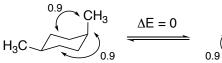
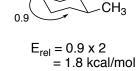


cyclohexane $E_{rel} = 0$


0.9 CH₃ $\Delta E = 1.8$

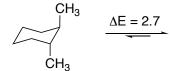
 $E_{rel} = 0.9 \times 2$ = 1.8 kcal/mol

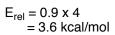


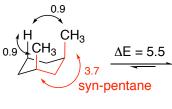
Interactions: gauche = 0.9 kcal/mol syn-pentane = 3.7 kcal/mol

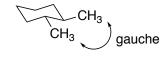
Rather than looking for "gauche" groups, it is often easier to count the number of 1,3-diaxial interactions between the substituent and hydrogens.

E_{rel} = 0.9 x 2 = 1.8 kcal/mol


 CH_3


 $E_{rel} = 0$


0.9


$$\begin{array}{c} CH_3 \\ \frown \\ CH_3 \end{array} \qquad \underbrace{\Delta E = 3.6}_{H_3 C} \qquad H_3 C \\ \hline \\ CH_3 \end{array}$$

E_{rel} = 0.9 x 4 = 3.6 kcal/mol



 $\begin{array}{l} \mathsf{E}_{\mathsf{rel}} = 1 \ x \ 0.9 \\ = 0.9 \ \mathsf{kcal/mol} \end{array}$

 $E_{rel} = 0$

 $E_{rel} = 0.9 \times 2 + 3.7$ = 5.5 kcal/mol

Typical A-Values	
R	A-Value
F	0.25
CI	0.53
Br	0.5
1	0.46
ОН	0.7
OCH ₃	0.75
NH ₂	1.23
SH	1.21
CH ₃	1.74
CH ₂ CH ₃	1.79
CH(CH ₃) ₂	2.21
C(CH ₃) ₃	4.8
CH=CH ₂	1.6
СНО	0.6
соон	1.4
Ph	2.8
	R