West Virginia University
College of Engineering and Mineral
Resources

Lane Department of Computer Science and Electrical
Engineering

Real Time Systems
Spring 2008

Automated Commuter Train System
Analysis Phase

John Sedoski
Tobias Brozenick
Anthony Graziani

Table of Contents

LI o (S =TT TSRS 1
Y oo Yo TP 3
1.1: Identification and SYStEM OVEIVIEW:oiicciiiieeiiieeeciiee e et e eeere e eetae e e e eaee e e earaeeesnaeeeas 3
1.2: DOCUMENT OVEIVIEW .eiiiiiiieiieieeeiitee e sttt et e e st e e st e e s s e e e s amre e e s saneeeessaneeeesanrneessneneesans 3
3. REQUITEMENES: ittt ettt eesesesesasasasasasasasasasssnsnnnsnnnn 5
3.1: Required States and MOAES:c..ueiiiiiiiiiciiee e bre e e e ebee e e naeas 5
3.2: CSCI Capability Requirements = DFD O.....cccceeeiiiiieiiiiiee et esee e e eeivee e e e e 7
3.2.1: CSCI Capability Requirements = DFD L......cccioiiiiiiiieeeeeeccciiiieeee s ecivvneee e e e e e snrnneee e e e 11
3.2.2: CSCI Capability Requirements — DFD 2.....cccciiiiiiiiieiee e ccciiveee e e e ecctiree e e e e e eeinsaae e e e e e 14
3.2.3: CSCI Capability Requirements — DFD 3......ccoioiiiiiiiiiiee et e ectrree e e e e eearaae e e e e 17
3.2.4: CSCI Capability Requirements —DFD d.......cccocuiiiiiiiiieieieee et et e s e e s e e sseaee e 19
3.3: CSCl External Interface REQUIrEMENTS: ...cccuieiiiiiiee et et earae e e 24
3.3.1: Interface Identification and DIiagrams:........cccccueeeiiiiiieeeiiiieeecieeeecree e et e e esare e e earee e 24
3.3.2: External Interface Data DefinitioNns:coceevieiieiienieiieeeeee e 25
3.4: CSClINterface REQUITEMENTS: .. .uiiii e ittt ee e ettt e e e e eeetre e e e e e e e s abrre e e e e e eesnntaaaeeeeseennsssseees 31
3.4.1: P-specs for Primitive of Monitor Train Statuscccccceeeeeciiieeee e 31
3.4.2: P-specs for Primitive Functions of Monitor On-train System Sensorscccccceeeecunnenn. 32
3.4.3: P-specs for Primitive of Schedule Train.......ccccceiiiiciiii e 34
3.4.4: P-specs for Primitive Functions of Run Automated Systemccccccveeviiieeencieeeecnnennn, 36
3.5: CSCS Internal Data REQUIFEMENTS ...cceeeiiiieiee ettt e e e e e e s ee e e e e e e nanenees 37
D) - D ol d o] o 1 oV = 41 o L= 38
Table of Figures:
Figure 1 - Required States and Modes STDcccuiiiieii it errrre e e e e e e rarer e e e e e e e enees 5
Figure 2 - DFD 0 Diagram: Automated Commuter Train Systemccccceeeeeeecciiiieeee e, 7
Figure 3 - DFD O Diagram: ACT STD ...ttt babesabaeeessesseaeassesesesessaeasanes 9
FIgure 4 - DFD O Table: ACT PAT .ottt e et e e e e e e st te e e e e e s e saabteae e e e e e snnsnaanaeeseenns 10
Figure 5 - DFD 1 Diagram: Monitor Train Statuscccceeeeieieieiiieiecccc e 11
Figure 6 - DFD 1 Diagram: STatus STDo veveaeeeeaeaee 12

Figure 7 - DFD 1 Table: Status PAT ...ttt st e e eetee e e stte e e s sbaee e esnbaeeesnntaeeesans 13

Figure 8 - DFD 2 Diagram: Monitor On-train System SENSOrS.....cccceeeeieerieereierereseecceceree e 14
Figure 9 - DFD 2 Table: DOOI DTcuiiiiiiiiieecciiee ettt ettt s st ee e svte e e s sbae e e ssataeeesvtaeessabeeeesnnsanessanes 15
Figure 10 - DFD 2 Table: Stop_ReqUESE DToviiiiciiiiiciiiee ettt e et e e eetee e srae e e s evaaeeeans 15
Figure 11 - DFD 2 Diagram: Light_ Compare STDuueeeiiiieiciiiieiee e ccreree e e eecvteree e e e eanneeeee s 16
Figure 12 - DFD 3 Diagram: SChedule Trainccocciiiiiiiiee ettt st e e svee e e e svaee e 17
Figure 13 - DFD 3 Diagram: SChedule STDuii ittt e eeitee e e stae e e s earaee e 18
Figure 14 - DFD 4 Diagram - Run Automated SyStemccccoiiiiiiie i 19
Figure 15 - DFD 4 Diagram: POWEr_UP STDuuui e evevasesenanes 20
Figure 16 - DFD 4 Diagram: LIhT STD.......coiiiciiie ettt eette e evtre e s sate e e s sbae e e senvaaeeeans 20
Figure 17 - DFD 4 Diagram: CliMate STDcciiiiiiciiiieiee ettt e e ertrree e e e e e e ervraae e e e s e e e snnraaeeaeeean 21
Figure 18 - DFD 4 Diagram: Start_StOp STD ... 22
Figure 19 - DFD 4 Table: DOOI PATcoc ettt ettt ettt tte e e e tae e e st e e e s sbte e e senbaeeesentaeaenans 23
Figure 20 - DFD 4 Table: Start_STOP PAT ...ttt erttree e e e e e e e rvtaa e e e e e e e e snnraaaeaaeean 23
Figure 21 - DFD Context Diagram Automated Commuter Train System.......ccccceevviveeerciieeescnnennn, 24

