Organic Functional Groups

Hydrocarbons				
Name	Functional Group	Examples		
Alkane (not really a functional group)	R-H			
Alkene	R ₂ C=CR ₂			
Alkyne	RC≡CR	<u> </u>		
Arene (Aromatic)				

Organic Functional Groups

Heteroatom Containing				
Alcohol (hydroxy group)	R-OH	OH)		
Ether	R ^O R	(O)		
Amine (amino group)	R-NH ₂ R ₂ NH R ₃ N	NH ₂		
Thiol (mercapto group)	R-SH	(SH)		
Sulfide	R ^S R	S		
Halide	R-X (X = F, Cl, Br, I)	(CI)		

Organic Functional Groups

Carbonyl (C=0) Containing			
Aldehyde	R H	(O) H)	
Ketone	O R R	O CONTRACTOR OF THE PARTY OF TH	
Ester	O R OR		
Carboxylic Acid	O R OH	OH	
Amide	R NH ₂	O NH ₂	
Acid Halide	R X	Br	

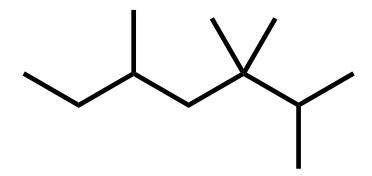
Identify the functional groups in **Atenolol**, a betablocker used to treat high blood pressure.

atenolol

Heroin, a morphine derivative and highly addictive opioid is shown below. Click on the in the molecule below.

Amine

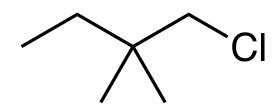
Alkene


Arene

Ester

Ether

Which of the following compounds contain both a ketone and an amine functional group? You may select more than one answer.


Click on every secondary carbon in the molecule below.

How would you best classify the following alcohol?

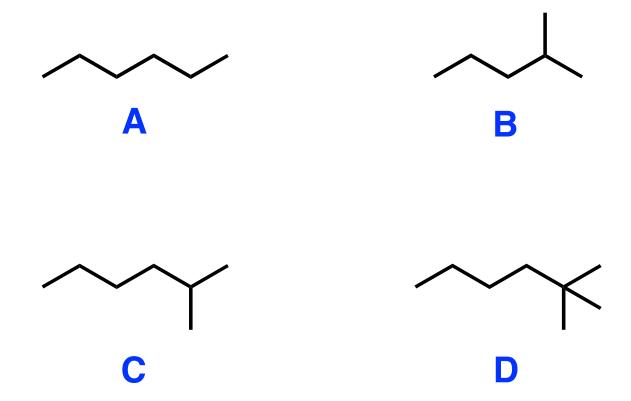
- A. Primary alcohol
- **B.** Secondary alcohol
- C. Tertiary alcohol
- D. Quaternary alcohol

How would you best classify the following chloride?

- A. Primary chloride
- **B.** Secondary chloride
- C. Tertiary chloride
- D. Quaternary chloride

Match the following with the appropriate term.

Tertiary Alcohol _____

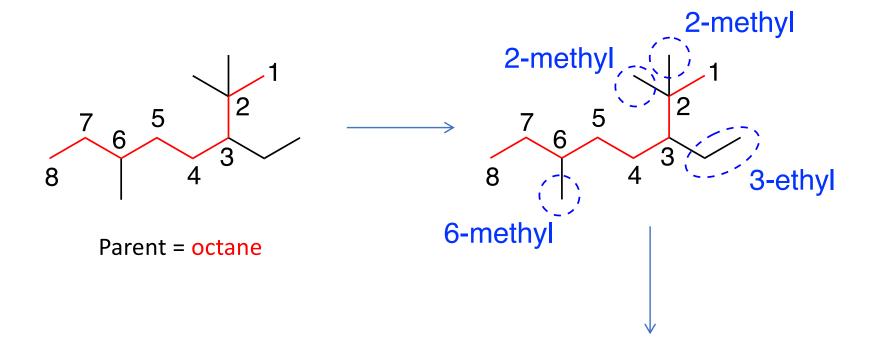

Primary Alcohol _____

Primary Carbon _____

Tertiary Carbon _____

Quaternary Carbon _____

Which molecule below is isohexane?


