West Virginia University

College of Engineering and Mineral Resources

Lane Dept. of Computer Science and Electrical Engineering

CpE 484 – Real Time Systems

Implementation and Testing

	Submitted by:
	Andrew Golden

	
	Matthew Kile

	
	Joshua Kraan

	
	Joshua Robinson

Table of Contents

Introduction
 1

Structure Chart
 1

Implementation Details
 3

Testing
 3

Results
 9

Reflection
 9

Appendix A
 11

Appendix B
 23

Introduction

This report describes the steps taken for implementation and testing of a subsection of the Automated Commuter Train project. The aforementioned subsystem is the speed control module of the Train Operation System. This component is responsible for reacting to changes in the track, responding to emergency situations, and stopping at designated stations.

Structure Chart

During the design phase, the structure chart shown in Figure 1 was created for the speed control subsystem. The on-page connectors reference the functions listed below. These functions are part of data-hiding modules.

	On-page Connector

Number
	Referenced Function

	2
	Get Itinerary

	5
	Put Run-Log

	8
	Get Track data

[image: image1.png]

Figure 1: Structure Chart

Implementation Details

To test this module, all of its functions were coded according to the M-Specs. The language used was C, and the code was compiled using the GNU gcc compiler. The modules are declared in control.h and defined in control.c. See Appendix A for the complete source listing.

Hardware buffers and data-hiding modules are global and implemented in main.h. Because of this, the test driver can easily set up conditions for a test case and check the values set by the tested module. The variable that keeps track of the current state is also global.

The test driver functionality is accomplished in the main() function of main.c. This function performs each of the test cases (described later) and prints the results to the screen. These results may be easily saved to a file using indirection, as both Windows and Linux support this capability.

Testing

The goal of testing is to ensure that the system responds correctly to conditions set by the test driver. In this case, the effects being watched are the signals being sent to the engine and brake systems. The following chart lists causes and effects used for creating test cases.

	Causes
	Effects

	c1: state = cruising
	e1: set state = cruising

	c2: state = accelerating
	e2: set state = accelerating

	c3: state = decelerating
	e3: set state = decelerating

	c4: state = stopping
	e4: set state = stopping

	c5: state = stopped
	e5: set state = stopped

	c10: start_train
	e10: engage engine

	c11: no engine_ack
	e11: disengage engine

	c12: no brake_ack
	e12: release all brakes

	c13: stop at station
	e13: apply Phase-I brakes

	c14: approaching station
	e14: apply Phase-II brakes

	c15: end of itinerary reached
	e15: apply safety brake

	c100: speed >= max speed
	e16: apply emergency brake

	c101: speed <= min speed
	e100: set end of run

	c102: speed = max speed
	

	c103: speed = 0
	

	c104: speed <= PII_SPEED
	

With the causes and effects defined, test cases could be created. This was done using cause-effect graphs. Note that e1 through e5 are intermediate effects, and thus are not shown on the decision table that was later generated from the cause-effect graphs. However, the program does display the state for each test case.

The cause-effect graphs are shown below, followed by the decision table.

[image: image2.png]

[image: image3.png]AMV:AMV:

[image: image4.png]

[image: image5.wmf]c1

c2

c3

c4

c5

c10

c11

c12

c13

c14

c15

c100

c101

c102

c103

c104

e10

e11

e12

e13

e14

e15

e16

e100

1

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

2

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

3

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

4

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

1

0

5

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

6

0

1

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

7

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

8

0

1

0

0

0

0

1

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

9

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

1

0

0

0

0

0

10

0

0

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

11

0

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

12

0

0

1

0

0

0

1

1

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

0

13

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

1

0

0

0

0

14

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

1

0

15

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

0

0

0

16

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

17

0

0

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

18

0

0

0

1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

19

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

0

0

0

0

1

0

1

Causes

Effects

Test Case

Results

The program successfully compiles and runs in a Linux environment. Observing the output, all test cases were successful. The output was redirected to a file, which is included in Appendix B.

Reflection

Over the course of the semester, we as a group gained new knowledge and skills from our experience with the project. While there is no doubt as to the importance of classroom learning, projects present an opportunity for students to work together and apply the concepts in a more practical environment.

