
Distinguishing between Web Attacks and Vulnerability Scans based on Behavioral
Characteristics

Katerina Goseva-Popstojanova1 and Ana Dimitrijevikj*

1Lane Dept. of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV

Abstract—The number of vulnerabilities and reported at-
tacks on Web systems are showing increasing trends, which
clearly illustrate the need for better understanding of ma-
licious cyber activities. In this paper we use clustering to
classify attacker activities aimed at Web systems. The empir-
ical analysis is based on four datasets, each in duration of
several months, collected by high-interaction honeypots. The
results show that behavioral clustering analysis can be used
to distinguish between attack sessions and vulnerability scan
sessions. However, the performance heavily depends on the
dataset. Furthermore, the results show that attacks differ from
vulnerability scans in a small number of features (i.e., session
characteristics). Specifically, for each dataset, the best feature
selection method (in terms of the high probability of detection
and low probability of false alarm) selects only three features
and results into three to four clusters, significantly improving
the performance of clustering compared to the case when all
features are used. The best subset of features and the extent
of the improvement, however, also depend on the dataset.

Keywords-classification of malicious cyber activities; attacks;
vulnerability scans; Web applications; honeypots.

I. INTRODUCTION

Internet and Web technologies are widely used in al-

most every aspect of the modern society. Web applications,

however, have many vulnerabilities that can be exploited

by attackers. SANS [15] reported that 60% of the total

attack attempts observed on Internet were against Web

applications. New emerging Web 2.0 technologies enhance

information sharing, collaboration, and functionality of the

Web, but due to users ability to create content they also

provide attackers with a broad range of new vulnerabilities

to exploit. These trends clearly illustrate the need for better

understanding of malicious cyber activities based on both

qualitative and quantitative analysis, which will allow better

protection, detection, and service recovery. However, the

research work on intrusion detection in the past was mainly

focused on development of data mining techniques aimed at

constructing a “black-box” that classifies the network traffic

on malicious and non-malicious, rather than on discovery of

the nature of malicious activities [9]. Even more, significant

amount of intrusion detection research work was based on

outdated data sets (i.e., the DARPA Intrusion Detection Data

∗This work was done while Ana Dimitrijevikj was affiliated with West
Virginia University.

Set and its derivative KDD 1999.) Analysis and classifi-

cation of malicious activities have practical values only if

they accounts for emerging technologies and new types of

vulnerabilities.
In this paper we use behavioral clustering with a goal to

distinguish malicious attack sessions from vulnerability scan

sessions. In this context, a session is considered as an attack
session if the attacker attempts to exploit a vulnerability in at

least one request in that session. If all requests in the session

were used to check for vulnerabilities then the session is

considered as vulnerability scan. Although both attacks and

vulnerability scans are malicious activities, it is important

to be able to classify them automatically because attacks

are much more critical events than vulnerability scans.

Specifically, we explore the following research questions:

1) Can clustering be used to automatically distinguish

between Web attacks and vulnerability scans?

2) Do attacks and vulnerability scans differ in a small

number of features?

The main contributions of this paper are as follows:
(1) We use behavioral clustering analysis of malicious

Web traffic in order to separate attack sessions from vul-

nerability scan sessions. Behavioral clustering has an ad-

vantage over previous efforts to automatically classify and

analyze malicious behaviors, such as anti-virus software and

intrusion detection systems, that were primarily focused on

content-based signatures. These signatures are inherently

susceptible to inaccuracies due to polymorphic and meta-

morphic nature of malicious code.
(2) We use four data sets, each in duration of 4-5 months,

which allows us to compare the performance of clustering

achieved in classifying malicious activities aimed at different

system configurations and/or different time periods, and

thus, to some extent, to generalize our observations.
(3) We use several feature selection methods in combi-

nation with K-means clustering to explore whether attacks

differ from vulnerability scans only in a small subset of

features. The results show that, depending on the feature

selection algorithm and the dataset, anywhere from two to

ten features can be used to perform clustering, typically with

better performance than when all 43 features are used. The

results further show that the best features differ across data

sets collected by different system configurations.

