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Abstract

This paper is focused on modeling Web request and ses-
sion level arrival processes. We propose a statistically rig-
orous approach which includes testing for non-stationarity
and Gaussianity, and uses model selection criterion. Fur-
thermore, a goodness of fit test is applied to each candidate
model – ARMA, ARIMA, FARIMA, and FGN – and for val-
idation purpose real data is compared with data simulated
from the models. The results based on data extracted from
six Web servers with different workload intensities show that
(1) there is no one-fits-all solution and (2) servers with high
workloads have both request and session traffic modeled
well with FARIMA model which is capable of capturing both
long-range and short-range dependence.

1. Introduction

Network traffic analysis and modeling play a major role
in areas such as workload generation and performance
evaluation and prediction. Models that accurately capture
the characteristics of the traffic are useful for analysis and
simulation, and they aid design and control. Numerous stud-
ies have found that different types of network traffic exhibit
self-similar behavior [17], [21], [7], [4], [22]. Of special
interest in traffic analysis are the asymptotically second-
order self-similar processes, also called long-range depen-
dent processes, which are characterized by a hyperbolically
(i.e., power-law) decaying autocorrelation function. These
findings were in contrast to the classical traffic models such
as Poisson process or Markov models and led to using traffic
models capable of capturing long-range dependence, such
as for example Fractional Gaussian Noise and Fractional
ARIMA. This, so called descriptive or ‘black-box’ approach
of traffic modeling has potential to provide traffic description
at a vary fine granularity. However, application of time
series models to real Internet and especially Web traces
often lacked rigor and even more importantly rarely included
goodness of fit tests or any way of model validation. In
addition, Web sessions – a characteristic of Web workloads
which much better represents the users view on the server’s
performance than individual requests – were disregarded.

Web sessions are defined as a sequence of requests from
the same user during a single visit to the Web site. For exam-

ple, placing an order through the e-commerce site involves
requests related to selecting a product, providing shipping
information, arranging payment, and receiving confirmation.
So, for a customer trying to place an order or a retailer trying
to make a sale, the real measure of a Web server success
is its ability to process the entire sequence of requests
needed to complete the transaction. While modeling request-
based workload may provide basis for important tasks such
as capacity planning for example, without modeling Web
sessions it would be difficult to capture different users
behaviors and their effect on the Web servers performance
or, for example, to develop admission policies that will
increase the chances of sessions completion.

Some more recent modeling efforts of Web and Inter-
net traffic belong to so called constructive or ‘white-box’
approach which takes into account Web sessions (or IP
flows) and their characteristics such as session duration and
number of request (or number of packets). For example, in
[19] session arrivals were modeled with a Poisson process,
and then the number of request per session were described
with either inverse Gaussian or Pareto distributions. Similar
approach was taken in [11] for modeling the TCP traffic.
Although long-range dependence was established for TCP
flows, based on semi-experimental approach it was con-
cluded that medeling flow arrivals with a Poisson process
does not affect the long-range dependence of the packet
level traffic. Our previous work [10] considered session level
Web traffic, establishing that session arrivals are long-range
dependent for Web servers with high intensity workloads,
as well as that intra-session characteristics such as session
duration, number of request per session and especially
bytes transferred per session are modelied well with Pareto
distribution and often are heavy-tailed.

In this paper we go a step further, focusing on modeling
request and session level arrivals with time series models
capable of capturing short-range dependence, long-range
dependence, or both. Specifically,

• We propose well defined, statistically rigorous approach
for modeling Web arrival traffic on both request level
and session level. Previously published papers on mod-
eling either Internet or Web arrival traffic were missing
some important steps, and in some cases used statistical
methods that are not appropriate in the specific context.
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• We consider four different time series models – ARMA,
ARIMA, FARIMA, and FGN – which have different
ability to capture short-range dependence, long-range
dependence, or both. Related work in most cases con-
sidered one or at most two models. To our surprise,
FARIMA model has never been used for modeling
Web traffic despite the fact that it is very flexible and
can capture both long-range dependent and short-range
dependent behavior.

