Actions

Lock ()
Unlock ()
Alarm ()
Thankyou ()
Outoforder ()
Inorder ()

Events

Pass ()
Coin ()
Failed ()
Fixed ()

Broken

Fixed ()
entry ()

Locked

Accumulate()

exit ()
entry ()
Pass ()

Unlocked

Pass()
Coin ()
entry ()

Entity Ref
NextStates

*

Machine StateCoinMachine_Interface

Machine State : AState*

Event_Dispatcher (Event)
UpdateState (New State :AState*)

AState
$ Entity_Ref : CoinMachine_Interface*
Num_States : int
NextStates : AState**

set_entity_state (New_State :AState*)
entry()

*exit()

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
10

Consequences

] Understandability: The clear role of each participant in the design facilitates the

understandability of the design. The use of multiple inheritance to mix the Actions and

Events and encapsulate the behavior for each state class makes the design more comprehensible

and easily maintainable.

] Traceability: The design is easily traceable because the pattern maps statechart specification into

classes, attributes, and methods in an OO design, and hence eases the traceability from a

statechart (Figure 1.4) to design (Figure 1.5).

∴ Complexity: The model is flexible to the addition of new states as well as other events.

However as the number of states increases, the design becomes more complex because a state

class would to be required for each state.

Related Patterns

Basic Statechart is related to state machine patterns from a behavior perspective. Finite state machine

patterns are described by Robert Martin in the Three-Level FSM [Martin95], Paul Dyson and Bruce

Anderson [Dyson+98], Alexander Ran [Ran96], and our FSM patterns discussed in Chapter 10.

However, Basic Statechart focuses on some formalized elements of statecharts such as the state exit

and entry methods, and how and where to implement the conditions specification, these issues were

not addressed in finite state machine patterns.

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
11

1.5 Hierarchical Statechart

Context

You are using the Basic Statechart. The application is large and the states seem to have a hierarchical

nature.

Problem

How do you implement the states hierarchy in your design?

Forces

• Understandability of a complex system behavior. You are using a statechart to describe an

entity's behavior and you find that a flat description of states is not illustrative because of their

large number. Thus you decided to make use of the hierarchical nature of the statechart

specifications to simplify the visual presentation and make it more understandable. The use of

statecharts hierarchy introduces superstates, which contains other simple states. Basic Statechart

doesn't support the concept of hierarchy thus you have to extend the design to allow enclosure of

states inside superstates.

Solution

To implement hierarchy in your design, you have to distinguish different types of states:

• A SimpleState : a state that is not part of any superstate and doesn't contain any child state.

(no parent and no children)

• A Leaf State: a state that is child of a superstate but doesn't have any children (has a parent

but has no children).

• A Root SuperState: a state that encapsulates a group of other states (children) but has no

parent.

• An Intermediate SuperState: a state that encapsulates a group of other states (children)

and has a parent state.

All these state classes are subclassed (inherited) from AState class and the child/parent relationship

is then implemented.

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
12

Structure

We use two pointers to implement the child/parent relationships, the MySuperState and the

CurrentState. Figure 1.6 shows the extensions to Basic Statechart to support hierarchy.

Figure 1.6 The Hierarchical Statechart pattern

Participant

In addition to the participants of Basic Statechart, Hierarchical Statechart has:

SimpleStates

They are the States participants of the Basic Statechart.

IntermediateSuperState

Does the functionality of both the RootSuperState and the LeafState.

RootSuperState

• Keeps track of which of its children is the current state using CurrentState

• Handles event addressed to the group and dispatches them to the current state to respond

accordingly.

• Produces common outputs for children states, and it can also implement the common event

handling methods on their behalf.

• Performs state-driven transitions from self to the next upcoming states.

• Implements the entry and exit methods for the whole superstate.

Actions Events

Simple State

Entity StateEntity_Interface
Entity_State : AState*

Event_Dispatcher (Event)
UpdateState(New_State : AState*)

Entity Ref

*

CurrentState

RootSuperStat
CurrentState : AState*

set_super_state (NewState : AState*)

IntermediateSuperState
MySuperState : AState*
CurrentState : AState*

set_super_state (NewState : AState*)

LeafState
MySuperState : AState*

AState
$ Entity_Ref : Entity_Interface *
Num_States : int
NextStates : AState**

set_entity_state (New_State : AState*)
set_super_state (New_State : AState*)
entry ()
exit ()

*

MySuperStateMySuperState
CurrentState

NextStates

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
13

LeafState

Does the same functionality as a SimpleState and additionally uses a MySuperState pointer to

change the current active state of its parent class.