2014 28th International Conference on Advanced Information Networking and Applications Workshops

978-1-4799-2652-7/14 $31.00 © 2014 IEEE

DOI 10.1109/WAINA.2014.15

42

(4) Overall, our results show that clustering, especially

when the selected feature subsets are used, can be used

to distinguish attack sessions from vulnerability scan ses-

sions. The performance of the classification done by cluster-

ing, however, significantly differs across different datasets.

Specifically, when the best feature selection methods in

terms of high probability of detection and low probability

of false alarm (i.e., high balance value) are chosen for each

dataset, the probability of detection ranged from around 44%

to close to 93% and the probability of false alarm was in

the range from 0% to 39%.

Examples of areas that can benefit from methods for

automatic classification of malicious behaviors include an

automatic labeling of malicious traffic, generating signatures

of new attacks, developing attack patterns for testing intru-

sion detection systems, and developing models for attack

injections that can be used for testing services and systems.

II. RELATED WORK

In the past only several papers used machine learning

techniques for classification of some aspects of the mali-

cious traffic. In [4] data collected by two high-interaction

honeypots were used to analyze malicious attacks to port

445. Three classes of attacks were classified using the K-

means algorithm. Two papers were focused on clustering

system events collected during execution of sample malware

programs, with a goal to automatically categorize the mal-

ware into groups that reflect similar classes of behaviors

[2], [3]. Another recent work presented in [12] was focused

on finding similarities among different samples of malicious

HTTP traffic. [2], [3], [12] used anti-virus scanners to label

the collected samples and applied single-linkage hierarchial

clustering to group the malicious samples in classes with

similar behaviors.

Two other papers used machine learning to analyze ma-

licious behaviors. A decision tree was used in [10] to

classify port scans observed by a Darknet (i.e., a set of

passive sensors). [1] used Principal Component Analysis for

characterizing the traffic collected by the Leurre.com project

and presented the characteristics of the attacker activities for

the first seven principle components.

In our recent work we used three supervised machine

learning methods (i.e., J48, PART, and SVM) to first distin-

guish between attacks and vulnerability scans [7] and then

to perform multiclass classification (i.e., distinguish among

eleven vulnerability scan and nine attack classes) [8]. In

both cases J48 and PART outperformed SVM and were able

to classify the malicious activities with high probability of

detection. However, supervised machine learning methods

require data to be labeled, which is always time consuming,

costly activity and in some cases is not feasible.

In this paper we use behavioral clustering with a goal to

distinguish between attack and vulnerability scan sessions.

Since clustering is unsupervised learning method it does

not require the data to be labeled. Related work that used

clustering distinguished among three types of attacks on port

445 [4] or aimed at grouping collected malware samples into

malware families [2], [3], [12]. None of these related works

was based on data collected by advertised, fully functional,

three-tier honeypot systems, which allow collecting samples

of typical attacks aimed at these systems. Even more,

we identify the best subsets of the available features that

are most useful for classification of malicious activities,

thus identifying the simplest, most efficient model for each

dataset. Related work papers either build behavioral profiles

based on observing a small number of system events [2],

[3], or used small number of features (i.e., four features

in [4] and seven features in [12]) and did not use feature

selection methods. Finally, we validate the clustering results

using the four datasets labeled by a semiautomatic process.

We assess the clustering performance in terms of several

metrics: probability of detection, probability of false alarm,

precision, and accuracy. This is important because the results

show that when the target class (i.e., attacks) is in a minority,

accuracy alone is a poor measure of learner’s performance.

III. DATA COLLECTION AND EXTRACTION

Because data on recent malicious attacker activities were

not publicly available, we developed and deployed high-

interaction honeypots as a means to collect such data [5],

[6]. Instead of a set of independent applications typical for

honeypots in related work, our honeypots had meaningful

functionality and followed a three-tier architecture consisting

of a front-end Web server, application server, and a back-

end database. Furthermore, they ran off-the-shelf operat-

ing systems and applications that followed typical security

guidelines and did not include user accounts with weak

or nil passwords. The honeypots were advertised using a

technique called ‘transparent linking’ which involves placing

hyperlinks pointing to the honeypots on public Web pages.