• We apply the proposed approach on Web traffic from
six servers which allows for generalization of the
results. We study the effect of the traffic intensity on
model choice, and validate the accuracy by comparing
the simulated values from the models with the real Web
server traces. Very few papers in the past applied time
series models to real Web traffic. Thus, in [13] ARMA
was used to model one hour of request level traffic of
the 1998 Nagano Olympic Games Web site, while in
[19] Poisson process was used to model session arrivals
extracted from log files of four Web servers collected
between 1995-1999.

• The results showed that the request level traffic of the
three servers with higher workloads is modeled with
FARIMA model. Two of these servers have session
level traffic modeled with FARIMA, while the third
is modeled with FGN. Both the request and session
level traffic of the remaining three servers, which have
lower traffic intensities, are modeled well with either
only ARMA or with both ARMA and ARIMA models.
Combining these results on the session arrival process
with distributions of intra-session attributes, such as
session duration, number of requests per session, and
bytes transferred per session from our previous work
[10] yields to a constructive model of Web traffic.

Searching for invariants and exploring the parameter
space, as suggested in [8], are important strategies in resolv-
ing the difficulties of modeling and simulating the Internet.
In [8] it was further suggested that the invariants should be
derived from the empirical observations. We believe that as
Internet traffic changes and the workload intensity of Web
servers increases, these invariants have to be revisited and
revised if necessary. Thus, our results show that Web session
arrivals of servers with even moderate traffic intensity are
long-range dependent, which basically means that one of
the invariants given in [8] stating that “Network user session
arrivals are well-described using Poisson process” derived on
traces of WAN traffic dating 1989-1991 needs to be revised.
Note that although it may be possible to disregard the long-
range dependent nature of session arrivals when it comes to
its effect on the request arrival process as it was suggested
in [11], there are applications, such as for example session
based admission control, for which it is important to account
for the long-range dependence of session arrivals, combined

with the heavy-tailed distributions of intra-session attributes.
It should be noted that the approach and analysis pre-

sented in this paper are not restricted to Web workloads; they
can be used for analyzing other types of Internet traffic. For
example, it can be used for modeling the Cellular Digital
Packet Data (CDPD) used for mobile data networks which
has been shown to be long-range dependent [14].

The rest of the paper is organized as follows. The related
work is discussed in Section 2, while a brief overview of the
four time series models used in this paper is presented in
section 3. In section 4 we present the steps of our approach
for modeling the Web traffic, including the specific statistical
tests being used. The analysis of the real data from six
Web servers and modeling the Web traffic at request and
session levels are presented in Section 5. Finally, the paper
is concluded in section 6.

2. Related work

Following the pioneering work of Leland, Taqqu, Will-
inger and Wilson [17] which established that Ethernet LAN
traffic is self-similar in nature, in [21] it was shown that the
Poisson process cannot be used for modeling different types
of WAN traffic due to their long-range dependent nature.
These results led to developing traffic models that account
for newly discovered phenomena. The earliest models were
focused on packet, i.e., request level arrivals and belonged
to so called descriptive approach. Thus, [18] suggested that
fractional ARIMA (FARIMA) model could be applied on
Internet traffic, but did not fit the model to a real network
traffic. In [20] it was shown that FARIMA model is better
fit than ARIMA and FGN based on the Mean Square Error
goodness of fit test and comparison of the real data to the
data simulated using the models. The traces of Ethernet traf-
fic used in [20] were 20 seconds long, so the authors did not
test for stationarity. In addition, the FGN model was fitted
to the data without first testing the traces for Gaussianity.
Another paper focused on modeling the Ethernet traffic [12]
discussed the parameters estimation of FARIMA model and
used the goodness of fit test given in [1]. That work used
several minutes long trace and did not test for stationarity.
In addition, model selection was not done. In [26], ARIMA
and FARIMA models were compared based on the Akaike’s
Information Criterion. However, the traffic was not tested for
stationarity and no goodness of fit test was used in [26].