1: Scope:

1.1: Identification and System Overview:

The scope of the Automated Commuter Train System (ACTS) is defined by a number of
requirements and features. The ACTS is fully automated, while still allowing a train operator to
assume control when necessary. The responsibilities of the Automated Commuter Train System
include:

e Monitoring external component sensors (doors, temperature, brakes, engine, etc).
e Watching for external component failures.
e Scheduling the train start and stop locations based on a specific scheduling mode.

e Running the automated system in accordance with the sensor and scheduling data.

Other features available in the ACTS are PA system support, climate control, and light control.

1.2: Document Overview:

The following document is comprised of multiple diagrams and tables that analyze the ACTS.
Under the “Required States and Modes” section is a state-transition diagram that illustrates the
necessary states and modes of the system. A brief description of each state/mode is also
included.

The “CSCI Capability Requirements” section contains the Data-Flow Diagrams (DFD) of the
system with the appropriate Control Specifications (C-Specs).

The “CSCI External Interface Requirements” section includes the Context Diagram and a brief
explanation of the external entities that the ACTS interacts with.

The “CSCI Interface Requirements” section is comprised of the Process Specifications (P-Specs)
of all of the primitive functions of the ACTS.

The “CSCI Internal Data Requirements” section includes how the information in the data stores
within the ACTS is kept.

The “Data Dictionary Entries” section contains all of the control and data inputs in the system
and how they are arranged and passed through the various processes and control nodes.

3: Requirements:

3.1: Required States and Modes:

Train Powered Off Operator powers Powering Up
State up train State
Train powered up
Operator switches
Manual Mode —€—— modes —
Automated Mode
Train powered Operator powers
down down train
Express Mode
Operator powers Request Only Mode Local Mode Activation from
down train Activation from Activation from Central Computer
Central Computer Central Computer
Powering Down Request Only
State - Mode Local Mode Express Mode

Required States and Modes STD

Figure 1 - Required States and Modes STD

Figure 1 depicts the required states and modes for the Automated Commuter Train System. The
required states and modes for the Automated Commuter Train begin with the Train Powered Off
State. When the operator presses the power-up switch, the system goes into the Powering Up
State. Once the train has successfully powered-up, the system goes right into the Automated
Mode. The system then has three choices: Request Only Mode, Local Mode, and Express Mode.
The system may jump between these three modes at any time as the Central Computer

determines the correct mode. The Train Operator may also override the system by switching
from the Automated Mode to the Manual Mode at any time. Finally, the Train Operator can
press the power-down switch to take the system into the Powering Down State. After the train
has powered-down, the system returns to the original Train Powered Off State.

3.2: CSCI Capability Requirements - DFD 0

train_ready_power_down
emergency_stop_request,,
__...override_notification
systems_ok L
obstacle_data
system_override_request o
———————————— » manual_mode_control |t|nerary_<tiii1t: date
,,,,,,,, train_power_up.__. . » train_méae_control_signal
3 >
» 9}
1 = " start_stop_report
o T
>
=~

Status

sensor_ID.
--------sensor_statug---------------—--

train_location

X__announcement_msg ™

Monitor On-train
System Sensors |-
2 |l

o
e T AN S
S
Qe‘/ -
N
-~
-
%
L7
&
/
’ time_dat
Y ime_date

DFD 0 Diagram
Automated Commuter Train System

stop_request:

.
|
!
P
i | =3
* |
e g & g L
S 3 o
S =3 | Qo
| I_((0] o 5
= | o
g & = 2 'z
o | g g
s & 1) o 8
@ o a s 8
a - o °® g
| | N o 3
3 3 ! [°N
| | | o
! !
3 P
Al g | 3
| |
IR
Ay P
! !
! !
! |

temperature_signal AN announs:\ement_tngger
brake_signal |
&~ i light_signal
y ! door_signal engine_speed_signal R
¥ j <
14 v

Figure 2 - DFD 0 Diagram: Automated Commuter Train System

The DFD 0 Diagram in Figure 2 is illustrated by the four major functions of the Automated
Commuter Train System described below:

1. Monitor Train Status — This function is used to monitor the external components for
failures. If the brakes, engine, lights, heating system, or doors are not working properly,
the Monitor Train Status process will notify the Maintenance System of the failure. An
external component failure will also generate a control output, systems_ok, to be
described by the ACT STD.

2. Monitor On-train System Sensors — This function is used to read the various external
sensors and generate an operator dial of the sensor readings. If the system is operating
in the Automated Control Mode, then this process will make automated requests to the
train system based on the sensor readings.

3. Schedule Train — This function is used to schedule the starts and stops of the train based
on the train_control_mode input. The itinerary_data, time_date, train_location, and
obstacle_data inputs are assessed to determine when and where the train should stop
as it follows the proper route. The announcement_msg output is sent to notify
passengers of these departures and arrivals via the external PA system. Also, a
start_stop_report output is sent to the Maintenance System Database at the end of
each train run to account for all of the starts and stops of the run. This function is only
activated under the Automated Control Mode.