For many programming assignments, students can simply sit down, begin coding, debug as they go, and come up with an acceptable result. No proof of planning or forethought is required. While this is effective for small class assignments, it certainly is unacceptable in industry. Thus, it was a beneficial requirement to complete a project following a lifecycle model because it made us think about the entire development process.

During the analysis phase, we as a group had to think very high-level. This was difficult for us, being more used to writing code or, at the most, making flowcharts. Shifting to a more conceptual view of the project forced us to think more about interactions with external modules.

The design phase was much easier because it involved thinking about functions and parameter passing. This was much more natural for us. Because of our frame of mind during the analysis, converting the data flow diagrams to structure charts was very smooth. We did have to learn the proper procedure for diagramming our design, though.

Implementation and testing was by far the easiest part of the project for us, since we are all accustomed to writing code. Learning the proper techniques for creating a test scenario was very helpful and sped up the coding.

Appendix A – Source Code

// control.h

// Group 2

// Andrew Golden, Joshua Kraan

// Matthew Kile, Joshua Robinson

// CpE 484 - Real Time Systems

// West Virginia University

// May 10, 2002

#include "main.h"

int speed;

void control_train(void);

void accelerate(void);

void cruise(void);

void decelerate(void);

void stop(void);

int send_engine_control(int engine_control_signal);

void send_brake_control(int brake_control_signal);

int failure;

int verify_action(int action);

int get_speed(void);

void put_run_log (int run_log);

int determine_end_of_run(void);

// control.c

// Group 2

// Andrew Golden, Joshua Kraan

// Matthew Kile, Joshua Robinson

// CpE 484 - Real Time Systems

// West Virginia University

// May 10, 2002

#include "control.h"

void control_train(void)

{

int action;

int max_speed;

int min_speed;

int stop_request;

int speed;

int verify;

// determine control action:

// track info from buffer

max_speed = track_info.max_speed;

min_speed = track_info.min_speed;

// stop at station from buffer

stop_request = stop_at_station;

// get speed

speed = get_speed();

// return action

if (stop_request != FALSE)

{

action = STOPPING;

state = action;

stop();

}

else if (speed > max_speed)

{

action = DECELERATE;

state = action;

while (speed_data > track_info.max_speed)

decelerate();

}

else if (speed < min_speed)

{

action = ACCELERATE;

state = action;

while (speed_data < track_info.max_speed)

accelerate();

}

else if (speed >= min_speed && speed <= max_speed)

{

action = CRUISE;

state = action;

cruise();

}

else

{

action = FAIL;

state = action;

printf("Warning: control_train module entered undefined action mode.\n");

}

//
verify action

verify = verify_action(action);

}

void accelerate(void)

{

failure = send_engine_control(ENGAGE);

if (failure != FALSE)

printf ("Warning: send_engine_control failed.\n");

}

void cruise(void)

{

state = CRUISE;

failure = send_engine_control(DISENGAGE);

send_brake_control(RELEASE);

}

void decelerate(void)

{

send_brake_control(PHASE_I);

}

void stop(void)

{

speed = get_speed();

if (speed > PHASE_I_MIN_SPEED)

{

printf("decelerating from stop...\n");

decelerate();

}

else if (speed == 0)

{

send_brake_control(SAFETY);

put_run_log (track_info.station_id);

end_of_run = determine_end_of_run();

enable_doors = TRUE;

state = STOPPED;

}

else

{

send_brake_control(PHASE_II);

}

}

int send_engine_control(
int engine_control_signal)

{

int failure = FAIL;
// assume failure, prove safe later

if (
enable_doors == FALSE &&

enable_motion == TRUE)

{

engine_control = engine_control_signal;

speed_data++;
// ***USED FOR TESTING ONLY***

failure = FALSE;

}

return failure;

}

void send_brake_control(
int brake_control_signal)

{

if (brake_acknowledge == FALSE)

{

brake_control_signal = EMERGENCY;

speed_data = 0;
// ***PRETEND EMRG WORKS***

}

else

{

speed_data--;
// ***USED FOR TESTING ONLY***

if (speed_data < 0) speed_data = 0;

}

brake_control = brake_control_signal;