Similarly to LAN [17] and WAN traffic [21], the analysis
of Web traffic at request level showed that the busiest hours
are well described as self-similar [7]. The request level
traffic from the 1998 Nagano Olympic Games Web site
was analyzed in [13] and a piecewise ARIMA model was
fitted into four different phases within one hour of Web
arrivals. Long-range dependence, formal model selection,
and goodness of fit test were not considered in [13]. In
a closely related work [25], ARMA model was suggested
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as arrival process for the G/G/1 performance model of a
Web server. In [27], FGN was proposed as a good model to
capture the long-range dependence of the request level traffic
of commercial Web sites. However, Gaussian distribution
assumption was not tested and no goodness of fit test or any
other verification methods was used.

The more recent work on modeling and simulating the
Internet and Web traffic follows the constructive approach
which takes white-box view by first considering TCP flows
or Web sessions, and then accounting for the flows or
sessions internal structure [19], [11], [3]. Thus, in [19] first
the session arrivals were modeled using Poisson process and
then the number of request (i.e., clicks) of each session
were modeled with inverse Gaussioan or Pareto distribution
depending on the server. The model was used to build a
synthetic traffic generation tool WAGON, which in most
cases produced self-similar request level traffic [19]. This
paper did not include detailed analysis of the potential
long-range dependence at session level and did not address
the effects of non-stationarity. It should be noted that this
approach fits into the so called immigration-death process
suggested by Cox [5] as a structural way to construct long-
range dependent process.

The constructive approach to modeling TCP packet traffic
taken in [11] follows the same basic idea of [5]. First, it was
established that both packet arrival and flow arrival processes
are long-range dependent. Then, based on the so called
semi-experimental approach which consisted of several ma-
nipulations on the original traces (e.g., modifying aspects
of the flow arrival process, the internal dynamics of flows,
and the number of packets per flow) it was concluded that
modeling the flow arrivals as a Poisson process, with packets
within flows following finite GR distribution and heavy-
tailed flow volume leads to long-range packet arrival process.
This basically means that for the purpose of modeling the
packet arrivals, the long-range dependence of flow arrivals
can be neglected while keeping the heavy tailed nature
of the number of packets in a flow. The traces analyzed
in [11] were collected from lightly loaded links at four
different locations during 1999-2002. The work presented
in the paper was based on two hour long excerptions, which
were assumed to be stationary.

Another model for generating synthetic HTTP traffic from
the network rather than server perspective was presented
in [3]. In that work Web traffic was represented as a
collection of independent TCP connections, and then each
TCP connection was represented by one or more request-
response exchanges between a client and server pair. The
TCP connection arrivals were modeled by Fractional Sum-
Difference (FSD) model. The model was built and validated
based on packet traces from two links collected in 2000. (In
[3] the traffic non-stationarity was resolved by breaking the
measurements into 5 minutes time blocks.)

In our earlier work [9] we introduced several attributes

which collectively describe Web workload in terms of ses-
sions. Then, in [10] we studied in detail different character-
istics of both request level and session level Web workloads.
For example, all four Web servers considered [10] had
a long-range dependent request arrival processes. We also
showed that Web session arrivals are long-range dependent
on longer periods. In addition, we showed that Pareto
distribution cannot be rejected for the three attributes of Web
sessions: session duration, number of request per session,
and bytes transferred per session. Session duration was
heavy-tailed (with infinite variance) for some time periods,
number of requests per session was boarder line between
finite and infinite variance, while the bytes transferred per
session had the heaviest tail (in some cases with both
infinite mean and variance). Combining these results related
to session attributes from [10], with the results on session
arrival process presented in this paper leads to a hierarchical
model of Web traffic which follows the recent constructive
approach to modeling network traffic. It should be noted that
similarly to [19], our focus is the server side model which
represents the workload from multiple clients (i.e., ’client
cloud’) directed to a single Web server. In that respect our
work is complementary to the recent models of network
traffic [11], [3] which are more appropriate for network
traffic simulations, that is, model the traffic over an access
link that connects a ’client cloud’ with a ’server cloud’.

3. Overview of the time series models

In this section, we present a brief overview of ARMA,
ARIMA, FARIMA and FGN time series models.

Autoregressive Moving Average process ARMA(p, q) is a
combination of a pth order Autoregressive process, AR(p),
and a qth order Moving Average process, MA(q) [2]. ARMA
is a linear model which generates a short-range dependent
time series.