4. Run Automated System — This function is used to automatically process all of the On-
train System requests. The automated train requests managed include: stopping and
starting the train, opening and closing the doors, maintaining the proper train speed,
changing the train lights, and turning on the heater and air conditioner. The Run
Automated System process interacts heavily with the Schedule Train and Monitor On-
train System Sensors processes. Run Automated System is only activated under the
Automated Control Mode.

> Powered Off

train_ready_power_down = TRUE
train_power_up = TRUE

. = Powering Up and
—systems_ok = FALSE |
Powering Down y - Checking Systems
train_power_up = FALSE systems_ok = TRUE
' -—
Train Stopping/ < systems_ok = FALSE |4 ;tomated Control
Mode/
emergen:yf;’tj)g_request systems_ok = TRUE manual_mode =
g FALSE -
system_override_request
train_power_up = FALSE = FALSE

system_override_request
=TRUE

!

Manual Control

DFD 0 Diagram Mode/
ACT STD manual_mode_co
ntrol = TRUE

Figure 3 - DFD 0 Diagram: ACT STD

Figure 3 depicts the state-transition diagram for the ACT STD control node. The diagram
illustrates how the system goes from the Automated Control Mode to the Manual Control Mode
based on the inputs and outputs of the control node.

ACT PAT Data Processes

manual_mode_control 1 2 3 4
FALSE ON ON ON ON
TRUE ON ON OFF OFF

Figure 4 - DFD 0 Table: ACT PAT

Figure 4 shows which data processes are activated when manual_mode_control is changed by
using a Process Activation Table (PAT). Note that processes 3 and 4 are deactivated when
manual_mode_control = TRUE.

10

3.2.1: CSCI Capability Requirements - DFD 1

engine_status

—————————— >
— _brake_status_ _ _]
— — —sensor_status— — — -

””””””” » systems_ok

| __door_temp_light_failure. — _ _

| _ _engine_brake_failure. _ _ _

@

o

£ :
@ !
] |
= :
o :

note_sent

1vd snieis

Determine Which
Sensor Failed
A

ification
Send Maintenance mamtenance_nom‘ca
Notification

2

DFD 1 Diagram
Monitor Train Status

Figure 5 - DFD 1 Diagram: Monitor Train Status

The DFD 1 Diagram in Figure 5 is illustrated by two primitive functions and two control nodes.
The control nodes are briefly described below.

11

Engine Failed/
systems_ok =

FALSE
engine_brake_
failure = ENGINE

engine_status =

engine_status =
FAILED

brake_status =

Brakes Failed/
systems_ok =
FALSE

OK
\
sensor_status =
OK
sensor_failure =
NONE
sensor_status =
FAILED
sensor_failure =
iIGHT
Light Sensor
Failed/
systems_ok =
FALSE
door_temp_light_
failure = LIGHT

engine_brake_
FAILED failure = BRAKES
A brake_status =
—p System Sensors « OK |
N Working/ P
systems_ok =
TRUE]
sensor_status =
sensor_status = sens'j),?”;::ire _
FAILED = .
sensor_failure = TEMPERATURE
DOOR

OK

sensor_failure =

NONE

Door Sensor
Failed/
systems_ok =
FALSE
door_temp_light_
failure = DOOR

DFD 1 Monitor Train Status

Status STD

sensor_status =

sensor_status =
OK
sensor_failure =
NONE

Temperature
Sensor Failed/
systems_ok =
FALSE
door_temp_light_
failure = TEMP

Figure 6 - DFD 1 Diagram: Status STD

Figure 6 depicts the state-transition diagram for the Status STD control node. The diagram
illustrates how the system reacts when an external sensor fails.

12

DFD 1 Monitor Train Status - Status PAT Data Processes

door_temp_light_failure engine_brake_failure note_sent 1.1 1.2
DOOR X X X ON

TEMP X X X ON

LIGHT X X X ON

X ENGINE X X ON

X BRAKE X X ON

NONE NONE TRUE ON OFF

Figure 7 - DFD 1 Table: Status PAT

Figure 7 uses a PAT to show which data processes are activated in the event of a door,
temperature, light, engine, or brake failure. The input, note_sent, is used to let the system
know that the necessary notification has been sent to the Maintenance System.

13

3.2.2: CSCI Capability Requirements - DFD 2

next_stop_request

@
door_status 8
——————————————— > 5
obstructed_door_notification 2
3
o
o]
—
» g light_data.
\ g
\]
\ —
‘0
\ %
% oA
2 \
%, %
Ny =
%
\
JE— current_temperature Determine
—temp! Valid Sensor

Readings —light_datar

train_speed_data__ 1

Determine

Generate
Operator Dial

stop_request _

.6

_speed
perature

current_train_s

current_tem

Speed
Change
5

train_speed_data- speed_change_request

current_temperature

Temperature
Parameters

Determine

Change/

Target
Temperature
.3

Display
Temperature
4

temperature_rang

light_status

time_date

light_change_request

Maintain
Lights
2

time_date

\i

aLs asedwoy b

DFD 2 Drawing
Monitor On-train System Sensors

Figure 8 - DFD 2 Diagram: Monitor On-train System Sensors

14

temp_change_request

———»

The DFD 2 Diagram in Figure 8 is illustrated by six primitive functions and three control nodes.
The control nodes for Monitor On-train System Sensors are briefly described below.

DOOR DT - Monitor On-train System Sensors

door_status | obstructed_door_notification
OBSTRUCTED TRUE

CLEAR FALSE

Figure 9 - DFD 2 Table: Door DT

Figure 9 uses a Decision Table (DT) to show the control output in the event of an obstructed
door and a clear door. The input, door_status, is used to let the system know whether the door
being monitored is obstructed or not.

