
DETAILED DESIGN,
IMPLEMENTATIONA AND
TESTING

Instructor: Dr. Hany H. Ammar
Dept. of Computer Science and
Electrical Engineering, WVU

OUTLINE

 Detailed design, Implementation, and
testing phase in the software development
standards

 Software Testing
– Black Box Testing
– White Box Testing

Detailed design, Implementation,
and Testing
 In the European Space Agency standard, the major

activities in this phase include
- decomposition and the specification of the low-level
software modules.

the low-level components specified
at the architectural design are
decomposed into software modules.

- This is followed by software production and
documentation: implementing the modules
specifications into code, integrating
the software components, and the
testing activities

Detailed design, Implementation,
and Testing

Decomposition of low-level components
- Using stepwise refinement, the low-level

components specified at the architectural design
are decomposed into software modules, and
Library modules (language dependent
Application Programming Interfaces APIs, e.g.,
Microsoft Foundation Classes, Java API
packages for Graphical User Interfaces or
GUIs, network programming, etc.)

Decomposition of low-level
components

Example: Process Pilot Request subsystem
 Specify the detailed design of subordinate

modules of Process_Pilot_Request
 Specify how buffers are structured (the data

structures of the buffers used for inputs and
outputs)

Detailed design, Implementation,
and Testing

Software production
Software production consists of
 Implementing the modules specifications into

code (structured Programming or object-oriented
programming),

 Integrating the software components and the
testing activities in testing procedures
of unit testing, integration
testing, and system testing

Detailed design, Implementation,
and Testing
The activities required in the MIL-STD-498 standard

for the Software Implementation and Unit Testing
(SWIUT) are described as follows:

- Develop and document software corresponding to
each software unit (CSU) of each software
component (CSC) in the CSCI design

- Establish test cases (in terms of inputs, expected
results, and evaluation criteria), test procedures,
and test data for testing the software
corresponding to each software unit

Detailed design, Implementation,
and Testing
 The test cases shall cover all aspects of the

unit's detailed design. The developer shall
record this information in the appropriate
software development files (SDFs)

 Test the software corresponding to each
software unit. The testing shall be in
accordance with the unit test cases and
procedures

Detailed design, Implementation,
and Testing
 Make all necessary revisions to the software,

perform all necessary retesting, and update the
software development files (SDFs) and other
software products as needed, based on the results
of unit testing

 Analyze the results of unit testing and record the
test and analysis results in appropriate software
development files (SDFs)

Software Testing

What is Software Testing?
 Is the process of executing a program with

an established set of test cases
 Test cases are generated according to a well

defined procedures or techniques
 Testing is a bottom-up process, starts with

unit testing, components testing, CSCI
testing

 Levels of Real Time System Testing
– Unit Testing
– Software Integration Testing
– Software Validation and Verification Testing
– Software / Hardware Integration Testin
– System Testing

Software Testing (Unit Testing)

Set of test
cases Test Driver

Module under test

Stub Stub Stub
Data
Module

Software Testing
 The test driver is developed based on a set

of test cases
 The driver invokes the module under test

for each test case and establishes the test
case data/control requirements

 Stubs are sub-ordinate dummy modules that
represent the modules (including global data
structures) invoked (or accessed) by the
module under test

 They contain print and return statements

Software Testing

 Testing techniques consist of
- Black Box testing, where we focus on

testing the software functional requirements,
and testing the input/output interfaces

Inputs Outputs

Module under test
Is treated as a
Black Box

Only inputs and outputs
of functions are considered
How outputs are generated based
on a set of inputs is ignored
Run a suite of test cases

-Exhaustive combination of all inputs
-Corner cases (min, max, avg)
-Pathological cases (inputs likely to result in error)

Software Testing

– White Box Testing, where we focus on developing test
cases to cover the logical paths through the code (e.g.,
conditional statements, loops, etc.)
 Based on developing a control flow graph of the code under test to

identify the set of independent paths, and produce a set of test cases
to cover these paths

 Exercises all paths in a module Driven by logic
 Static Example: Code Inspections, group walkthrough of software

logic, inspect code line-by-line (Static Analysis tools)
 Dynamic Example: Test all the links and buttons on a web page
 For real-time systems dynamic testing is important to test time

constraints, and reactive logical pathes

Software Testing
 Black Box Testing Techniques

1. Equivalence Partitioning
Partition the input space into
equivalence classes and develop a
test case for each class of inputs

2. Boundary value analysis
develop test cases at the boundaries

of the possible input ranges (minimum
and maximum values)

 The above techniques are important for data processing
intensive applications

Black Box Testing

Software Testing

 Black Box Testing Techniques (cont.)
3. Cause-effect graphing

- Used for control intensive
applications,

- Develops test cases to represent
input events (or causes) and the
corresponding actions (or effects)

 This technique is used intensively in real-time
systems

Software Testing

 Cause-effect graphing consists of the following 4
steps
1. List and label causes (input-events) and effects
(output actions) for a module
2. Draw a cause-effect graph describing the logical
combinations of causes, intermediate causes and
resulting effects,
3. Develop a decision table (causes vs effects)
from the graph
4. Convert each row into a test case, or a set of
rows into a testing scenario

Software Testing

Symbols used in the cause-effect graphs
ci = ith cause, ei = ith effect

ci ei ci ei
Ci causes ei Ci does Not cause ei

ci ei

cj
OR

ci ei

cj AND

Software Testing

 Example: Control motion module in our project
(assume the module inputs are a state variable and a
control input)

1. List and label all Causes and all effects
Causes Effects

C1: Start_train e100: Release all Brakes
C2: Idle e200: Engage_Engine
C3: speed = Max_speed e300: Disengage_Engine
C4:Accelerating e400: Apply Ph. 1 Brakes
C5: Speed > Max_speed e500: Release Ph. 1 brakes
C6: Coasting e600: Apply Ph. 2 brakes
C7: Speed <= Min_speed e700: Apply Safety brakes

Software Testing

Accelerating

Coasting Decelerating

Idle

stopping

Start / RL all Br
Engage Engine

Speed = Max_speed /
Disengage_Engine

Speed > Max_speed /
Apply Ph. 1 brakes

This List is obtained form the following C-spec STD

Stop /

Applying ph II

Speed <=
Min_speed/
Engage
Engine

Software Testing

c1 e10

c2

e100

e200

c3 e20

c4

e300

c5 e30

c6

e400e40

c7

Develop a Cause effect graph

Software Testing

 Develop a Decision Table
C1 C2 C3 C4 C5 C6 C7 e100 e200 e300 e400
1 1 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 1 0
0 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 1 1 0 1 0 0
 Convert each row to a test case

Software Testing

 Scenario testing: A testing scenario combines a set of
test cases for testing the system behavior over a period
of time

 For example the following sample run can be used for
scenario testing

Start,idle ; speed = max_speed, Accelerating;
Speed < = Min_speed, Coasting; Stop, Accelerating;

speed = stop speed; start, Idle; speed = max_speed,
Accelerating; speed > Max_speed, Coasting;