Alkanes

Name	# of Carbons	Condensed Structure	Skeletal Structure
Methane	1	CH ₄	None
Ethane	2	CH ₃ CH ₃	
Propane	3	CH ₃ CH ₂ CH ₃	
Butane	4	$CH_3(CH_2)_2CH_3$	
Pentane	5	$CH_3(CH_2)_3CH_3$	
Hexane	6	$CH_3(CH_2)_4CH_3$	
Heptane	7	$CH_3(CH_2)_5CH_3$	
Octane	8	$CH_3(CH_2)_6CH_3$	
Nonane	9	CH ₃ (CH ₂) ₇ CH ₃	
Decane	10	$CH_3(CH_2)_8CH_3$	

Memorize the C1-C10 Names!

What is the correct parent chain in the compound below?

IUPAC Name

3-ethyl-2,2,6-trimethyloctane

What is the correct IUPAC name for the compound below?

- A. 4-sec-butyl-3-ethyldecane
- B. 3-ethyl-4-(1-methylpropyl)decane
- C. 4-(1-ethylpropyl)-3-methyldecane
- D. 4-isopentyl-3-methyldecane

Solution

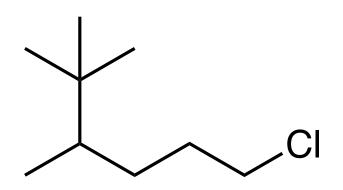
What is the correct IUPAC name for the compound below?

Find the longest carbon chain – 10 Carbons

Two or more chains of equal length:

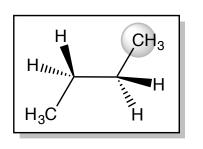
- 1. Pick the one that has the most substituents both have two substituents
- 2. Pick the one that gives the first substituent the lowest possible number both have the first substituent on C#3
- 3. Compare the two 1st substituents and give alphabetical priority.

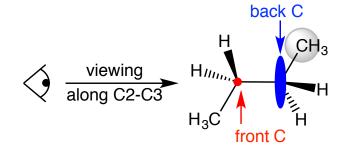
Are the two compounds below identical or constitutional isomers?


Constitutional Isomers = Compounds with the same molecular formula, but a different atom connectivity.

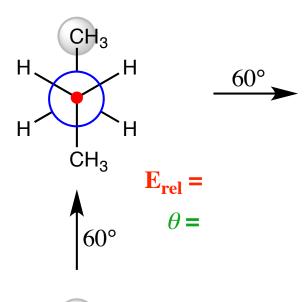
- A. Identical
- **B.** Constitutional Isomers

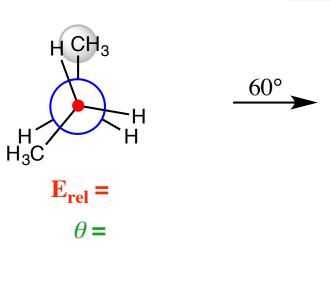
What is the correct IUPAC name for the compound below?

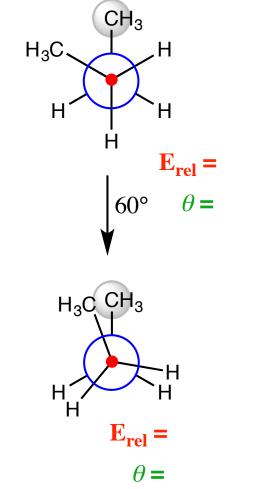

- A. 3-bromo-4-ethyl-8-iodo-6,7-dimethyldecane
- B. 8-bromo-7-ethyl-3-iodo-4,5-dimethyldecane
- C. 3-iodo-4,5-dimethyl-7-ethyl-8-bromodecane
- D. 3-bromo-4-ethyl-6,7-dimethyl-8-iododecane

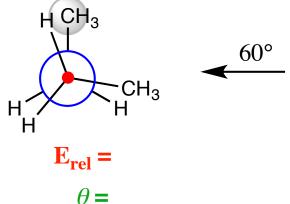

What is the correct IUPAC name for the compound below?