The Autoregressive Integrated Moving Average (ARIMA)
model can be used for modeling non-stationary time series
which shows a homogeneous variation about a local trend
[2]. ARIMA(p, d, q) model is just an ARMA(p, q) model
non-seasonally differenced d times. The difference operator
d is assumed to have an integer value. ARIMA is a short-
range dependent model since its autocorrelation function
(ACF) decays exponentially.

FARIMA(p, d, q) model is the same as ARIMA(p, d, q)
model, except the fact that the parameter d is allowed to
take nonintegeral values. Obviously, FARIMA model also
reduces to ARMA(p, q) model when d = 0. FARIMA may
fit a long-range dependent time series with d = H − 1/2
and 0.5 < H < 1, where H is the Hurst exponent estimate.
FARIMA model is flexible and can capture both long-range
dependent and short-range dependent behavior. However,
it has high computational complexity and long procedure
involved.
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Brownian motion consists of steps in a random direction
with increments that are independent random variables. Frac-
tional Brownian motion differs from the Brownian motion
in the fact that the increments are no longer independent.
Fractional Brownian motion is a non-stationary process, but
its increments form a stationary Fractional Gaussian Noise
(FGN). For 0.5 < H < 1 the increments tend to display
long-range dependence. Due to its Gaussianity, FGN(H)
lends itself to a rigorous analytical studies of queueing
behavior. Unfortunately, FGN is unrealistic model for bursty
non-Gaussian traffic.

4. Proposed approach for Web traffic modeling

The main steps of our approach are as follows:
Step 1.Test the assumptions of all candidate models:

ARMA, ARIMA, FARIMA, and FGN.
Step 2.If the time series is non-stationary, remove the

trend and periodicity.
Step 3.Estimate the Hurst exponent.
Step 4.Use a formal model selection criterion for ARMA,

ARIMA, and FARIMA models. Estimate models’
parameters.

Step 5.Perform a goodness of fit test on the candidate
models to choose the best model for specific Web
server.

Step 6.Validate the results by comparing the autocorre-
lation function of the actual traffic with the auto-
correlation function of the data simulated from the
models.

Next, we provide the details of each step, including the
specific statistical test and methods being used.

Test models assumptions. Although this seems to be an
obvious step, in the past different time series models were
applied on Internet and Web traffic data without first testing
the corresponding assumptions. To test the assumption of
stationarity, common to ARMA, FARIMA and FGN, we use
the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) [16] method
which has been confirmed to work well on both short-
range and long-range dependent time series. Most of the
related work either ignored this issue [19], [26], [27] or
assumed that the traffic is stationary over a short time periods
[3], [11], [12], [20]. To test whether the arrival process
follows the Gaussian distribution, which is an assumption
of the FGN model, we use the method discussed in [12]. It
should be emphasized that without Gaussianity test, fitting
FGN model to the data series may not work well [12].
Nevertheless, FGN model was applied in [20], [27] without
testing for Gaussianity.

Decomposition of the non-stationary time series. When
the time series is non-stationary, before fitting ARMA,
FARIMA, and FGN, it is necessary to decompose the signal,
that is, remove the trend, seasonal component and other

non-stationary factors. To remove the non-stationary factors
we use STL (Seasonal-Trend Decomposition of Time Series
based on LOESS)[6]. The biggest advantage of LOESS over
many other methods is that it is flexible and does not require
specification of a function to fit to all of the data in the
sample.

Estimation of the Hurst exponent. A predominant way
to quantify the self-similarity and long-range dependence is
through the Hurst exponent H . For a long-range dependent
process 0.5 < H < 1.0; as H increases from 0.5 to 1.0, the
degree of long-range dependence increases. Hurst exponent
is a parameter of FARIMA and FGN models. It is important
to note that non-stationary factors affect the estimation of
the Hurst exponent and may lead to erratic analysis [15].
As we have shown in our earlier work [10], using non-
stationary time series often leads to overestimating the Hurst
exponent. This means that the Hurst exponent values for the
FGN models in [20], [27] and the FARIMA models used
in [12], [20], [26] may not be accurate since they were
estimated without testing the stationarity. In other words,
Hurst exponent has to be estimated after removing the trend
and seasonality. In this paper, for both request-based and
session-based arrival processes, we estimate Hurst exponent
values using Whittle and Abry-Veitch methods.