This way the honeypots were indexed by search engines and

Web crawlers, but could not be accessed directly by humans.

Advertising honeypts that ran Web systems allowed us to

observe typical malicious activities aimed at these systems,

including attacks based on search engines. Overall, we ran

honeypots with three different configurations and collected

four datasets whose details are given next.

The first configuration ran Ubuntu 7.04, with Apache

Web Server 2.2.3-3, PHP (version 5.2.1) as an application

server, and MySQL database (version 5.0.38-0). As a Web

application, we installed phpMyAdmin (version 2.9.1.1),

which is a popular open source application widely used to

handle database administration over the Web. WebDBAdmin
I is the data set collected from this configuration.

The second configuration ran Windows XP Service Pack

2, with Microsoft IIS 5.1 Web server, PHP 5.0.2 server, and

MySQL database (version 4.1). This configuration also in-

cluded phpMyAdmin (version 2.9.1.1) as a Web application.

43

Table I. Breakdown of malicious Web Sessions for all datasets

WebDBAdmin I WebDBAdmin II Web 2.0 I Web 2.0 II
sessions sessions sessions sessions

Vulnerability scans: Total 185 86.45% 513 93.44% 824 73.77% 2059 43.03%
DFind 17 7.94% 19 3.46% 24 2.15% 20 0.42%
Other fingerprint 14 6.54% 3 0.55% 2 0.04%
Static 26 12.15% 305 55.56% 181 16.20% 327 6.83%
Blog 107 9.58% 690 14.42%
Wiki 1 0.18% 385 34.47% 922 19.27%
Blog & Wiki 73 6.54% 77 1.61%
Static & Blog 10 0.90% 1 0.02%
Static & Wiki 19 1.70% 3 0.06%
Static & Blog & Wiki 25 2.24% 3 0.06%
phpMyAdmin 77 35.98% 155 28.23% 11 0.23%
Static & phpMyAdmin 51 23.83% 30 5.46% 3 0.06%

Attacks: Total 29 13.55% 36 6.56% 293 26.23% 2726 56.97%
DoS 4 0.36%
Password cracking phpMyAdmin user accounts 18 8.41%
Password cracking Blog user accounts 9 0.81% 1 0.02%
Password cracking Wiki user accounts 71 1.48%
E-mail harvesting 5 2.34%
Spam on Blog 23 2.06% 1411 29.49%
Spam on Wiki 249 22.29% 1055 22.05%
RFI 1 0.18% 4 0.36% 5 0.10%
SQL injection 1 0.47% 2 0.18%
XSS 2 0.18% 11 0.23%
Other Attacks 5 2.34% 35 6.38% 172 3.59%

Total 214 100% 549 100% 1,117 100% 4,785 100%

WebDBAdmin II is the data set collected from this honeypot.

The third configuration ran the same operating systems

and servers as the second. Instead of phpMyAdmin, two

Web 2.0 applications were installed: the most widely used

wiki software MediaWiki (version 1.9.0), which is used as

an application base for Wikipedia, and the most downloaded

open source blogging software Wordpress (version 2.1.1).

From the honeypot with this configuration, we collected two

data sets: Web 2.0 I and Web 2.0 II.
Web sessions, each defined as a sequence of requests

from the same source IP address to port 80, with a time

between two successive request not exceeding a threshold

of thirty minutes [5], [6], were extracted automatically from

the logs of the front-end Web servers (i.e., Apache and

ISS). Since honeypots could not be accessed directly by

human users because of the ‘transparent linking’ approach

used for advertising, the only non-malicious sessions in the

logs consisted of system management traffic generated by

our team and legitimate Web crawlers such as Google and

MSNbot. Removing the system management traffic was a

trivial task. The crawlers were removed based on the IP

addresses listed in iplists.com and other similar sites and

based on manual inspection of the remaining traffic.

