
SOFTWARE DESIGN (SWD)

Instructor: Dr. Hany H. Ammar
Dept. of Computer Science and
Electrical Engineering, WVU

OUTLINE OF SOFTWARE
DESIGN

 Introduction to Software Design (SWD)
and the SW Design Description (SDD)
document

 Software Design Criteria
 Software Design Methodologies
 Structured Design (SD) Using ICASE

Introduction to SWD, and The
SDD Document
 The SWD phase in the DOD standard MIL-

STD-498 (Chapter 2, section 3) focuses on
developing the physical model for each
computer software configuration item
(CSCI)

 The output of this phase is the the SWD
document (See Table 4.1, section 4.1 of the
notes)

Introduction to SWD, and The
SDD Document
The SDD consists of the following sections
1. Scope.
2. Referenced documents
3. CSCI-wide design decisions
4. CSCI architectural design

4.1 CSCI components
4.2 Concept of execution
4.3 Interface design

5. CSCI detailed design
6. Requirements traceability

Introduction to SWD, and The
SDD Document
 The SWD starts in the first section by identifying

the scope of the CSCI, presenting a system
overview, and a document overview

 The second section lists the number, title, revision,
date, and source of all documents referenced in
this specification.

 In the third section, the CSCI-wide design
decisions are described as follows:

a. Design decisions regarding inputs the CSCI
will accept and outputs it will produce,
b. Design decisions on CSCI behavior in
response to each input or condition,

Introduction to SWD, and The
SDD Document
 In section 4, the CSCI architectural design is

specified. The section is divided into the following
subsections described below,

 Section 4.1 Identifies the (CSCs), software
components or units that make up the CSCI

 Section 4.2 describes the concept of execution
among the software components, i.e., flow of
execution control, data flow, dynamically
controlled sequencing, concurrent execution, etc.

Introduction to SWD, and The
SDD Document
 Section 4.3 describes the Interface design and it

includes both interfaces among the software units
and their interfaces with external entities, and it
consists of two parts as follows:
1. Section 4.3.1depicts the interfaces identification
and diagrams (interfaces identifiers name, number,
and version; fixed or to be modified, etc.)
2. This part consists of several sections (starting
from section 4.3.2). Each section identifies a
particular interface, with data type, format, range,
Priority, timing, frequency, volume, Security and
privacy constraints

Introduction to SWD, and The
SDD Document
 Section 5 specifies the detailed design of each CSC

including the following
 The components structure in software units,

components design decisions, design constraints,
The programming language to be used, concept of
execution of its units, and internal interfaces
between units

 The task of Requirements traceability needed for
verification and validation is documented in section
6 of the SDD.

Software Design Criteria

 The established criteria for software design quality
help the designer in developing and assessing the
quality of the software design architecture

 This include:
1. Modular design (coupling, and cohesion),
2. Information hiding,
3. Design complexity,
4. Testability, and
5. Reusability

Software Design Criteria
Modular design
 Modular Design: software is decomposed of

software modules such that a change in one
module has minimal effect on other modules

 A software module is a program unit consisting
of procedures, functions, and data structures
that

- can be separately compiled, and
- independently callable unit of code

Software Design Criteria
Modular design
 The development of a modular design

structure is guided by the need for
satisfying design criteria regarding the
coupling of pairs of modules, and the
cohesion, complexity, and reusability of
individual components in each module

 coupling is a measure of level of the
interactions between two modules

Software Design Criteria
Modular design
 Modules interact by passing parameters

through a call statement, or by sharing
common data and file structures. The goal
of modular design is to reduce the level of
coupling between modules

Module A

Module B

Software Design Criteria
Modular design
 The goal of modular design is to reduce the level

of coupling between modules and increase the
cohesion of each module

 The following forms of module coupling are listed
from the lowest to the highest levels of coupling

1. Data coupling: communication between
modules is accomplished through well-defined
parameter lists consisting of data information
items

Software Design Criteria
Modular design

2. Stamp coupling: communication between
modules is accomplished through well-defined
data structure parameter lists where only parts of
the data structures are used in the target module

3. Control coupling: a module controls the flow
of control or the logic of another module. This is
accomplished by passing control information
items as arguments in the argument list.

Software Design Criteria
Modular design

4. Common coupling: modules share common or
global data or file structures. This is the strongest
form of coupling both modules depend on the
details of the common structure

5. Content coupling: A module is allowed to
access or modify the contents of another, e.g.
modify its local or private data items. This the
strongest form of coupling

Software Design Criteria
Modular design
 In modular design, modules should be developed

as consisting of strongly cohesive components
 Cohesion is a measure of the internal relatedness

of the components of a module.
 The following forms of cohesion are described

from the highest strength to the lowest levels of
cohesion
1. Functional cohesion: is achieved when the
components of a module cooperate in performing
exactly one function, e.g., POLL_SENSORS,
GENERATE_ALARM, etc.

Software Design Criteria
Modular design

2. Communicational cohesion: is achieved when
software units or components sharing a common
information or data structure are grouped in one
module

3. Procedural cohesion: is the form of cohesion
obtained when software components are grouped
in a module to perform a series of functions
following a certain procedure specified by the
application requirements

Software Design Criteria
Modular design

4. Temporal cohesion: this form of
cohesion is found when a module is
composed of components or functions
which are required to be activated during
the same time interval. Examples are
functions required to be activated for a
particular input event, or during the same
state of operation

Software Design Criteria
Modular design

5. Logical cohesion: refers to modules designed
using functions who are logically related, such as
input/output functions, communication type
functions (such as send and receive),

6. Coincidental cohesion: is found when several
unrelated functions are grouped in one module to
decrease the total number of modules and increase
the module size. This is the lowest level of
cohesion

Software Design Criteria
Information hiding
 Design decisions that are likely to change in the

future should be identified and modules should be
designed in such a way that those design decisions
are hidden from other modules

 the concept of information hiding is to hide the
implementation details of shared information and
processing items by specifying modules called
information hiding modules

 Module Interfaces are created to allow other
modules accessibility to shared items without
having visibility to its internal implementations

Software Design Criteria
Design Complexity
 Complexity is another design criteria used in the

process of decomposition and refinement. A
module should be simple enough to be regarded as
a single unit for purposes of verification and
modification

 a measure of complexity for a given module is
proportional to the number of other modules
calling this module (termed as fan-in), and the
number of modules called by the given module
(termed as fan-out) ………..

No. of calls Fan-in

Fan-out……
No. of calls

Complex
Module

Software Design Criteria
Design for Testability
 software modules must be designed to enhance or

facilitate testability, i.e., the ease of developing a
set of test cases and test drivers

 Avoid modules with a large numbers of
input/outputs, no inputs/outputs, whose interfaces
pass unnecessary data, and

 Avoid a process whose functionality is spread over
several unrelated modules (difficult to trace the
functional requirements to test cases of modules

Software Design Criteria
Design for Reuse
 Reusability is now considered as an important

design criteria after the emergence of software
repositories which provide means of classifying,
cataloging, and retrieving software components

 Both domain specific and general reusable
modules and Design Patterns and frameworks are
sought out in the design of current systems

 Avoid special assumptions and dependencies (e.g.,
on specialized components, library functions,
operating system functions, etc.)

 Need well defined interfaces (specifying provided
and required services)