Stop Request DT - Monitor On-train System Sensors

next_stop_request stop_request
PUSHED TRUE
NOT_PUSHED FALSE

Figure 10 - DFD 2 Table: Stop_Request DT

Figure 10 uses a DT to show the control output in the event of a passenger pushing the “Next
Stop” button. The input, next_stop_request, is used to let the system know whether a
passenger wishes the train to stop at the next stop location.

15

Lights On/
light_change_
request = ON

light_status = ON light_status = OFF
target_light_status = target_light_status =
OFF ON

Lights OFF/
light_change
request = OFF

DFD 2 Monitor On-train System Sensors
Light Compare STD

Figure 11 - DFD 2 Diagram: Light_Compare STD

Figure 11 depicts the state-transition diagram for the Light Compare STD control node. The
diagram illustrates how the system reacts when the light_status is not equal to the
target_light_status.

16

3.2.3: CSCI Capability Requirements - DFD 3

train_mode_control_signal

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ’
---stop_request------------ -
---start_request-----------—- -
R — » obstacle_data
! o»
1 o
1 =0
| D
| Q.
! <
! @
‘ a
3 o itinerary_data
start_stop_train ., obstacle_present-------------------- Process Itinerary
and Obst1acle Data obstacle_data
itinerary_data

Store Start_Stop
Data and Activate
PA System
2

train_location train_location

start_stop_data

Start_Stop
Database

announcement_msg
start_stop_data

end Start_Stop
Data to
Maintenance
Computer
3

DFD 3 Diagram
Schedule Train
start_stop_report

Figure 12 - DFD 3 Diagram: Schedule Train

The DFD 3 Diagram in Figure 12 is illustrated by three primitive functions and one control node.
The control node for Schedule Train is briefly described below.

17

train_mode_control_ train_mode_control_
signal = NONE Change Train signal = NONE

Mode ‘

train_mode_control_

train_mode_control_ signal = REQUEST_ONLY

signal = EXPRESS train_mode_control_

signal = LOCAL
train_mode_control_
Travel to Next signal = NONE Travel Without
Designated Stop/ Stopping/
start_request = TRUE start_request = TRUE
Travel to Next
A A

Available Stop/
start_request = TRUE

start_stop_train = STOP
or
obstacle_present = TRUE

start_stop_train = START
and
obstacle_present = FALSE

start_stop_train = STOP obstacle_present =

tart_stop_train = START or TRUE
san._s OP—an(Ij obstacle_present = TRUE

obstacle_present = FALSE

obstacle_present =
FALSE

Send Stop Request to <
Automated System/
stop_request = TRUE

DFD 3 Schedule Train
Schedule STD

Figure 13 - DFD 3 Diagram: Schedule STD

Figure 13 depicts the state-transition diagram for the Schedule STD control node. The diagram
illustrates how the system reacts as the control modes are changed from EXPRESS, LOCAL, and
REQUEST_ONLY by the Central Computer. Also, start and stop requests and track obstacles are
accounted for during transit.

18

3.2.4: CSCI Capability Requirements - DFD 4

. . /'
train_location -~

dqor_gignal
time_to_open_door g
: < S 4
| z N announcement_trigger
| 3 e
! Manage Doors
———————————————— train_power_up-------------p 1 A
———————————————————————— train_ready_power_down—-——------—--—----—-p-
nabl
bl
2 i start_request-------------- »
@
&
=4
=T stop_request----------—— >
(%]
=
o
————————————————— time_to_stop-----——-------p4
””””” stop_train_request-——--—»
fffffffffff speed_change_request--------pf
» speed_request "
B e M
v | o
3 ‘ 3
» target_speed_ o
= reached >
o : =
,,,,,,,,,,,,,,,,,, enable) i
—————————— light_change_request--------p
Manage Train
”””””” Speed
2
,,,,,,,,,,, light_signal____________p
-
Q
2
enable 9 \
———————————————————————————— » o -
brake_signal
———————— temp_change_request----—-M 3
ffffffffffff temperature_signal--—-----------% pstacle data

engine_spéed_signal

aLs srewid

v
DFD 4 Diagram
Run Automated System

Figure 14 - DFD 4 Diagram - Run Automated System

The DFD 4 Diagram in Figure 14 is illustrated by two primitive functions and six control nodes.
The control nodes for Run Automated System are briefly described below.

19

Train Powered
Down/
train_power_down_ |«
ready = TRUE
enable = FALSE

train_power_up = TRUE
train_power_up = FALSE

Train Powered Up/
train_power_down_
ready = FALSE
enable = TRUE

DFD 4 Run Automated System
Power_up STD

Figure 15 - DFD 4 Diagram: Power_up STD

Figure 15 depicts the state-transition diagram for the Power_up STD control node. The diagram
illustrates how the system is powered-up and powered-down by the Train Operator.

Systems Off/
train_ready_power ¢———
_down=TRUE «

enable = TRUE enable = FALSE

Lights Turned On/ |
light_signal = ON

light_change_request = OFF
light_change_request = ON

Lights Turned Off/
light_signal = OFF

DFD 4 Run Automated System
Light STD

Figure 16 - DFD 4 Diagram: Light STD

20

Figure 16 depicts the state-transition diagram for the Light STD control node. The diagram
illustrates how the system handles light-change requests.