It should be noted that we use clustering in this paper,

which is unsupervised method that do not use the labels

in the learning process. However, the data have to be

labeled in order to evaluate the performance of clustering

in distinguishing between attacks and vulnerability scans.

We used a semiautomated process based on identification of

patterns in the HTTP application level logs, which allowed

us to assure the accuracy and identify different classes of

vulnerability scans and attacks. (The reader is referred to our

previous work [6] for the details on labeling Web sessions.)

The breakdown of malicious Web sessions to different

vulnerability scan and attack classes is shown in Table I. A

brief overview across four data sets is as follows.

• WebDBAdmin I data set contains 214 Web sessions,

185 (86.45%) of which were labeled as vulnerability

scans and 29 (13.55%) as attacks. The most dominant

types of vulnerability scans were sessions labeled as

phpMyAdmin and Static & phpMyadmin. Among 29

attack sessions, 18 were Password cracking of php-

MyAdmin user accounts.

• WebDBAdmin II data set contains 549 sessions, 513

(93.44%) labeled as vulnerability scans and only 36

(6.56%) as attacks. The most frequent vulnerability

scans classes were Static and phpMyAdmin. Out of 36

attack sessions, 35 were labeled as Other attacks.

• Web 2.0 I data set contains 1117 Web Sessions,

824 (73.77%) labeled as vulnerability scans and 293

(26.23%) as attacks. The most dominant vulnerability

scans were fingerprinting the Wiki, Blog and Static

content. The most frequent type of attack was Spam

on Wiki with 249 sessions.

• Web 2.0 II data set contains 4785 Web sessions, out

of which 2059 (43.03%) were vulnerability scans and

2726 (56.97%) were attacks. Vulnerability scans that

browsed Static content and accessed the Blog or Wiki

were dominant. Among attacks, 1411 posted Spam on

Blog and 1055 posted Spam on Wiki.

44

We characterize each Web session with a vector of the

following 43 different features (i.e., session characteristics):

(1) number of requests; (2) bytes transferred; (3) duration

(in seconds); (4)-(8) mean, median, minimum, maximum,

and standard deviation of the time between requests; (9)-

(14) number of requests with a specific method type (i.e.,

GET, POST, OPTIONS, HEAD, PROPFIND, and other);

(15) number of requests to picture files (e.g., .jpeg, .jpg,

.gif, .ico, .png); (16) number of requests to video files

(e.g., .avi, .mpg, .wmv); (17) number of requests to static

application files (e.g., .html, .htm); (18) number of requests

to dynamic application files (e.g., .php, .asp); (19) number of

requests to text files (e.g., .txt, .ini, .css); (20)-(24) number of

requests with specific status code (i.e., Informational (1xx),

Success (2xx), Redirect (3xx), Client error (4xx), and Server

error(5xx)); (25)-(29) mean, median, minimum, maximum,

and standard deviation of the length of all request substrings

within a session; (30)-(34) mean, median, minimum, max-

imum, and standard deviation of the number of parameters

passed to application within a session; boolean indications

of whether: (35) robots.txt file was accessed in that session;

(36) it was a night session; (37) there was a remote site

injection in at least one request; (38) a semicolon was used to

divide multiple passed attributes to an application in at least

one request; (39) a string containing suspicious encoding in

any of the requests; (40) a reserved character was used in any

of the requests; (41) an ASCII control character was used in

any of the requests; (42) a non-ASCII control character was

used in any of the requests; and (43) an invalid encoding

was used in any of the requests.

IV. OUR BEHAVIORAL CLUSTERING APPROACH

Since the ranges of the 43 features differed significantly

we first applied Min Max Normalization, resulting in a new

range [0, 1] for each feature. We used K-means clustering

with Euclidian distance. The number of clusters K was

determined using a method proposed in [13] which is based

on minimizing the ratio of intra-cluster and inter-cluster

distance.