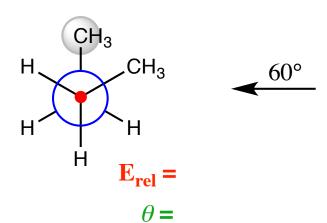
- A. 1-chloro-4-tert-butylpentane
- B. 4-tert-butyl-1-chloropentane
- C. 1-chloro-4,5,5-trimethylhexane
- D. 6-chloro-2,2,4-trimethylhexane

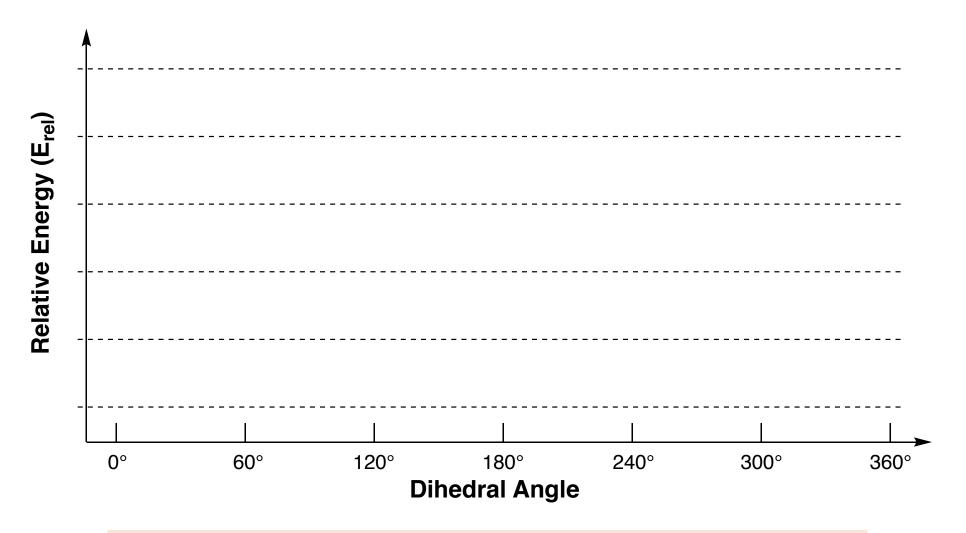

Conformational Analysis of Butane

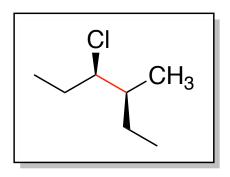





Conformational Energies

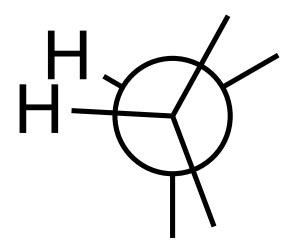

CH₃/CH₃ Gauche – 0.9 kcal/mol H/H Eclipse – 1.0 kcal/mol H/CH₃ Eclipse – 1.4 kcal/mol CH₃/CH₃ Eclipse – 2.6 kcal/mol

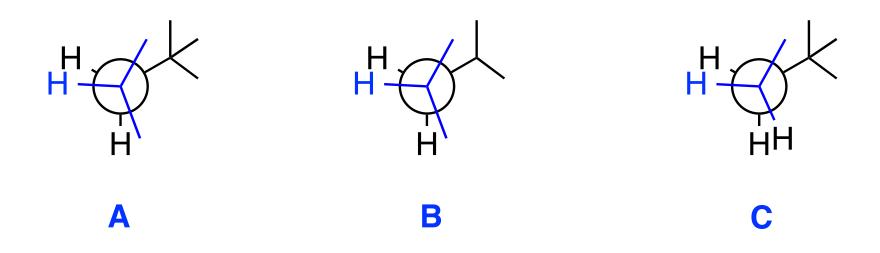



Butane Conformations - Energy Diagram

Strain Types

- Torsional Caused from eclipsing atoms separated by 3 bonds.
- Steric repulsion between atoms separated by more than 3 bonds.
- Angle results from a deviation in ideal bond angle.


Which of the following is the correct Newman projection for the molecule shown below? *View along the bond in red.*


Which of the following is the correct Newman projection for the molecule shown below? *View along the bond in red.*

At room temperature, butane will exist in the highest percentage of which of the following conformations?

Calculate the relative energy (E_{rel}) for the following eclipsed conformation in kcal/mol.

Which eclipsed conformation shown below would you expect to have the highest energy?