A
Climate Systems
Off/
train_ready_power enable = FALSE

_down = TRUE

enable = TRUE

temp_change_request = temp_change_request =

RAISE LOWER

Heater On/ Cllmatlediyl/stems Air Conditioner On/
temperature_signal . temperature_signal
= HEAT tempera'\\}térﬁE&gnal =AC
A A
temp_change_request = temp_change_request =
NONE NONE

DFD 4 Run Automated System
Climate STD

Figure 17 - DFD 4 Diagram: Climate STD

Figure 17 depicts the state-transition diagram for the Climate STD control node. The diagram
illustrates how the heater and air conditioner is turned on when temperature-change requests
are made by the automated system.

21

Train Powered
Down/
train_ready_power enable = FALSE

_down = TRUE

Train Stopped and
Safety Brakes
Applied/
stop_train_

request = FALSE

enable = TRUE

start_request = TRUE

start_request
=TRUE stop_request = FALSE

speed_change_request =

NONE
Train Coasting/ Raslsee;'cri?m Phase Il Braking/
» speed_request = P _ speed_request =
NONE speed_request = STOP
INCREASE
L J A
speed_change_request = speed_change_request =
~ NONE RAISE

stop_request = TRUE
speed_change_request = LOWER

stop_request = TRUE

Stopping at Next
Stop/
stop_train_
request = TRUE

Phase | Braking/
speed_request = ——stop_request = TRUE—|
REDUCE

L time_to_stop=TRUE_]|

DFD 4 Run Automated System
Start_Stop STD

Figure 18 - DFD 4 Diagram: Start_Stop STD

Figure 18 depicts the state-transition diagram for the Start_Stop STD control node. The diagram
shows how the system reacts to speed-change requests. Also, the way the system interfaces
with the Phase 1, Phase 2, and Emergency brakes is illustrated.

DFD 4 Run Automated System - Door PAT Data Processes

22

obstructed_door_notification time_to_open_door 4.1 4.2

TRUE X ON X
X TRUE ON X
FALSE FALSE OFF X

Figure 19 - DFD 4 Table: Door PAT

Figure 19 uses a PAT to show which data processes are activated when
obstructed_door_notification and time_to_open_door are changed. Note that time_to_open
door is used to tell the control node when the door being monitored has been open too long.

DFD 4 Run Automated System - Start Stop PAT Data Processes
stop_train_request speed_request target speed_reached 4.1 4.2

TRUE X X ON X

X INCREASE X ON X

X REDUCE X ON X

X STOP X ON X

X NONE X OFF X

X X TRUE OFF X

Figure 20 - DFD 4 Table: Start_Stop PAT

Figure 20 uses a PAT to show which data processes are activated when a speed-change request
is made (including stop requests). Note that target_speed_reached is used to tell the control
node that a previous speed-change request is no longer needed.

23

3.3: CSCI External Interface Requirements:

3.3.1: Interface Identification and Diagrams:

System

Doors
Engine Regulator),
‘ ! Light System
- { door_status «
enginéfspeed_signal i /
\ door_signal light_signal
Stog I:;eeqmuest engine_status",
Y R N i i / light_status
train_speed_data "\ i i)
i v Heating/Cooling

next_stop_request
temperature_signal

/,/"’”currem_temperature

override_notification
X
Operator ---system_overide_request-----------— Automated Commuter
l¢————system_dial_displa Train System
v B ~announcement_trigger

announcement_msg >
~— | Announcement
System

emergency_stop_request

time_date

itinerary_data . e
maintenance_notification

obstacle_data start_stop_report

brakg_signal

\

|
| 1
| '
| \
i \
i i
|
i

train_mode_control_signal .
Maintenance

brake, statug
Computer

train_location

\
i

Central Computer

Brakes

DFD Context Diagram
Automated Commuter Train System

Figure 21 - DFD Context Diagram Automated Commuter Train System

24

3.3.2: External Interface Data Definitions:
Doors

Door Signal- Inputted as an a control input from the system to check if door has an
obstruction

Door Status- Is a control output read into the system to check the status of the door if
any obstruction are present

1. door _status(control,primitive)

a. [“OPEN”||”CLOSED”||”OBSTRUCTED”]
2. door_signal(control, primitive)

a. [“OPEN”||”CLOSE”]

Light System
Light signal- Inputted as an a control input from the system to tell lights to turn ON or
OFF

Light status- Is a control output sent to the system to let the system know whether the
lights are ON or OFF.

1. light_signal(control,primitive)
a. [IION”l |IIOFF”]

2. light_status(control,primitive)
a. [IIONlll I”OFF”]

Heating/Cooling System
Temperature signal- Inputted as an a control input from the system to determine if
there needs to be changed to AC, HEAT, or if no change is needed, NONE.

Current temperature- is a data output sent to the system know and integer value of the
current temperature inside the train.

1. current_temperature(data,primitive)

a. //integer value of temperature inside train(°F)
2. temperature_signal(control,primitive)

a. [“AC”||”"HEAT”||”NONE”]

25

Announcement System
Announcement msg- is a control output sent to the PA system to let passengers know; t
ime_date, train_location, and itinerary_data.

Announcement trigger- is a control output that enables the PA system to be ON or OFF

1. announcement_msg(data,compound)

a. =time_date + train_location + itinerary_data
2. announcement_trigger(control,primitive)

a. [“ON”||"OFF”]

Maintenance Computer
Maintenance notification- is a data output from the system to the maintenance
computer to notify of engine_break_failure , door_temp_light_failure

Start stop report- is a data output from the system after a train’s run to output start
and stop data to the maintenance computer

1. maintenance_notificaiton(data,compoun
d)
a. =engine_brake_failure + door_temp_light_failure
2. start_stop_report(data,primitive)
a. //after atrain’s run, the ‘start_stop_data’ is compiled into this format to be sent
to the maintenance computer.