Model selection and parameter estimation. To select the
order of the Autoregressive part (AR) and Moving Average
part (MA) of ARMA, ARIMA, and FARIMA models we use
Akaike’s Information Criterion (AIC) [2], which performs
well in model comparison and selection. We build ARMA,
ARIMA and FARIMA models combining AR and MA parts
with orders from 1 to 10 each (usually 10 is large enough
for the orders of AR and MA) and create a 10 x 10 matrix.
Finally, based on the lowest value of AIC we choose the
best model from these models. Then, for the best model,
we estimate the parameters using Maximum Likelihood
Estimation.

Goodness of fit test. To test if the model is a good fit to the
data set we use the Jan Beran’s goodness of fit test [1] which,
unlike the Mean Square Error, works well on the long-range
dependent data series. We use significance level α = 0.05
when testing the null hypothesis, that is, we reject with 95%
confidence the null hypothesis that the true spectral density
is identically equal to the spectral density of the model if
p-value is less than α = 0.05. It should be noted that most
of the related papers focused on Internet and Web traffic
modeling did not use any goodness of fit test.

Model validation based on simulation. For the purpose of
validation, we compare the autocorrelation function (ACF)
of the actual data series and the autocorrelation functions
of data simulated by the models. The simulations were
done using the R packages [24]: fracdiff.sim for FARIMA,
arima.sim for ARIMA and with d = 0 for ARMA, and
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SimulateFGN for FGN.

5. Data analysis and modeling

In this paper, we use empirical data from six Web servers:
Web server of the West Virginia University (WVU), Web
server of the Lane Department of Computer Science and
Electrical Engineering (CSEE), and four Web servers at the
NASA Independent Verification and Validation Facility1. As
the other research papers that considered sessions, we define
a session as a sequence of requests issued from the same
IP address with the time between requests less than some
threshold value [19]. Considering each unique IP address in
the access log to be a distinct user clearly is not always true
[23]. For example, if a proxy server exists between the user
and the server, the IP address in the Web access log will
be the address of the proxy, rather than the address of the
originating machine. However, in spite of the inaccuracies,
we believe that using the IP address provides a reasonable
approximation of the number of distinct users. Based on the
empirical study of eleven different Web servers presented
in our earlier work [9], we adopt a threshold value of 30
minutes.

For each server, we analyze the Web traffic data for four
weeks period summarized in Table 1. Note that the Web
servers in all tables in this paper are sorted by the total
number of requests in descending order.

Next, we apply the approach presented in section 4 on
request per second and session per second traffic of the Web
servers listed in Table 1.

Start time Requests Sessions
WVU Feb. 2, 2005 14,856,151 188,056
CSEE Feb. 2, 2005 481,627 34,325

NASA-Pub2 Sept. 18, 2005 131,058 14,331
NASA-Pvt3 Sept. 18, 2005 61,377 3,400
NASA-Pub1 Sept. 18, 2005 23,896 4,757
NASA-Pub3 Sept. 18, 2005 15,160 2,696

Table 1. Summary data for four weeks period

5.1. Request-based analysis

In this section, we apply the steps of our approach on
the Web traffic at the request level. Figure 1 shows the time
series plot of the number of requests per second for four
weeks period of the WVU raw data. The existence of the
trend and seasonal component are obvious from this figure.
Using the periodogram method we found that all data sets
have slight trend and daily (day/night) and weekly (Monday
to Sunday) periodicity. Therefore, for each Web server we
estimate and eliminate the trend and cycles from the request

1. The Web logs of the NASA IV&V servers were sanitized, that is, IP
addresses were replaced with unique identifiers.

Figure 1. Requests per second - WVU raw data

level time series using STL [6]. KPSS test [16] run on
residuals proved that the time series are stationary. We fit
ARMA, FARIMA and FGN in the stationary time series,
after eliminating the trend and cycles. We fit ARIMA in the
traffic data without cycles only.

The test for Gaussian distribution [12] on the request-
based time series failed for all Web servers. Nevertheless,
we still apply FGN model on all data sets to illustrate by
means of goodness of fit test and model validation process
that traffic modeling, when it is not done carefully, may lead
to inaccurate and often misleading results.