}

int verify_action(

int action)

{

int fail = FAIL;
// assume failure, prove safe later

switch (action)

{

case STOPPING:

if (
engine_acknowledge == TRUE &&

brake_acknowledge == TRUE)

failure = FALSE;

else

failure = STOPPING;

break;

case STOPPED:

if (
engine_acknowledge == TRUE &&

brake_acknowledge == TRUE)

failure = FALSE;

else

failure = STOPPED;

break;

case ACCELERATE:

if (
engine_acknowledge == TRUE &&

brake_acknowledge == TRUE)

failure = FALSE;

else

failure = ACCELERATE;

break;

case DECELERATE:

if (
engine_acknowledge == TRUE &&

brake_acknowledge == TRUE)

failure = FALSE;

else

failure = DECELERATE;

break;

case CRUISE:

if (
engine_acknowledge == TRUE &&

brake_acknowledge == TRUE)

failure = FALSE;

else

failure = CRUISE;

break;

case FAIL:

printf("Error: unable to verify undefined action.\n");

break;

default:

printf("Warning: verify_action module entered undefined action mode.\n");

break;

}

if (failure != FALSE)

send_brake_control(EMERGENCY);

return failure;

}

int get_speed(void)

{

return speed_data;

}

void put_run_log(int run_log)

{

run_log_data += run_log;

}

int determine_end_of_run(void)

{

int EOR = FALSE;

if (track_info.station_id == itenerary.last_station_id)

{

EOR = TRUE;

}

return EOR;

}

// main.h

// Group 2

// Andrew Golden, Joshua Kraan

// Matthew Kile, Joshua Robinson

// CpE 484 - Real Time Systems

// West Virginia University

// May 10, 2002

#define FALSE

0

#define TRUE

1

#define DISENGAGE

0

#define ENGAGE

1

#define DISABLE

0

#define ENABLE

1

#define FAIL

-1

#define STOPPING

1

#define STOPPED

2

#define ACCELERATE

3

#define DECELERATE

4

#define CRUISE

5

#define RELEASE

0

#define PHASE_I

1

#define PHASE_II

2

#define SAFETY

3

#define EMERGENCY

4

#define PHASE_I_MIN_SPEED
30

struct info_packet

{

int approaching_station;

int max_speed;

int min_speed;

int station_id;

};

struct itenerary_packet

{

int stations;

int last_station_id;

};

struct info_packet track_info;

struct itenerary_packet itenerary;

int brake_acknowledge;

int brake_control;

int enable_doors;

int enable_motion;

int end_of_run;

int engine_acknowledge;

int engine_control;

int run_log_data;

int speed_data;

int state;

int stop_at_station;

void reset(void);

void report_test_results(int test_case);

// main.c

// Main procedure for the executable: train

// Use the command make on a Unix system to compile.

// Enter ./train to execute.

//

// Group 2

// Andrew Golden, Joshua Kraan

// Matthew Kile, Joshua Robinson

// CpE 484 - Real Time Systems

// West Virginia University

// May 10, 2002

#include <stdio.h>

#include "main.h"

void reset();

void report_test_results(int test_case);

int main()

{

// Initialize variables.

// Since we have no actual external system continually

// dumping track info to us, we're just making this up

// here, for the sake of testing.

int test_case;

reset();

printf("Initial values:\n\n");

report_test_results(0);

test_case = 1;

reset();

cruise();

speed_data = track_info.max_speed + 5;
// speed >= max speed

brake_acknowledge = TRUE;

// brakes work

control_train();

report_test_results(test_case);

test_case = 2;

reset();

cruise();

speed_data = track_info.max_speed + 5;
// speed >= max speed

brake_acknowledge = FALSE;

// brakes fail

control_train();

report_test_results(test_case);

test_case = 3;

reset();

cruise();

speed_data = track_info.min_speed - 5;
// speed <= min speed

engine_acknowledge = TRUE;

// engine works

control_train();

report_test_results(test_case);

test_case = 4;

reset();

cruise();

speed_data = track_info.min_speed - 5;
// speed <= min speed

engine_acknowledge = FALSE;