Brakes
Brake signal- is a control output from the system to signal which type of brakes to
enable:PHASE 1, PHASE2, SAFTEY, or EMERGENCY

Brake status- is control input read into the systems from the brakes letting the system
know is brakes are OK or FAILED

1. brake_signal(control, primitive)

a. [“PHASE1”||”PHASE2”||”SAFETY”||”EMERGENCY”]
2. brake_status(control,primitive)

a. [“OK”||”FAILED"]

26

27

Central Computer
Train location- is data input read into the system with a value indicating the trains
position

Train mode control signal- is a control input read into the system lets the system know
LOCAL, EXPRESS, REQUEST ONLY

Time date- is a data input read into the system to verify time and date

Obstacle data- is a data input read into the system letting it know if the tracks are
CLEAR or BLOCK

Itinerary data- is a data input read into the system that the system queues to know
where to go and what mode to operate in

1. train_location(data,primitive)
a. //value indicating if train’s position is at a valid boarding location
2. train_mode_control_signal(control,primitive)
a. [“LOCAL”||”EXPRESS”||”REQUEST_ONLY”]
3. time_date (data,compound)
a. =[time, date]
4. obstacle_data(data,primitive)
a. [“CLEAR”||”BLOCK”]
5. itinerary_data(data,primitive)
a. //queue destinations the train must travel

28

Operator
Emergency stop request- is a control output to the operator in case of a emergency due
to a system failure

Override notification- is a data input to the system that the operator chooses either
TRUE or FALSE

System override request- is a control output from the operator to the system either
TRUE or FALSE

System dial display- is a data output from the system to the operator a status display

Train power up- is a control input into the system that verifies if train power up is
equalto TRUE or FALSE

1. emergency_stop_request(control,primitive)
a. //signal sent to the operator requesting an emergency stop due to a system

failure
2. override_notification(control,primitive)
a. [“TRUE”||”FALSE”]
3. system_override_request(control, primitive)
a. [“TRUE”||”FALSE”]
4. system_dial_display(data,compound)
a. //data sent to operator dials containing information about the following: door
obstructions, light status, train speed, train temperature, stop requests
5. train_power_up(control,primitive)
a. [“TRUE”||”FALSE”]

Stop request system
Nest stop request- is a control output letting the system know that a stop request is

requested

1. next_stop_request(control,primitive)
a. //control signal from passenger requesting a stop at the next location

29

Engine regulator
Engine speed signal- is a control output from the system to let the engine regulator

know to accelerate

Engine status- is a control input letting the system know if engine failed by equaling
FAILED or OK if not failed

Train speed data- is a data input letting the system know the current value of the speed

1. engine_speed_signal(control,primitive)
a. //signal sent to engine to accelerate
2. engine_status(control,primitive)
a. [“OK”||”FAILED”]
3. train_speed_data(data,primitive)
a. //value corresponding to the current speed of the train

30

3.4: CSCI Interface Requirements:

3.4.1: P-specs for Primitive of Monitor Train Status
Name:

1.1

Title:

Determine Which Sensor Failed

Input/Output:
sensor_ID: data_in
sensor_failure: control_out

Body:

Sensor_ID is read in and from there it determines if there is a sensor_failure and outputs:
senor_ID=0 so sensor_failure=NONE, senor_ID= -1 so sensor_failure=DOOR, senor_ID=-2 so
sensor_failure=LIGHT, senor_ID= -3 so sensor_failure=TEMP.

Name:

1.2

Title:

Send Maintenance Notification

Input/Output:

maintenance_notification: data_out
note_sent: control_out

Body:

Based on what activated the process a notification will be sent out if any of these =FAILED:
DOOR, TEMP, LIGHT, ENGINE, BRAKE. After a notification has been sent note_sent in sent out to
Status PAT to deactivate the notification.

31

3.4.2: P-specs for Primitive Functions of Monitor On-train System
Sensors

NAME:
2.1

TITLE:
Determine Valid Sensor Readings

INPUT/OUTPUT:
current_temperature: data_in
train_speed_data: data_in
light_data: data_in
sensor_|ID: data_out
sensor_status: control_out

BODY:

The input data (current_temperature, train_speed_data, and light_data) will be polled every
one second to determine that valid sensor readings are being assessed. As long as the sensors
are operating correctly, the outputs will remain unchanged as sensor_status is set to “OK” and
sensor_|ID is set to “0”. In the event of a sensor failure, sensor_status is set to “FAILED” and
sensor_ID is set to “-1,” ”-2,” or “-3” to indicate which sensor has failed.

NAME:
2.2

TITLE:
Maintain Lights

INPUT/OUTPUT:
time_date: data_in
target_light_status: control_out

BODY:

The data input, time_date, is used to determine whether the target_light_status should be set
to “ON” or “OFF”. The date is used in conjunction with the time to designate the appropriate
time intervals for the train lights to be turned on.