We performed K-means clustering first using all 43 fea-

tures and then on subsets of features selected by several

feature selections methods. The motivation for using feature

selection was to explore whether a small subset of session

characteristics can be used to efficiently separate attack from

vulnerability scan sessions. In addition, reducing the number

of features by removing the irrelevant and noisy features

has a potential to speed up the machine learning algorithms

and improve their performance [11]. We used the following

feature selection methods:

• Information gain. First, features were ranked from the

most informative to least informative using the informa-

tion gain as a measure [11], and then the three features

with the highest information gain were selected.

• Sequential Forward Selection (SFS). This method starts

with an empty set and adds one feature at a time,

which with previously added feature(s) gives the best

performance. We used two variants of SFS, one using

Support Vector Machine (SVM) and another using J48

algorithm for evaluation.

• Feature selection methods for clustering perform the

selection without the class information. In this paper

we used one such selection method which results in a

method for sparse K-means clustering [14].

To evaluate the performance of clustering, we counted

how many attacks and vulnerability scans were in each

cluster. If attack sessions dominated, the cluster was labeled

as attack cluster, whereas if vulnerability scan sessions were

the majority, we assigned a vulnerability scan label to that

cluster. After all clusters were labeled, we computed the

values of true negatives (TN), false negatives (FN), false

positives (FP), and true positives (TP) in the confusion

matrix.

Actual: Actual:

Vulnerability Scan Attack

Predicted:

Vulnerability Scan TN FN
Predicted:

Attack FP TP

Then, we computed the following metrics to assess the

performance of clustering in detecting attacks:

accuracy (acc) = (TN+TP)/(TN+FN+FP+TP) (1)

probability of detection (pd) = TP/(FN + TP) (2)

probability of false alarms (pf) = FP/(TN + FP) (3)

precision (prec) = TP/(TP + FP) (4)

balance (bal) = 1−
√
(0− pf)2 + (1− pd)2/

√
2 (5)

The accuracy, given with (1), provides the percentage of

sessions that are detected correctly. Probability of detection,

defined by (2), which is also called recall, accounts for the

probability of detecting an attack (i.e., the ratio of detected

attacks to all attacks). Probability of false alarm, given by

(3), is the the ratio of vulnerability scans misclassified as

attacks to all vulnerability scans. Precision, defined by (4),

determines the fraction of sessions correctly classified as

attacks out of all sessions classified as attacks. Ideally, we

want probability of detection to be 1 and probability of

false alarm to be 0. Balance is defined as the Euclidian

distance from this ideal point of pf = 0, pd = 1 to a pair

of (pf, pd). For convenience, the balance is normalized by

the maximum possible distance across the ROC square
√
2

and then subtracted from 1 (see (5)). It follows that higher

balance is better since (pf, pd) point falls closer to the ideal

point (0, 1).

45

Table II. Summary of clustering results for all data sets

WebDBAdmin I WebDBAdmin II Web 2.0 I Web 2.0 II
All features K 3 8 10 8

pd 17.00% 19.00% 63.00% 91.00%
pf 0.00% 0.30% 0.20% 64.00%

prec 100.00% 77.77% 98.93% 65.31%

bal 41.00% 42.00% 73.00% 54.00%

acc 89.00% 94.00% 90.00% 67.00%
of features 43 43 43 43

Information K 4 4 4 4
gain pd 72.41% 0.00% 87.71% 92.99%

pf 0.54% 0.00% 0.48% 39.46%
prec 95.45 % 0.00% 98.46% 75.70%

bal 80.48% 29.28% 91.30% 71.65%
acc 95.79% 93.44% 96.41% 79.01%

of features 3 3 3 3
selected features 9, 1, 18 24, 28, 26 10, 28, 26 28, 25, 10

SFS K 5 3 3 6
with pd 65.52% 44.44% 78.16% 90.35%
SVM pf 0.00% 0.00% 0.36% 69.47%

prec 100.00% 100.00% 98.70% 76.78%

bal 75.62% 60.72% 84.55% 50.41%
acc 95.33% 96.36% 94.00% 64.60%

of features 5 3 5 7
selected features 10, 18, 23, 30, 34 10, 37, 39 10, 14, 18, 38, 40 2, 6, 9, 10, 15, 27, 33

