
SOFTWARE DESIGN (SWD)

Instructor: Dr. Hany H. Ammar
Dept. of Computer Science and
Electrical Engineering, WVU

OUTLINE

 Introduction TO Software Design (SWD)
and the SW Design Description (SDD)
document

 Software Design Criteria
 Software Design Methodologies
 Structured Design for (SD) Software Using

ICASE

Software Design Methodologies
Structured Design
 Following the structured analysis and object-

oriented analysis methodologies used in the
requirements phase, Design methodologies consist
of

- Structured Design
a) Produces a design that can be

implemented in structured
programming languages such as C

b) characterized by the development of
structured hierarchy of modules

specified using Structure Charts (SCs)

Software Design Methodologies
Structured Design
 SCs are used for modeling the

partitioning/grouping of data/control functions
defined in the specifications into modules, using
the software design criteria

 The hierarchical organization of these modules,
and the data/control interfaces between them are
defined in the SC

 Each module declared in the SC must be
accompanied by a module specification (M-specs).
The pre/post conditions, and algorithms specified
using a design description language or a flow chart

Software Design Methodologies
Structured Design

BANK
SERVICE
TILL

CONTROL
TRANSACTION

AWAIT
CASH
CARD
ENTRY

GET
PASSWORD

GET REQUIRED
SERVICES

PROCESS
REQUIRED
SERVICES

EJECT
CASH
CARD

CASH CARD
DATA

PASSWORD

VALID PASSWORD
ENTERED

CASH
LIMIT

CASH AMOUNT

SERVICES
REQUIRED

CASH AMOUNT
SERVICES
REQUIRED

CONTROL
TRANSACTION

5

GET
PASSWORD

1

GET REQUIRED
SERVICES

2

PROCESS
REQUIRED
SERVICES

3

PROCESS
CASH
CARD
ENTRY

4

CASH
CARD
DATA

CASH
CARD
DATA

BANK
TRANSACTION

PRINT SLIPS

CASH

MESSAGE

ACCOUNT
INFORMATION

KEYED DATA

CASH CARD

SERVICES
REQUIRED

CASH AMOUNT

PASSWORD

SERVICE REQUEST

ENTERED
PASSWORD

MESSAGE

CUSTOMER
DETAILSCASH LIMIT

CARD INSERTED

EJECT CARD

A

VALID PASSWORD
ENTERED

T

Software Design Methodologies
Structured Design
 SCs are developed from specifications represented

by structured analysis graphs (DFDs/CFDs, C-
specs, etc.)

 C-Specs is mapped to in the upper-level modules
in the SC, since they are responsible for
controlling the decisions and the activities in the
lower levels modules,

 The controller Control_Transaction in the previous
slide is mapped to the upper-level module
controlling the execution of the SC shown

Software Design Methodologies
Structured Design
 Data processes specified in Data Flow Diagrams

(DFDs) are allocated to modules using two
techniques discussed as follows
- transform-oriented design, processes are divided
into input and data preprocessing functions, data
processing functions, and output related functions
- transaction-oriented design, in this case the
design consists of an input module, a dispatcher
module, transaction processing modules one
module for each type of transaction/command/or
request

Software Design Methodologies
Structured Design
Transform-Oriented

DFD/CFD

Main
Module

input transform output

Input transform output

1st

Level
SC

Software Design Methodologies
Structured Design
 Transaction driven

Input Type 2

Type 3

Type 1

Input/
process transactions

Main
Module

Input Dispatcher

Type 1 Type 2 Type 3

Structured Design (SD) Using
ICASE

StP/SE Structure chart Editor symbols (used in the
Notes of Chapter 4)

Module
Library
Module

Off-Page
Connector
Representing
A subsystemUnidirectional/

bi-directional data couple,
A control couple is distinguished
by a black circle

Structured Design (SD) Using
ICASE

Global data Iteration symbol
Used at the
invocation lines
Out of a module

Selection
Between
Invocation
Lines out
Of a module
(Conditional
invocation

Anchors and comments
Can also be used in the
Structure chart

Structured Design (SD) Using
ICASE

Module
A

Module
B

Synchronous
Invocation,
Module A invokes B
And waits until B returns

Module
A

Module
B

Asynchronous
Invocation,
Module a invokes B,
Then continues (not
In StP/SE SCE)

Structured Design for (SD)
Software Using ICASE
Steps for developing structure charts

The following set of steps are described to guide the
designer in developing an architectural design which
conforms to the design criteria

 Step 1- Review and refine the diagrams developed in
the analysis phase. The analysis diagrams contained in
the Software Requirements Specification document
are reviewed and refined for the design phase to
include greater detail

- A refined specification contains a more flattened
view of the logical model of the system, by bringing
lower level functions to upper level DFDs

Structured Design for (SD)
Software Using ICASE
 Step 2- Identify and label the necessary concurrent

modules from the refined analysis diagrams
- The phrase necessary concurrent modules

here means that these modules have to be running
concurrently for the correct real-time operation of
this system

- If the identified functions in the various
modules can be invoked sequentially and still
satisfy the timing specifications for the output
events then there is no need for concurrency.

Structured Design for (SD)
Software Using ICASE
 Step 3- Implement, using

asynchronous/synchronous invocations or
clear comments, in a structure chart the
invocation of concurrent and sequential
modules from the main or the root module
(this root module usually carries the name
of the software under development).

Structured Design for (SD)
Software Using ICASE
 Step 4- For each concurrent module, Determine

whether the refined DFD/CFD diagrams have
transform or transaction flow

- Determine the first level factoring of these
modules, and document their specifications using
M-specs.

- Specify the couples using data dictionary
entries (or data structure diagrams and comments)

Structured Design for (SD)
Software Using ICASE
 Step 5- Refine the first-cut design obtained above

to reflect design criteria such as coupling,
cohesion, information hiding, and complexity

 Step 6- The complex modules specified in the
previous steps should be factored out using steps 1
through 5 above and the process should continue
until all lower level modules are simple enough to
specify using simple M-specs

 Step 7 Complete the descriptions of all module
interfaces and global data structures

Example of Step 4 of Design
Procedure

Example of Step 5 of Design
Procedure

A Simple Example: A Home Security
System

Design Procedure: Step 2

Home Security
System Main

Monitor Sensor
Executive

Asynch. Invocation

User
Interaction
Executive

ATM Design Example
Recall first the ATM analysis, and use it to
develop a design