// engine fail

control_train();

report_test_results(test_case);

test_case = 5;

reset();

accelerate();

speed_data = track_info.max_speed;
// speed = max speed

engine_acknowledge = TRUE;

// engine fail

control_train();

report_test_results(test_case);

test_case = 6;

reset();

accelerate();

speed_data = track_info.max_speed;
// speed = max speed

engine_acknowledge = FALSE;

// engine fail

control_train();

report_test_results(test_case);

test_case = 7;

reset();

accelerate();

speed_data = track_info.max_speed;
// speed = max speed

brake_acknowledge = FALSE;

control_train();

report_test_results(test_case);

test_case = 8;

reset();

accelerate();

speed_data = track_info.max_speed;
// speed = max speed

engine_acknowledge = FALSE;

// engine fail

brake_acknowledge = FALSE;

control_train();

report_test_results(test_case);

test_case = 9;

reset();

decelerate();

speed_data = track_info.max_speed;
// speed = max speed

control_train();

report_test_results(test_case);

test_case = 10;

reset();

decelerate();

speed_data = track_info.max_speed;

engine_acknowledge = FALSE;

control_train();

report_test_results(test_case);

test_case = 11;

reset();

decelerate();

speed_data = track_info.max_speed;

brake_acknowledge = FALSE;

control_train();

report_test_results(test_case);

test_case = 12;

reset();

decelerate();

speed_data = track_info.max_speed;

engine_acknowledge = FALSE;

brake_acknowledge = FALSE;

control_train();

report_test_results(test_case);

test_case = 13;

reset();

speed_data = 45;

stop_at_station = TRUE;

track_info.approaching_station = TRUE;

control_train();

report_test_results(test_case);

test_case = 14;

reset();

speed_data = 45;

stop_at_station = TRUE;

track_info.approaching_station = TRUE;

brake_acknowledge = FALSE;

control_train();

report_test_results(test_case);

test_case = 15;

reset();

speed_data = PHASE_I_MIN_SPEED - 5;

stop_at_station = TRUE;

track_info.approaching_station = TRUE;

control_train();

report_test_results(test_case);

test_case = 16;

reset();

speed_data = PHASE_I_MIN_SPEED - 5;

stop_at_station = TRUE;

track_info.approaching_station = TRUE;

brake_acknowledge = FALSE;

control_train();

report_test_results(test_case);

test_case = 17;

reset();

speed_data = 0;

stop_at_station = TRUE;

track_info.approaching_station = TRUE;

control_train();

report_test_results(test_case);

test_case = 18;

reset();

speed_data = 0;

stop_at_station = TRUE;

track_info.approaching_station = TRUE;

brake_acknowledge = FALSE;

control_train();

report_test_results(test_case);

test_case = 19;

reset();

speed_data = 0;

stop_at_station = TRUE;

track_info.approaching_station = TRUE;

track_info.station_id = itenerary.last_station_id;

control_train();

report_test_results(test_case);

return 0;

}

void reset()
// initialize default values

{

track_info.approaching_station = FALSE;

track_info.max_speed = 55;

track_info.min_speed = 30;

track_info.station_id = 2;

itenerary.stations = 6;

itenerary.last_station_id = 4;

brake_acknowledge = TRUE;

brake_control = RELEASE;

enable_doors = FALSE;

enable_motion = TRUE;

end_of_run = FALSE;

engine_acknowledge = TRUE;

engine_control = CRUISE;

run_log_data = 0;

speed_data = 0;

state = CRUISE;

stop_at_station = FALSE;

}

void report_test_results(int test_case)

{

printf ("Test case %d: \n", test_case);

printf ("track_info:
approaching station
= %d\n",track_info.approaching_station);

printf ("

max_speed
.
= %d\n",track_info.max_speed);

printf ("

min_speed
.
= %d\n",track_info.min_speed);

printf ("

station_id
.
= %d\n",track_info.station_id);

printf ("itenerary:
stations
.
= %d\n",itenerary.stations);

printf ("

last_station_id
.
= %d\n",itenerary.last_station_id);

printf ("brake_acknowledge
.
.
= %d\n",brake_acknowledge);

printf ("brake_control
.
.
.
= ");

switch (brake_control)