Example

Consider the coin machine, the superstate S_Functioning is introduced as a superstate for the

Unlocked and Locked states. Figure 1.7 shows the statechart of the example in which we

distinguish: Broken as a SimpleState class, Locked and Unlocked as LeafState classes,

and S_Functioning as RootSuperState. The conditions and actions are not shown.

Figure 1.7 A hierarchical statechart for the coin machine example

Figure 1.8 The coin machine design using the Hierarchical Statechart pattern

Broken

Fixed

Failed

Locked

Unlocked

CoinPass

Coin

S_Functioning

Coin

Actions

Lock ()
Unlock ()
Alarm ()
Thankyou ()
Outoforder ()
Inorder ()

Events

Pass ()
Coin ()
Failed ()
Fixed ()

Broken

Fixed ()
entry ()
exit ()

Locked
Amount : unsigned int

Accumulate ()
exit ()
entry ()
Pass ()
Coin ()

Unlocked

Pass ()
Coin ()
entry ()
exit ()

// Coin() //
CurrentState->Coin()
// Failed//
set_entity_state(Broken)

S Functioning

Pass ()
Failed ()
Coin ()

MySuperState

Entity State
CoinMachine_Interface

Machine State : AState*
Event_Dispatcher (Event)
UpdateState (New State : AState*)

Entity Ref
*

LeafState
MySuperState : AState*

RootSuperState
CurrentState : AState*

set super state (NewState : AState*)

AState
$ Entity_Ref : CoinMachine_Interface *
Num States : int
NextStates : AState**

set entity state (New State : AState*)
set super state (New State : AState*)
entry ()
exit ()

*

SimpleState

NextStates

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
14

Consequences

] Understandability and Traceability: The use of the hierarchical principle of statecharts

simplified the understandability of the design. Mapping the hierarchical states into design

facilitate the traceability from specification into implementation and hence maintainability of the

design.

] Ease of Instantiation: The implementation of the application specific states is achieved through

the extension of the pattern solution structure by inheriting from the SimpleState,

LeafState, RootSuperState, and IntermediateSuperState. This facilitates the

instantiation process of the pattern in application specific examples.

∴ Visual Hierarchy: The major drawback of applying the pattern is that the visual hierarchy of

states in a statechart specification is not mapped into visual hierarchy in the design. For example,

it is not visually clear from the design class diagram in Figure 1.8 that the S_Functioning

state encapsulates the Locked and UnLocked states.

Related Patterns

Hierarchical Statechart can be considered a Composite pattern [Gamma+95] in which a composite

class (SuperState) is composed of child classes (LeafStates or other SuperStates) of

similar abstract type (AState).

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
15

1.6 Orthogonal Behavior

Context

You are using Hierarchical Statechart. Your entity has several independent behaviors that it

exercises at the same time.

Problem

How can you deploy the entity's orthogonal behaviors in your design?

Forces

• An entity may exercise multiple independent behaviors: You want to simplify the behavior of

an entity by explaining it as groups of independent state diagrams whose individual behavior

describes one aspect of the overall behavior. You cannot use conventional state diagrams because

they are poorly sequential as only one state can be active at a time. Therefore, you have used

statechart orthogonality principle to accomplish your task. Hierarchical Statechart doesn't

support orthogonal behavior and hence you have to extend its design.

Solution

Consult your statechart specification to identify those superstates that run orthogonal and dispatch the

events to each of those states. Define a Virtual superstate1 as a collection of superstates that process

same events. Then group these states in a virtual superstate whose event method will call all the event

method of the attached superstates. Figure 1.9 shows an example, virtual state "V" will receive the

event "g" from the entity interface and will dispatch it to both superstates "A" and "D".

Figure 1.9 Example of a virtual superstate

1 Note that the name virtual doesn't necessarily mean that the state doesn't really exist in the specification, it can be a meaningful superstate,
however the name virtual is chosen as it is virtually grouping the orthogonal states together.

A

B

C

B

i

C

g h

E

F

g

D

V

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
16

Structure

Figure 1.10 The structure of the Orthogonal Behavior pattern

Example

Consider the coin machine example, you want to add a warning system that operates when the

machine is broken. The warning system may turn on a warning lamp, display a message or send

notification to the operator. Thus, you have independent behavior describing the warning operation as

shown in Figure 1.11. To map this to design, a virtual class called V_CoinMachine is created,

which contains the two superstates S_Warning and S_Operation, events received by the

interface is dispatched to the V_CoinMachine class which dispatches them to both the

S_Operation and S_Warning classes. Figure 1.12 shows the class diagram, other states such as

Broken, Locked, etc. were removed from the diagram for simplicity.