For each server, we estimate the Hurst exponent of the
stationary time series using the Abry-Veitch method (see
Table 2). It is obvious that the request level workloads of
WVU, CSEE and NASA-Pub2 are long-range dependent
with the degree of long-range dependence increasing with
the workload intensity, which is consistent with the related
work [7], [10], [17]. On the other side, NASA-Pvt3, NASA-
Pub1, and NASA-Pub3 are unlikely to be long-range de-
pendent since the Hurst exponent values are close or even
smaller than 0.5. We believe that this is a result of the
fact that NASA-Pvt3, NASA-Pub1, and NASA-Pub3 servers
have much lower traffic intensity than WVU, CSEE and
NASA-Pub2; this belief is supported by the findings in [17],
[7] which showed that many less busy hours in their traces
do not show self-similar characteristics.

The best ARMA, ARIMA, and FARIMA models chosen
based on the Akaike’s Information Criterion are identified in
Table 3. The fact that FARIMA cannot be used for modeling
the NASA-Pub3 request arrivals since H < 0.5 and d < 0
is annotated with NA in Table 3.

Based on the p-values of the goodness of fit test given in
Table 4 we draw the following conclusions:

• FARIMA is the only model that cannot be rejected for
WVU, CSEE, and NASA-Pub2 which shows that their
traffic traces exhibit both long-range and short-range
dependence (i.e., d �= 0 and p, q �= 0 simultaneously).
The fit is better for Web servers with higher Hurst
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H
WVU 0.66
CSEE 0.60

NASA-Pub2 0.57
NASA-Pvt3 0.51
NASA-Pub1 0.51
NASA-Pub3 0.47

Table 2. Hurst exponent of requests per second

ARMA ARIMA FARIMA
(p,q) (p,d,q) (p,d,q)

WVU 3,4 2,1,4 3,0.16,3
CSEE 3,4 3,1,3 3,0.10,2

NASA-Pub2 7,3 5,1,6 7,0.07,8
NASA-Pvt3 3,1 4,1,7 5,0.01,6
NASA-Pub1 2,4 5,1,4 7,0.01,5
NASA-Pub3 1,4 1,1,3 NA

Table 3. Model identification at request level

ARMA ARIMA FARIMA FGN
WVU 0.0001 0.0149 0.3390 0.0071
CSEE 0.0037 0.0221 0.1141 0.0179

NASA-Pub2 0.0242 0.0382 0.0944 0.0045
NASA-Pvt3 0.0813 0.0048 0.0065 0.0001
NASA-Pub1 0.0749 0.0565 0.0011 0.0001
NASA-Pub3 0.2012 0.0013 NA NA

Table 4. p-value at request level

estimate, that is, higher traffic intensity.
• ARMA model cannot be rejected for NASA-Pvt3 and

NASA-Pub3 servers, while both ARMA and ARIMA
cannot be rejected for NASA-Pub1. These three Web
servers have Hurst exponents very close or even lower
than 0.5, which results in a good fit with ARMA or
ARIMA models which capture short-range dependence.

• FGN is strongly rejected for all servers based on p-
values which are significantly lower than 0.05. This
result is consistent with the fact that the assumption of
Gaussianity failed on all Web servers.

At last, we present the results of model validation based
on simulation. Figures 2 to 5 present the comparison of the
Autocorrelation function (ACF) of the real data and the data
simulated from models for WVU, CSEE, NASA-Pub2, and
NASA-Pub1 servers. Based on Figures 2 to 5, the following
observations can be made:

• FARIMA model is better fit than ARMA and ARIMA
for WVU and CSEE request arrivals. The fit is espe-
cially good for WVU request traffic. Choosing the best
model among FARIMA, ARMA or ARIMA for NASA-
Pub2 based on Figure 4 is not easy, which is due to the
fact that the request traffic is only slightly long-range
dependent (H = 0.57). However, based on p = 0.09,
the goodness of fit test selects the FARIMA model.
Obviously, without statistical test, visualization may not
always identify the best model.

