Answer Key

Chemistry 233-001/002 Exam 1 - Version A

Fall 2019 Dr. J. Osbourn

Instructions: Answer the first 14 questions of this exam using the bubble sheet attached to the end of this exam booklet. You may detach this sheet if you wish. Answer the remaining questions directly on this exam. Show all work and provide complete explanations.

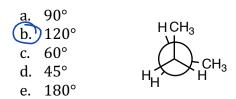
Г	IA 1	l			Тŀ	ie P	erio	dic	Tak	ıle								VIIIA 2
	н	2				101		MIC	IUL	<u> </u>			13	14	15	16	17	He
	1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
	3	4											5	6	7	8	9	10
	Li	Be											В	C	N	0	F	Ne
_	6.94	9.01											10.81	12.01	14.01	16.00	19.00	20.18
	11	12		157			752			0.0			13	14	15	16	17	18
	Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
_	22.99	24.31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	∤IB	26.98	28.09	30.97	32.07	35.45	39.95
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
_	39.1	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
. 8	35.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
_	132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192,2	195,1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
	87	88	89	104	105	106	107	108	109	110	111							
	Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
	(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)	Į.						
				58	59	60	61	62	63	64	65	66	67	68	69	70	71	
			*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	l
				140.1	140.9	144.2	(145)	150.4	152.0	157,3	158.9	162.5	164.9	167.3	168.9	173.0	175.0	1
				90	91	92	93	94	95	96	97	98	99	100	101	102	103	
			^	Th	Pa	\mathbf{U}	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
				232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)]

Multiple-Choice

Choose the best answer for each of the following questions. Record each answer on the attached bubble sheet. **Ensure you completely bubble in your answers**. (2 points each)

1. In what orbital does the nitrogen lone pair reside in the following molecule?

- e. none of the above
- 2. What is the energy cost associated with the H/F eclipse in the following conformation? The relative energy ($E_{\rm rel}$) of the conformation is 3.3 kcal/mol.
 - a. 0.3 kcal/mol
 b. 1.0 kcal/mol
 c. 1.3 kcal/mol
 d. 1.5 kcal/mol
- 3. How many hydrogen are bonded to the carbon bearing the negative charge in the following structure?
 - a. zero
 b. one
 c. two
 d. three
 e. four
- 4. In the following group of compounds, <u>|||</u> is the strongest base while <u>|||</u> is the weakest base.
 - a. I, III
 b. II, I
 c. III, II
 d. III, I
 e. II, III


 III

 III

 III

 III

 III
- 5. What is the CH_3/CH_3 dihedral angle in the following Newman projection?

6. What is the formal charge on sulfur in the following molecule?

- e. -2
- 7. What is the hybridization of atoms **A** and **B**?

(a.)
$$A = sp^2$$
; $B = sp^3$

b.
$$A = sp^3$$
; $B = sp^2$

c.
$$A = sp^2$$
; $B = sp^2$

d.
$$A = sp^3$$
; $B = sp^3$

$$\begin{array}{c}
B \longrightarrow NH_3 \\
\nearrow^{3}
\end{array}$$

8. Which of the following contains an **amide** and a **thiol** functional group?

9. Which arrow best describes the following acid/base reaction?

- a. ____
- b. ____
- c. ___
- 10. How would the following complex substituent be named when attached to a parent (P) chain?
 - a. 5-methylhexyl
 - **b.** 1-ethyl-3-methylbutyl
 - c. 3-(5-methylethyl)
 - d. 1-ethyl-2-isoproylethyl