NAME:
2.3

TITLE:
Determine Target Temperature

INPUT/OUTPUT:

time_date: data_in
temperature_parameters: data_in (store)
temperature_range: data_out

BODY:

32

The time_date input provides the date and time to be used in determining the target
temperature for the current season. The temperature_parameters data store is accessed by this
function to retrieve the correct temperature range to be outputted to temperature_range.
NAME:

2.4

TITLE:
Change/Display Temperature

INPUT/OUTPUT:
temperature_range: data_in
current_temperature: data_in
temp_change_request: control_out
current_temperature: data_out

BODY:

If the current_temperature input is higher than the maximum value of the temperature_range
input then the temp_change_request output is set to “LOWER” and the current_temperature
input is passed on as an output. If the current_temperature input is lower than the minimum
value of the temperature_range input then the temp_change_request output is set to “RAISE”
and the current_temperature input is passed on as an output. If the current_temperature input
is within range of the temperature_range input then the temp_change_request output is set to
“NONE” and the current_temperature input is passed on as an output.

NAME:
2.5

TITLE:
Determine Speed Change

INPUT/OUTPUT:

train_speed_data: data_in
current_train_speed: data_out
speed_change_request: control_out

BODY:

The train_speed_data input is broken up into the current speed of the train and the target
speed of the train. The current speed is passed on as an output through current_train_speed. If
the current speed is higher than the target speed, then the speed_change_request output is set
to “LOWER.” If the current speed is higher than the target speed, then the
speed_change_request output is set to “RAISE.” If the current speed is the same as the target
speed, then the speed_change_request output is set to “NONE.”

33

NAME:
2.6

TITLE:
Generate Operator Dial

INPUT/OUTPUT:

light_data: data_in
current_train_speed: data_in
current_temperature: data_in
system_dial_display: data_out

BODY:

The light_data, current_train_speed, and current_temperature inputs are passed to this
function to be organized in a form that can be interfaced with the Train Operator’s dial display.
The system_dial_display output contains all of the sensor data to be sent to the dial display.

3.4.3: P-specs for Primitive of Schedule Train

Name:

3.1

Title:

Process Itinerary and Obstacle Data

Input/Output:

obstacle_data: data_in
itinerary_data: data_out
itinerary_data: data_in
train_obstacle_data: data_out
obstacle_present: control_out

Body:

If Obstacle_data =0, then obstacle_present control output is set to FALSE. Otherwise
obstacle_data is not equal to 0 then obstacle_present equals TRUE and the obstacle_data is
passed as an output through train_obstacle_data. Ititeneray in passed as a data input and if
obstacle_present=False, itinerary is then passed as data out.

34

Name:

3.2

Title:

Store Start_Stop Data and Activate PA System

Input/Output:

time_to_stop: control out
train_location: data_out
announcement_msg: data_out
start_stop_data: data_out
train_location: data_in
time_date: data_in
start_stop_train: control_out

Body:

Itinerary data is passed as an input to determine the value of start_stop_train. Time_date is
passed as an input to let start_stop date know when it needs to start or stop. Train_location is
passed as an input to let time_to_stop to activate it’s control output. Announcement_msg is
passed as an output. Train_location passed as an output to determine where at on the track it is
located. Start_stop_data is passed out to a data store to record every start and stop that train.

Name:
3.3
Title:

Send Start_Stop Data to Maintenance Computer

Input/Output:

start_stop_data: data_in(store)
start-stop_report: data_out
Body:

Start_stop_data is read in from the start_stop database so start_stop_report will be passed out
to the maintenance computer database at the end of trains run.

35

3.4.4: P-specs for Primitive Functions of Run Automated System

NAME:
4.1

TITLE:
Manage Doors

INPUT/OUTPUT:

train_location: data_in
door_signal: control_out
announcement_trigger: control_out
time_to_open_door: control_out

BODY:

If the Manage Doors process is activated, then the door_signal output is set to “OPEN,” and the
announcement_trigger is set to “ON.” After a designated time (however long the doors are to
remain open) the door_signal is set to “CLOSE.” If the train_location input is equal to a valid
boarding location, then the time_to_open_door control output is set to “TRUE.”

NAME:
4.2

TITLE:
Manage Train Speed

INPUT/OUTPUT:

obstacle_data: data_in
brake_signal: control_out
engine_speed_signal: control_out
target_speed_reached: control_out

BODY:

If a stop request is made, then the Manage Train Speed process is activated and the
brake_signal control output is set to “PHASE2.” If the obstacle_data input is equal to “BLOCK”
then the brake signal control output is set to “PHASE2.” If a raise speed request is made, then
the Manage Train Speed process is activated and the engine_speed_signal control output is sent
to increase speed. If a lower speed request is made, then the Manage Train Speed process is
activated and the brake_signal control output is set to “PHASE1.” When the target speed is
reached for any situation (stopped, lowered speed, or raised speed), the target_speed_reached
control output is set to “TRUE.”

36

3.5: CSCS Internal Data Requirements

O start_stop Database:

Purpose: Stores the time and date for each train’s start and stop
location. After the train completes a run, this data is compiled and sent
to the central computer. (DFD 3.3)

Location: DFD 3-Schedule Train

Inputs/outputs: start_stop_data

Data Definition: start_stop_data = time_date + train_location

O temperature_parameters:

Purpose: Predefined read-only parameters which are used to determine
the temperature_range in accordance to the time_date.

Location: DFD 2-Moniter On-train Status

Outputs/Data Definition: temperature_parameters //List of
temperature ranges (unique depending on the time and date)

37

10.

11.

12.

13.

14.

15.

16.

17.

18.

