Chemistry 233

Chapter 13 NMR Spectroscopy

Methods for Structure Determination

NMR Spectroscopy – Carbon-Hydrogen Framework Infrared Spectroscopy – Functional Groups Mass Spectrometry – Molecular weight and formula

NMR Spectroscopy

NMR = Nuclear Magnetic Resonance

Resonance of certain nuclei (¹H, ¹³C, and others) in the presence of a magnetic field.

Sample is dissolved in an NMR solvent – A solvent that has had all the hydrogen replaced with deuterium.

Sample ¹H (Proton) NMR

Each distinct type of hydrogen in the molecule produces a signal in the spectrum.

Chemically Equivalent/Distinct H

- Different types H in a molecule react differently -- consider the acidity of different protons.
- In proton (¹H) NMR, each distinct type of H gives rise to a signal.

Chemically Equivalent/Distinct H

Chemically Equivalent/Distinct H

6

How many distinct types of hydrogen are present in the molecule shown?

How many distinct types of carbon are present in the molecule shown?

Chemical Shift

- Where between 0 and 13 ppm will the signals show up?
- Different H's live in different environments depending on its neighboring groups.

Basic ¹H Chemical Shift Regions:

Integration (Peak Area)

The area under a signal is proportional to the number of hydrogen that the signal corresponds to.

Example:

 $CI - CH_2 - CH_2 - CH_3$

Coupling (Splitting of Signals)

The signal corresponding to a particular proton will split due to the protons on adjacent carbons.

Follows the **n+1** rule where n = # of H's on adjacent C.

Example: Predict the ¹H NMR Spectrum for:

Common Multiplicities

# peaks	Multiplicity	Abbr.
1	singlet	S
2	doublet	d
3	triplet	t
4	quartet	q

# peaks	Multiplicity	Abbr.
5	quintet	quin
6	sextet	sex
7	septet	sep
>7	multiplet	m

Question

Predict the splitting pattern for protons labeled a, b, and c, giving that for "a" first.

a b c $CI-CH_2-CH_2-O-CH_3$

- A. doublet, doublet, singlet
- B. multiplet, triplet, singlet
- C. triplet, multiplet, triplet
- D. triplet, triplet, singlet
- E. all singlets

Typically no coupling through heteroatoms

Example

8 ppm	6	4	2	0

Overlapping Signals

Protons that are chemically distinct, yet have similar chemical environments can potentially overlap creating a multiplet.

Complex Splitting

Most commonly observed in alkene protons and protons that couple with alkene protons.

Complex splitting follows the $(n_a + 1)(n_b + 1)(n_c + 1)$ etc. rule.

Example $1 - C_7 H_8 O$

Example 2 – C₈H₉BrO

Example $3 - C_5 H_{10}O_2$

Example $4 - C_3 H_9 N$

Example $5 - C_{10}H_{12}O_2$

IR Data: 1720, 1610, 1505, 1210, 1010 cm⁻¹

Example $6 - C_3 H_7 BrO$

Example 7 – C_9H_{20}

Example $8 - C_6 H_{12} O$

No IR stretches in the 1600-1700 cm⁻¹ region

Example $9 - C_6 H_{10} O_2$

IR Data: 3100 (broad, strong); 1730, 1650 cm⁻¹

¹³C NMR

- A signal is produced for every chemically distinct carbon atom.
- Since Carbon-13 is only present in 1.1% abundance, it takes much longer to acquire a carbon NMR spectrum than a proton NMR spectrum.
- It is difficult to get accurate integration values from Carbon-13 NMR.
- Don't usually set instrument to obtain coupling information in C-13 NMR.

Basic ¹³C Chemical Shift Regions:

Example