{

case RELEASE:

printf ("RELEASE\n");

break;

case PHASE_I:

printf ("PHASE_I\n");

break;

case PHASE_II:

printf ("PHASE_II\n");

break;

case SAFETY:

printf ("SAFETY\n");

break;

case EMERGENCY:

printf ("EMERGENCY\n");

break;

default:

printf ("***UNDEFINED***");

break;

}

printf ("endable_doors
.
.
.
= %d\n",enable_doors);

printf ("enable_motion
.
.
.
= %d\n",enable_motion);

printf ("end_of_run
.
.
.
= %d\n",end_of_run);

printf ("engine_acknowledge
.
.
= %d\n",engine_acknowledge);

printf ("engine_control
.
.
.
= %d\n",engine_control);

printf ("run_log_data
.
.
.
= %d\n",run_log_data);

printf ("speed_data
.
.
.
= %d\n",speed_data);

printf ("state
.
.
.
.
= ");

switch (state)

{

case STOPPING:

printf ("STOPPING\n");

break;

case STOPPED:

printf ("STOPPED\n");

break;

case ACCELERATE:

printf ("ACCELERATE\n");

break;

case DECELERATE:

printf ("DECELERATE\n");

break;

case CRUISE:

printf ("CRUISE\n");

break;

default:

printf ("***UNDEFINED***");

break;

}

printf ("stop_at_station
.
.
.
= %d\n\n\n",stop_at_station);

}

MAKEFILE

train : control.o main.o

 gcc -o train control.o main.o

control.o : control.h control.c

 gcc -c control.c

main.o : control.h control.c main.h main.c

 gcc -c main.c

clean :

rm -f train *.o *~

Appendix B – Testing Results

Initial values:

Test case 0:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= RELEASE

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 5

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 0

state
.
.
.
.
= CRUISE

stop_at_station
.
.
.
= 0

Test case 1:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= PHASE_I

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 55

state
.
.
.
.
= DECELERATE

stop_at_station
.
.
.
= 0

Test case 2:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 0

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 0

state
.
.
.
.
= DECELERATE

stop_at_station
.
.
.
= 0

Test case 3:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= RELEASE

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 1

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 55

state
.
.
.
.
= ACCELERATE

stop_at_station
.
.
.
= 0

Test case 4:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 0

engine_control
.
.
.
= 1

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 54

state
.
.
.
.
= ACCELERATE

stop_at_station
.
.
.
= 0

Test case 5:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= RELEASE

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 55

state
.
.
.
.
= CRUISE

stop_at_station
.
.
.
= 0

Test case 6:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 0

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 54

state
.
.
.
.
= CRUISE

stop_at_station
.
.
.
= 0

Test case 7:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 0

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 0

state
.
.
.
.
= CRUISE

stop_at_station
.
.
.
= 0

Test case 8:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 0

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 0

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 0

state
.
.
.
.
= CRUISE

stop_at_station
.
.
.
= 0

Test case 9:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= RELEASE

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 55

state
.
.
.
.
= CRUISE

stop_at_station
.
.
.
= 0

Test case 10:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 0

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 54

state
.
.
.
.
= CRUISE

stop_at_station
.
.
.
= 0

Test case 11:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 0

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 0

state
.
.
.
.
= CRUISE

stop_at_station
.
.
.
= 0

Test case 12:

track_info:
approaching station
= 0

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 0

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 0

engine_control
.
.
.
= 0

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 0

state
.
.
.
.
= CRUISE

stop_at_station
.
.
.
= 0

decelerating from stop...

Test case 13:

track_info:
approaching station
= 1

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= PHASE_I

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 5

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 44

state
.
.
.
.
= STOPPING

stop_at_station
.
.
.
= 1

decelerating from stop...