Figure 1.11 An orthogonal statechart of the coin machine

WarningOFF WarningON

Failed

Fixed

Broken

Fixed

Failed

Locked

Unlocked

CoinPass

Coin

S_Functioning S_Operation

S_Warning

V CoinMachine

Coin

Actions Events

Simple State

Entity StateEntity_Interface
Entity State : AState*
Event_Dispatcher (Event)
UpdateState(New State : AState*)

Entity Ref

*

CurrentState

RootSuperState

CurrentState : AState*

set super state (NewState : AState*)

1

IntermediateSuperState

MySuperState : AState*
CurrentState : AState*

set super state (NewState : AState*)

LeafState

MySuperState : AState*

1
VirtualState

IndependentStates : AState**

Add (State : AState*)

*

AState

$ Entity_Ref : Entity_Interface *
Num States : int
NextStates : AState**
$ Conditions

set entity state (New State : AState*)
set super state (New State : AState*)
entry ()
exit ()
Add (state : AState*)

*

1

1

NextStates
*

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
17

Figure 1.12 The coin machine design using the Orthogonal Behavior pattern

Consequences

] Flexibility in implementation: Using a virtual state class has the advantage of giving freedom to

the designer in implementing orthogonality. Sequential implementation can be achieved by

calling one orthogonal state at a time. Concurrent implementation can be achieved by firing

events to each state object which is running as a thread of operation (if supported by the

underlying operating system). This addresses the concern of orthogonal states and concurrent

objects as discussed by Harel et.al.[Harel+97] and provides flexibility in implementation.

Related Patterns

The Orthogonal Behavior pattern can be considered a Composite pattern [Gamma+95] in which a

composite class (VirtualState) is composed of several children (SuperState classes) of the

same abstract type (AState).

Actions Events

Simple State

Machine_State
CoinMachine_Interface

Machine State : AState*

Event_Dispatcher (Event)
UpdateState(New_State : AState*)

Machine Ref

*

CurrentState

RootSuperState

CurrentState : AState*

set_super_state (NewState:AState*)

1

IntermediateSuperState

MySuperState : AState*
CurrentState : AState*

set super state (NewState : AState*)

LeafState
MySuperState : AState*

1

VirtualState
IndependentStates : AState**

Add (State : AState*)

*

AState

$ Machine_Ref : CoinMachine_Interface *
Num States : int
NextStates : AState**
$ Conditions

set_entity_state (New_State : AState*)
set super state (New State : AState*)
entry ()
exit ()
Add (state : AState*)

*

1

1

*

V_CoinMachine

Failed ()
Fixed ()

S_Operation

Fixed ()
Failed ()

S_Warning

Fixed ()
Failed ()

NextStates

// Failed //
for all independent states
s in V_CoinMachine
s->Failed()

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
18

1.7 Broadcasting

Context

You are using Orthogonal Behavior. Some events occurring in one state trigger other events in

orthogonal superstates.

Problem

How do you broadcast the produced event to the listener state?

Forces

• Relationship between orthogonal states: The orthogonal behaviors of the entity are still

logically related to each other because they describe the behavior of one entity. When you use the

orthogonality of statecharts, you sometimes find that the actions generated in one superstate

stimulate an event in another superstate. None of the previous statechart patterns explicitly deals

with this situation, however you can make use of their solution structure to broadcast the

stimulated event to the orthogonal superstate.

Solution

When a new event is stimulated, the broadcasting state would inject the event directly to the entity

interface to handle it. The event propagates though virtual superstates and hence it reaches the

orthogonal superstate of the broadcasting state. The structure of Orthogonal Behavior is used and

only those state that need to broadcast event calls the Entity_Interface with the new event.

Example

Figure 1.13 The coin machine statechart with broadcasting capability

WarningOFF WarningON

[In broken]

Warning_OFF

Broken

Fixed/Warning_OFF

Failed Unlocked

CoinPass

Coin

S_Functioning S Operation

S Warning

Locked

Coin

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
19

In the example of the coin machine, assume that the Fixed event will stimulate another event

Warning_OFF which will turn the superstate S_Warning from being in WarningON to

WarningOFF state. In this case, the design structure will be the same as Orthogonal Behavior, but

the S_Warning state will not implement the Fixed event but it will implement a Warning_OFF

event. The Fixed method of the Broken state will broadcast the Warning_OFF event by calling

the entity interface that would look like:

void Broken::Fixed(){

{ //….

Entity_Ref->Event_Dispatcher(Warning_OFF);

}

Discussion

You use Broadcasting to transfer the events to orthogonal superstates. The source of event generation

differs, some events are generated as actions of a former event, some are due to a condition becoming

true in one state that affect the orthogonal state, and some events are due to being in a new state (

In(mode) event). We only discussed one example and one solution. However, other solutions, such

as queuing the new event until the current transition is done, can be accommodated in the pattern.