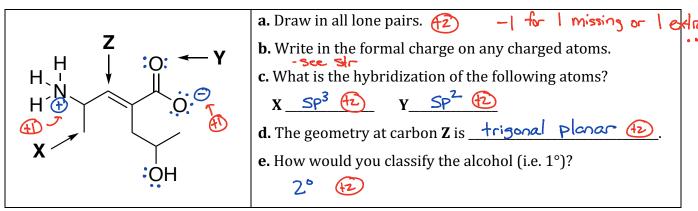
- 12. How many ionic compounds are present in the box shown below? Correct
 - a. zero
 - one
 - two
 - d.) three e.) four
- KBr
- 13. In the following molecule, <u>III</u> is the strongest C-C single bond and <u>I</u> is the weakest C-C single bond.
 - a. I, II
 - b. II, I
 - c. I, III
 - (d.) III, I
 - e. III, II
- Ш
- 14. What is the orbital overlap involved in the following bond?
 - a. Cp-Op
 - b. Csp²-Osp²
 - c. Csp²-Osp² & Cp-Op
 - d. Csp²-Osp & Cp-Op
 - e. None of the above

Completion Section

Answer the remaining questions directly on the exam itself. Please write neatly and darkly as your answers will be scanned.

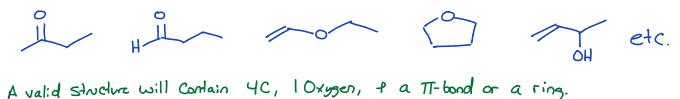
- (4) 15. Write the IUPAC name for each molecule shown below. (3 points each)
 - a. 6-isopropyl-3-methylnonane
- -1 wrong # -1 wrong abc order of substituents
- | wrong porent Chair
- 3-fluoro-4,5-dimethylheptane
- C. t-butyl must have 3,3
 or
 4-text-butyl-3,3-dichloropoetane
- (4) 16. Circle and identify the functional groups in the following molecule. (4 points)

(4) 17. For each of the following, use the provide template to complete the Newman projection or 3D structure. (2 points each)

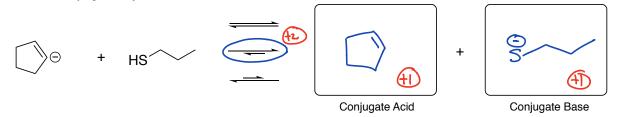

Newman Projection	3D Structure	Newman Projection	3D Structure		
a. HO H H H H H H H H H H H H	OH NH ₂	CH ₃ Br	b. H ₃ C CI		
template			template		

~ No pertial credit -

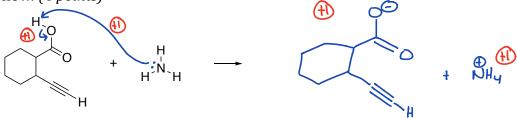
(6) 18. Draw the highest energy and lowest energy conformations of 2-methylbutane viewing along the C2-C3 bond. (3 points each)


Highest Energy Conformation	Lowest Energy Conformation			
13C CH3 CH3/CH3 eclipse · CH3/CH3 eclipse	BC CH · Ch/Ch,			
H · H/H eclipse	H H ILC C			
1 ¹ / ₂ C	Cn ³ H			

(12) 19. Use the molecule shown below to answer the following questions. *Note: All appropriate hydrogen are drawn in on non-carbon atoms! (2 points each)*


(나) 20. Draw a valid Lewis or skeletal structure for C₄H₈O. (4 points)

(4) valid neutral



@ if structure is valid but it

(4) 21. Complete the acid/base reaction shown below by drawing the conjugate acid and conjugate base in the appropriate spaces. Then circle the equilibrium arrow that best represents the direction of the reaction. (4 points)

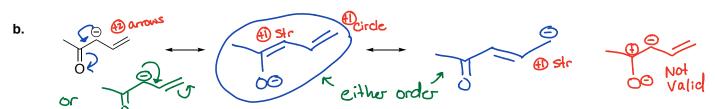
(10) 23. For each of the following: **I.** Draw the additional resonance structures; **II**. Add curved arrows on the first structure to show electron flow; **III**. Circle the major resonance contributor. (5 points each)

a.

N

M

Anow


M

Str

M

Circle

Nod Valid

(6) 24. Circle the stronger acid in each pair and provide a very brief explanation. (3 pts each)

(3) 25. Convert the following skeletal structure to a condensed structure. (3 points)

26. The following compound contains ______ sigma bonds and _____ pi bonds. (3 points)

(3) 27. Draw three valid isomers of heptane. (3 points)