Data Dictionary Entries

announcement_msg(data,compound)

a. =time_date + train_location + itinerary_data
announcement_trigger(control,primitive)

a. [“ON”||”OFF”]
brake_signal(control, primitive)

a. [“PHASE1”||”PHASE2”||”SAFETY”||”EMERGENCY”]
brake_status(control,primitive)

a. [“OK”||”FAILED"]
current_temperature(data,primitive)

a. //integer value of temperature inside train(°F)
current_train_speed(data,primitive)

a. //numerical value of the train’s speed which is sent to the operator’s dial
door _status(control,primitive)

a. [“OPEN”||”CLOSED”||”OBSTRUCTED”]
door_signal(control, primitive)

a. [“OPEN”||”CLOSE”]
door_temp_light_failure(control,PAT)

a. [“LIGHT”||”DOOR”||”TEMP”]
emergency_stop_request(control,primitive)

a. //signal sent to the operator requesting an emergency stop due to a system

failure

enable(control,primitive)

a. [“TRUE”||”FALSE”]
engine_brake_failure(control,PAT)

a. [“ENGINE”||”"BRAKE"]
engine_speed_signal(control,primitive)

a. //signal sent to engine to accelerate
engine_status(control,primitive)

a. [“OK”||”FAILED”]
itinerary_data(data,primitive)

a. //queue destinations the train must travel
light_change_request(control,primitive)

a. [“ON”||”OFF"]
light_signal(control,primitive)

a. [“ON"||”OFF”]
light_status(control,primitive)

a. [“ON"||”OFF”]

38

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

maintenance_notificaiton(data,compoun

d)

a. =engine_brake_failure + door_temp_light_failure
manual_mode_control(control,PAT)

a. [“TRUE”||”FALSE”]
next_stop_request(control,primitive)

a. //control signal from passenger requesting a stop at the next location
note_sent(control,PAT)

a. [“ON"]
obstacle_data(data,primitive)

a. [“CLEAR”||”BLOCK”]
obstacle_present(control,primitive)

a. [“TRUE”||”FALSE”]
obstructed_door_notification(control,PAT)

a. [“TRUE||”FALSE”]
override_notification(control,primitive)

a. [“TRUE”||”FALSE”]
sensor_failure(control,primitive)

a. [“NONE”||”LIGHT”||”DOOR” | |”TEMPERATURE”]
sensor_|D(data,primitive)

a. [0]] -1 1] -2 1] -3] //identification of failed sensor:

i. 0-none, 1-temp, 2-speed, 3-light

sensor_status(control,primitive)

a. [“OK”||”FAILED”]
speed_change_request(control,primitive)

a. [“RAISE”||”LOWER”||”NONE"]
speed_request(control,PAT)

a. [“INCREASE”||”REDUCE”||”STOP”||”NONE”]
start_request(control,primitive)

a. [“TRUE”||”FALSE”]
start_stop_data(data store,compound)

a. =time_date + train_location
start_stop_report(data,primitive)

a. //after atrain’s run, the ‘start_stop_data’ is compiled into this format to be sent

to the maintenance computer.

start_stop_train(control,primitive)

a. [“START”||”STOP”]
stop_request(control,primitive)

a. [“TRUE”||”FALSE”]
stop_train_request(control,PAT)

a. [“TRUE"]
system_dial_display(data,compound)

39

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

a.

//data sent to operator dials containing information about the following: door
obstructions, light status, train speed, train temperature, stop requests.

system_override_request(control, primitive)

a.

[“TRUE” | |”FALSE”]

systems_ok(control,primitive)

a.

[“TRUE”| | "FALSE”"]

target_light_status(control,primitive)

a.

[MONM | |MOFF]

target_speed_reached(control,PAT)

a.

[“TRUE” | | ”FALSE”]

temp_change_request(control,primitive)

a.

[“RAISE” | |"LOWER” | |’NONE”]

temperature_parameters(data store)

a.

//List of temperature ranges (unique depending on the time and date)

temperature_range(data,primitive)

a.

//determined range used to calculate if change is needed

temperature_signal(control,primitive)

a.

[”AC”l |MHEATM| |IINONEII]

time_date (data,compound)

a.

= [time, date]

time_to_open_door(control,PAT)

a.

[“TRUE”| |”FALSE”]

time_to_stop(control,primitive)

a.

[“TRUE”| | ”FALSE”"]

train_location(data,primitive)

a.

//value indicating if train’s position is at a valid boarding location

train_mode_control_signal(control,primitive)

a.

[“LOCAL” | |”EXPRESS” | |”"REQUEST_ONLY”]

train_power_up(control,primitive)

a.

[“TRUE” | | "FALSE”]

train_ready_power_down(control,primitive)

a.

[“TRUE”| |”FALSE”]

train_speed_data(data,compound)

a.

//value corresponding to the current speed and the target speed of the train

40

	Table of Figures:
	1: Scope:
	1.1: Identification and System Overview:
	1.2: Document Overview:
	

	3: Requirements:
	3.1: Required States and Modes:
	 3.2: CSCI Capability Requirements – DFD 0
	 3.2.1: CSCI Capability Requirements – DFD 1
	3.2.2: CSCI Capability Requirements – DFD 2
	3.2.3: CSCI Capability Requirements – DFD 3
	3.2.4: CSCI Capability Requirements – DFD 4

	3.3: CSCI External Interface Requirements:
	3.3.1: Interface Identification and Diagrams:
	3.3.2: External Interface Data Definitions:

	3.4: CSCI Interface Requirements:
	3.4.1: P-specs for Primitive of Monitor Train Status
	3.4.2: P-specs for Primitive Functions of Monitor On-train System Sensors
	3.4.3: P-specs for Primitive of Schedule Train
	3.4.4: P-specs for Primitive Functions of Run Automated System

	3.5: CSCS Internal Data Requirements
	3.6: Data Dictionary Entries