SFS K 5 4 2 6
with pd 58.62% 8.33% 87.71% 48.15%
J48 pf 1.08% 0.58% 4.98% 29.17%

prec 89.47% 50.00% 86.24% 68.58%
bal 70.73% 35.18% 90.63% 57.93%
acc 93.46% 93.44% 93.11% 57.91%

of features 2 6 4 10
selected features 2, 19 2, 9, 24, 27, 28, 38 10, 28, 31, 33 2, 8, 9, 21, 27, 28, 30, 31, 36, 38

Sparse K 5 3 6 5
K-means pd 17.24% 0.00% 62.12% 92.29%
clustering pf 0.00% 0.00% 0.00% 64.76%

prec 100.00% 0.00% 100.00% 65.34%
bal 41.48% 29.29% 73.21% 53.89%
acc 88.79% 93.44% 90.06% 67.73%

of features 43 43 43 43

V. MAIN OBSERVATIONS

Table II summarizes the behavioral clustering results for

all four datasets, including clustering based on all 43 features

and clustering with each of the four feature selection meth-

ods. The method that gave the best (worst) balance value

for each data set is highlighted in bold (italic). It should

be noted that the feature selection method that resulted in

the best balance value also led to the best probability of

detecting attacks and close to or smaller probability of false

alarms than when all features were used. Figure 1 presents,

for each data set, the performance of different variants in

terms of the probability of false alarm versus probability of

detection (i.e., in the ROC square).

Based on these results, it is evident that information gain,

SFS with SVM, and SFS with J48 significantly improved the

performance of clustering for at least two datasets compared

to the case when all features were used. On the other side,

the sparse K-means clustering method performed similarly

or even worse than when all features were used and it did

not reduce the feature set.

The best feature selection methods in terms of the highest

balance value are: information gain for WebDBAdmin I,

Web 2.0 I and Web 2.0 II data sets, and SFS with SVM for

WebDBAdmin II data set. Each of the best feature selection

methods selected three features and resulted in three to four

clusters. Table III presents the distribution of attack and

vulnerability scan sessions across clusters produced by the

best selection method for each data set.

Next, we summarize the results per dataset and discuss the

reasons behind the achieved clustering performance. Both

WebDBAdmin I and II datasets had very low probability of

false alarm (close or equal to 0%). When using the best fea-

ture selection method (i.e., information gain) WebDBAdmin

I data set had relatively high probability of detection and

thus balance. This method led to two clusters with attack

labels C3 and C4 (see Table III) and only one vulnerability

scan session was misclassified as attack (see C4). The two

vulnerably scan clusters C1 and C2 contained very few

attacks misclassified as vulnerability scans.

On the contrary, WebDBAdmin II dataset had rather

low probability of detection and correspondingly the lowest

balance. This is due to the fact that WebDBAdmin II dataset

46

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

probability of false alarm

p
ro

b
a
b
ili

ty
 o

f
d
e
te

c
ti
o
n

WebDBAdmin I

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

probability of false alarm

p
ro

b
a
b
ili

ty
 o

f
d
e
te

c
ti
o
n

WebDBAdmin II

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

probability of false alarm

p
ro

b
a
b
ili

ty
 o

f
d
e
te

c
ti
o
n

Web 2.0 I

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

probability of false alarm

p
ro

b
a
b
ili

ty
 o

f
d
e
te

c
ti
o
n

Web 2.0 II

all features infogain SFS−SVM SFS−J48 sparse

Figure 1. Comparison in ROC space for WebDBAdmin I, WebDBAdmin II, Web 2.0 I, and Web 2.0 II data sets

Table III. Clustering results using the best feature selection method for each dataset

Data set Feature selection method Selected features Session type C1 C2 C3 C4 Total
WebDBAdmin I Information gain 9, 1, 18 Vulnerability scans 32 152 0 1 185

Attacks 8 0 5 16 29
WebDBAdmin II SFS with SVM 10, 37, 39 Vulnerability scans 513 0 0 513