• Figures 2 to 5 clearly show that FGN does not capture

the characteristics of the request-based traffic of any
Web server considered in this paper. These results are
not consistent with the work presented in [27] which
suggested using FGN to model the request traffic of
commercial Web sites. In our case, FGN model was
formally rejected for all six Web servers, including the
servers with H > 0.5.

• ARMA and ARIMA fit most closely the real traffic of
NASA-Pub1 server (see Figure 5). Somewhat smoother
and more stable ACF of the ARMA model is consistent
with slightly larger p-value (see Table 4). ARMA is also
the best model for the request traffic of NASA-Pub3
and NASA-Pvt3 which are not shown in figures due
to space limitation. It should be noted that the dynamic
request traffic of the 1998 Nagano Olympic Games pre-
sented in [25] was modeled using ARMA(2, 1) process,
without including a goodness of fit test or any way to
validate the proposed model.

5.2. Session-based analysis

As in case of request arrivals, session arrival processes
for all Web servers considered in this paper are non-
stationarity, that is, have a slight trend and daily/weekly
seasonal components. Before estimating the Hurst exponent
and fitting ARMA, FARIMA, and FGN models we remove
the trend and periodicities. Since ARIMA model assumes
non-stationary time series, we eliminate only the seasonal
component. Of all six servers considered in this paper, only
NASA-Pub2 session traffic follows Gaussian distribution.

Hurst exponent, which is a parameter of FARIMA and
FGN models, is estimated on the stationary session-based
time series. For the session workload we used Whittle
method since it has been shown to have desirable statistical
properties for Gaussian processes [17]. We also completed
the model fitting process for FARIMA and FGN models
with the values of Hurst exponent estimated using the Abry-
Veitch method. From Table 5 we conclude that Hurst expo-
nents of session arrivals are lower than the corresponding
Hurst exponents of the request arrivals. In addition, in most
cases Abry-Veitch method provides slightly higher value of
H than Whittle method which is consistent with the results
presented in [10], [15].

As with request traffic, session traffic of WVU, CSEE,
and NASA-Pub2 is long-range dependent, while session
level traffic of NASA-Pub1, NASA-Pub3, and NASA-Pvt3
is unlikely to be long-range dependent. The best ARMA,
ARIMA, and FARIMA models for each server chosen in
terms of the AIC are summarized in Table 6.

The p-values of the goodness of fit test are given in
Table 7. Based on these results we make the following
observations.

• FARIMA is the only model that cannot be rejected
for the session arrival processes of WVU and CSEE.
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Figure 2. Request time series-WVU Figure 3. Request time series–CSEE

Figure 4. Request time series–NASA-Pub2 Figure 5. Request time series–NASA-Pub1

Whittle Abry-Veitch
WVU 0.59 0.61
CSEE 0.54 0.55

NASA-Pub2 0.54 0.57
NASA-Pvt3 0.47 0.49
NASA-Pub1 0.52 0.50
NASA-Pub3 0.48 0.51

Table 5. Hurst exponent of sessions initiated per
second

Similarly as the request arrival process, WVU – the
server with the higher Hurst exponent (and higher
traffic intensity) – has larger p-value.

• FGN cannot be rejected only for the NASA-Pub2
server, which is the only server that has Gaussian
distributed session arrival process.

• ARMA and ARIMA cannot be rejected for NASA-Pvt3

ARMA ARIMA FARIMA
(p,q) (p,d,q) (p,d,q)

WVU 4,4 3,1,5 4,0.09,7
CSEE 4,2 2,1,3 3,0.04,4

NASA-Pub2 8,7 6,1,7 9,0.04,6
NASA-Pvt3 5,4 3,1,2 NA
NASA-Pub1 2,4 1,1,3 6,0.02,4
NASA-Pub3 3,2 3,1,3 NA

Table 6. Model identification at session level

and NASA-Pub1 session level traffic. ARMA model
has somewhat better fit than ARIMA model. ARMA
model is the only model that cannot be rejected for the
NASA-Pub3 session level traffic.