Test case 14:

track_info:
approaching station
= 1

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 0

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 5

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 0

state
.
.
.
.
= STOPPING

stop_at_station
.
.
.
= 1

Test case 15:

track_info:
approaching station
= 1

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= PHASE_II

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 5

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 24

state
.
.
.
.
= STOPPING

stop_at_station
.
.
.
= 1

Test case 16:

track_info:
approaching station
= 1

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 0

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 0

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 5

run_log_data
.
.
.
= 0

speed_data
.
.
.
= 0

state
.
.
.
.
= STOPPING

stop_at_station
.
.
.
= 1

Test case 17:

track_info:
approaching station
= 1

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= SAFETY

endable_doors
.
.
.
= 1

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 5

run_log_data
.
.
.
= 2

speed_data
.
.
.
= 0

state
.
.
.
.
= STOPPED

stop_at_station
.
.
.
= 1

Test case 18:

track_info:
approaching station
= 1

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 2

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 0

brake_control
.
.
.
= EMERGENCY

endable_doors
.
.
.
= 1

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 0

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 5

run_log_data
.
.
.
= 2

speed_data
.
.
.
= 0

state
.
.
.
.
= STOPPED

stop_at_station
.
.
.
= 1

Test case 19:

track_info:
approaching station
= 1

max_speed
.
= 55

min_speed
.
= 30

station_id
.
= 4

itenerary:
stations
.
= 6

last_station_id
.
= 4

brake_acknowledge
.
.
= 1

brake_control
.
.
.
= SAFETY

endable_doors
.
.
.
= 1

enable_motion
.
.
.
= 1

end_of_run
.
.
.
= 1

engine_acknowledge
.
.
= 1

engine_control
.
.
.
= 5

run_log_data
.
.
.
= 4

speed_data
.
.
.
= 0

state
.
.
.
.
= STOPPED

stop_at_station
.
.
.
= 1

_1082530484.xls
Sheet1

		Test Case		Causes																																Effects

				c1		c2		c3		c4		c5		c10		c11		c12		c13		c14		c15		c100		c101		c102		c103		c104		e10		e11		e12		e13		e14		e15		e16		e100

		1		1		0		0		0		0		0		0		0		0		0		0		1		0		0		0		0		0		0		0		1		0		0		0		0

		2		1		0		0		0		0		0		0		1		0		0		0		1		0		0		0		0		0		0		0		0		0		0		1		0

		3		1		0		0		0		0		0		0		0		0		0		0		0		1		0		0		0		1		0		0		0		0		0		0		0

		4		1		0		0		0		0		0		1		0		0		0		0		0		1		0		0		0		0		0		0		0		0		0		1		0

		5		0		1		0		0		0		0		0		0		0		0		0		0		0		1		0		0		0		1		1		0		0		0		0		0

		6		0		1		0		0		0		0		1		0		0		0		0		0		0		1		0		0		0		0		0		0		0		0		1		0

		7		0		1		0		0		0		0		0		1		0		0		0		0		0		1		0		0		0		0		0		0		0		0		1		0

		8		0		1		0		0		0		0		1		1		0		0		0		0		0		1		0		0		0		0		0		0		0		0		1		0

		9		0		0		1		0		0		0		0		0		0		0		0		0		0		1		0		0		0		1		1		0		0		0		0		0

		10		0		0		1		0		0		0		1		0		0		0		0		0		0		1		0		0		0		0		0		0		0		0		1		0

		11		0		0		1		0		0		0		0		1		0		0		0		0		0		1		0		0		0		0		0		0		0		0		1		0

		12		0		0		1		0		0		0		1		1		0		0		0		0		0		1		0		0		0		0		0		0		0		0		1		0

		13		0		0		0		0		0		0		0		0		1		1		0		0		0		0		0		0		0		0		0		1		0		0		0		0

		14		0		0		0		0		0		0		0		1		1		1		0		0		0		0		0		0		0		0		0		0		0		0		1		0

		15		0		0		0		1		0		0		0		0		0		0		0		0		0		0		0		1		0		0		0		0		1		0		0		0

		16		0		0		0		1		0		0		0		1		0		0		0		0		0		0		0		1		0		0		0		0		0		0		1		0

		17		0		0		0		1		0		0		0		0		0		0		0		0		0		0		1		0		0		0		0		0		0		1		0		0

		18		0		0		0		1		0		0		0		1		0		0		0		0		0		0		1		0		0		0		0		0		0		0		1		0

		19		0		0		0		1		0		0		0		0		0		0		1		0		0		0		1		0		0		0		0		0		0		1		0		1