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
20

1.8 History State

Context

You are using Hierarchical Statechart and you find that a superstate should have memory of which

active state it was last in just before exiting the whole superstate.

Problem

How do you keep the history of a superstate in your design?

Forces

• Using the default state versus the last active state: When you transition from a superstate to

another (super)state and then back to the original superstate, you may want to re-enter the original

superstate with its previous state rather than its default state. So, you use the history property of

the statechart specification but when you implement it, you will need to keep the superstate object

knowledgeable of its last state object. Without history, the entry of a superstate will initialize its

CurrentState pointer to the default internal state object which would look like:

Void superstate::entry()

{ CurrentState = DefaultState; }

And the default state is initialized on the superstate constructor method. Using this for superstates

with history removes the knowledge of a superstate of its latest internal state.

Solution

Initialize the CurrentState pointer of a superstate class once on creation, do not reinitialize it on

the superstate entry() method. This will keep the value of the pointer on entry as that of the last

exit.

Example

Figure 1.14 The coin machine statechart with history property

WarningOFF WarningON

[In Broken]

Warning_OFF

Broken

Fixed/Warning_OFF

Failed

Locked

Unlocked

CoinPass

Coin

H

OFF

TurnedOFF

TurnedON

ON
S_Operation

S_Warning

S_Functioning

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
21

In the coin machine example, let us assume that the machine can be turned on and off and reserves its

previous state, thus it should return to Broken if it was last out of order and should return to

S_Functioning if it was operating correctly before shutting down. In this case, the entry()

method as S_Operation superstate will not initialize its CurrentState pointer as would be the

case in the default state implementation in Hierarchical Statechart.

1.9 General Discussion

The design of finite state machines is a common problem addressed by system designers. They are

often used in communication systems in which the status of the link between two or more

communicating entities limits the behavior of the above application layers. FSMs are widely used in

control systems such as motion control system of automated trains, elevator controls, and automated

train door control. Gamma et.al.[Gamma+95] have pointed some known uses in graphical user

interfaces. Dyson et.al. [Dyson+98] have also pointed out their usage in library applications.

Several patterns for finite state machines were previously presented in the literature [Dyson+98,

Martin95, Ran96, and Yacoub+98c], some of which are also applicable to statecharts as they both

share some common properties. For example, the Default State, Exposed State and Pure State

patterns described by Dyson et. al. [Dyson+98] might also be applicable to state classes in statecharts.

An integrative work of State pattern [Gamma+95,Dyson+98], Finite State Machine patterns

[Martin95, Ran96, Yacoub+98c], and Statechart patterns could provide a comprehensive pattern

language to solve problems in implementing an entity's behavior.

Chapter 11: A Pattern Language of Statecharts Part III: New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
22

1.10 Summary of Statechart Patterns

Pattern

Name

Problem Solution

Basic

Statechart

Your application contains an entity

whose behavior depends on its state.

You have decided to use statechart's

specifications to specify the entity's

behavior. How do you implement the

statechart specification into design?

Use an object oriented design that encapsulates

the state of the entity into separate classes that

correspond to the states defined in the

specification. Distinguish the events, conditions,

actions, entry and exit activities in each state class

as methods and attributes of the state classes.

Hierarchical

Statechart

You are using the Basic Statechart.

The application is large and your

states seem to have a hierarchical

nature. How do you implement the

states hierarchy in your design?

Use superstates classes that are inherited from the

abstract state class. Use the Composite pattern

[Gamma+95] to allow the superstate to contain

other states. Keep the superstate knowledgeable

of the current active state and dispatch events to

it.

Orthogonal

Behavior

You are using the Hierarchical

Statechart. Your entity has several

independent behaviors that it

exercises at the same time. How do

you deploy the entity's orthogonal

behaviors in your design?

Identify the superstates that run independently in

your specification, then define a "Virtual

superstate" as a collection of superstates that

process the same events, dispatch the events to

each state.

Broadcasting You are using the Orthogonal

Behavior. How can you broadcast a

stimulated event produced from

another event occurring in an

orthogonal state?

When a new event is stimulated, make the

broadcasting state inject the event directly to the

entity interface which dispatches it to the virtual

superstate. Eventually, the virtual supertate

dispatches the event to all of its orthogonal states.

History State If one of the superstates has a history

property, how do you keep its history

in your design?

Initialize the current active state class pointer of

the superstate object once on creation, use it

throughout the entity's lifetime, and do not

reinitialize it on the superstate entry method.

Table 1-1 Summary of Statechart patterns

Chapter 11: A Pattern Language of Statecharts Part IV New Patterns as Design Components

Pattern Oriented Analysis and Design Ph.D. Thesis
23

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