It should be emphasized that we repeated the model
fitting process for FARIMA and FGN with the Abry-Veitch
estimates of the Hurst exponent for the session arrivals
of WVU, CSEE, and NASA-Pub1 servers which are non-
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ARMA ARIMA FARIMA FGN
WVU 0.0001 0.0112 0.2084 0.0142
CSEE 0.0105 0.0247 0.0976 0.0010

NASA-Pub2 0.0022 0.0088 0.0423 0.1298
NASA-Pvt3 0.0697 0.0591 NA NA
NASA-Pub1 0.1840 0.0904 0.0217 0.0001
NASA-Pub3 0.4362 0.0139 NA NA

Table 7. p-value at session level

Gaussian distributed. The results given in Tables 6 and 7 are
not significantly different and the above observations made
about the best model for each server remain the same.

As in case of the request arrival traffic, we validated the
best fitted model by comparing the autocorrelation function
of the real session traffic and simulated time series models.
The figures could not be shown due to space limitation, but
we briefly summarize the observations.

• FARIMA model is very consistent for WVU and to
large extent for CSEE, the two servers with the highest
Hurst exponent estimates.

• Both FGN model and FARIMA seem to be better fit
than ARMA and ARIMA to the actual session arrival
process of the NASA-Pub2 server. However, only the
hypothesis that the session arrival process is FGN
cannot be rejected based on the p-value.

• Based on the plot of the ACF it is hard to tell whether
ARIMA or ARMA is better model for the NASA-Pub1.
ARMA model, however, tends to be smoother and more
stable than ARIMA, which is consistent with larger p-
value that indicates stronger degree of acceptance.

The results presented in this section are continuation of
our earlier work [10] which showed that, unlike TELNET
and FTP traffic, piecewise Poisson process can only be
used to model Web sessions in a few intervals under low
to moderate workloads. The results presented in this paper
go further, showing that depending on the nature of the
session level traffic, either ARMA, ARIMA, FARIMA, or
FGN model can be the best fit to the actual data, with a note
that FARIMA model fits well the servers with the highest
workload intensity. Along these lines, it should be noted that
the server with the highest load in our sample has two to
ten times higher traffic intensity than the Web servers with
traces dated 1995-1999 used in [19], which were modeled
with a Poisson process. This confirms the fact that as the
Internet traffic evolves and the intensity of servers workloads
increases, there is a need to revisit and revise as needed the
invariants established based on older empirical data [8], [19].

6. Conclusion

In this paper we have presented a well defined, statistically
rigorous approach for modeling the Web traffic at both
request level and session level. The empirical results are
based on the data extracted from the access logs of six real

Web servers.
With respect to the methods used for modeling of both

request and session level traffic the important points are as
follows. (1) The stationarity of the arrival process has to be
tested, not just as an assumption of models such as ARMA,
ARIMA or FARIMA, but also for more accurate estimate
of the Hurst exponent which is used as a parameter of both
FARIMA and FGN models. (2) The assumption of Gaussian
distribution has to be tested before applying the FGN model
on the data. Our results show that this assumption is not valid
for most Web servers, which consequently means that FGN
will results in an inaccurate model. (3) Although visualizing
the comparison of the actual data with data simulated from
the fitted models is useful, for some Web sites the best model
cannot be chosen without a formal goodness of fit test.

A brief summary of the main findings with respect to
the traffic characteristics is as follows. (1) Both the request
and session arrival processes of the Web servers with the
highest traffic, WVU and CSEE, are best described with
FARIMA models which capture well both short-range and
long-range dependence. The fit is better for the server with
higher degree of long-range dependence, that is, higher
traffic intensity. (2) The session arrivals of NASA-Pub2 is
the only process that is modeled fairly well with FGN. This
means that this session arrival process shows only long-range
dependence. As in case of WVU and CSEE, the request
arrivals of NASA-Pub2 are modeled well with FARIMA
model. (3) Both the request and session arrival processes
of the remaining three servers which have at least one order
of magnitude lower traffic intensity are modeled well with
ARMA and/or ARIMA models which typically fit well into
data sets with short-range dependence.

The models of the Web arrival traffic presented in this
paper, combined with the distributions of session duration,
number of request per session and bytes transferred per
session [10] provide basis for building an empirically based
constructive model of Web traffic which has parameters
with clear physical meaning and can be used for developing
workload generating tool or modeling and simulation of Web
server performance.
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