Attacks 20 13 3 36
Web 2.0 I Information gain 10, 28, 26 Vulnerability scans 178 4 642 0 824

Attacks 5 171 31 86 293
Web 2.0 II Information gain 28, 25, 10 Vulnerability scans 498 315 1033 214 2060

Attacks 1448 1086 1 190 2725

had the smallest percentage of attacks (only 6.65%), with

many different types that could not be separated well by

clustering. In particular, 16 attacks were divided between the

two attack clusters C2 and C3, but the remaining 20 attacks

were misclassified as vulnerability scans and assigned to the

vulnerability scan cluster C1, which led to low probability

of detection. WebDBAdmin II dataset clearly illustrates

that accuracy can be a misleading measure of learner’s

performance. Thus, for this data set, in spite of the poor

probability of detection (at most 44%) the accuracy was very

high (over 93% in all cases).

Web 2.0 I data set had the highest balance value compared

to the other datasets, regardless of the method used (i.e.,

the points in the ROC space (see Fig. 1) are close to the

ideal point pf = 0, pd = 1). Apparently, attack sessions and

vulnerability scans sessions in Web 2.0 I data set can be

separated well. In case of the best feature selection method

(i.e., information gain), as it can be seen from Table III,

C2 and C4 were labeled as attack clusters, with only 4

vulnerability scan sessions in C2 misclassified as attacks

(i.e., low probability of false alarm). Spam on wiki attack

sessions dominated both C2 and C4, which indicated that

from behavioral perspective there were two different types

of sessions which posted spam on wiki.

Web 2.0 II data set had very high probability of detection

(over 90% for all methods except SFS with J48), but also

significantly higher false alarm rate (29-69%) than any

other dataset (which had false alarm rates close to 0%).

Thus, K-means clustering with feature selection based on

information gain (see Table III) successfully separated the

attacks sessions, with cluster C1 containing close to 100%

of spam on blog sessions and cluster C2 containing around

91% of all spam on wiki sessions, which led to high

probability of attack detection. However, these two clusters

also contained relatively large number of vulnerability scan

sessions (mostly scans to blog and/or wiki) misclassified

as attacks, which led to the moderately high probability of

false alarm. In addition, we observed some attack sessions

misclassified as vulnerability scans in cluster C4. Having in

mind the last two observations, it is not surprising that Web

2.0 II data set had the lowest accuracy.

It should be noted that the classification based on su-

pervised learning methods presented in our earlier work

[7] had better performance than the classification based

on clustering presented in this paper. However, supervised

learning methods require datasets to be labeled, which is not

the case with unsupervised learning such as clustering.

VI. CONCLUDING REMARKS

In this paper we used behavioral clustering with a goal to

distinguish between attack sessions and vulnerability scan

sessions aimed at Web systems. In particular, we used K-

means clustering in combination with several feature selec-

tion methods on four data sets collected by three different

honeypot configurations.

Our results showed that clustering analysis can be used to

separate attacks from vulnerability scans in malicious Web

traffic, with a small number of clusters (i.e., from two to

ten clusters depending on the method and dataset). Feature

selection methods typically improved the performance of

clustering, resulting in better probability of detecting attacks

and accuracy, and similar or smaller probability of false

47

alarm compared to the case when all features were used. It

follows that attacks and vulnerability scans differ in a small

number of features. Therefore, when redundant and noisy

features are removed the K-means clustering not only works

faster, but it also gives better results in terms of separating

attacks from vulnerability scan sessions.

Typical to machine learning techniques, the success of

clustering in separating attacks from vulnerability scans

differed across datasets. The best feature selection method

resulted in probability of detection ranging from 44% in the

case of the data set with a very small percentage of attacks

(i.e., only 6.56%) to over 80% or even 90% in data sets with

more evenly distributed classes.

Another conclusion is that using only the overall accuracy

to measure the performance of clustering may be misleading,

especially if the data set has uneven class distributions.

Using additional metrics such as probability of detection,

probability of false alarm, precision, and balance provides

much better assessment of the performance of clustering.

For example, although the overall accuracy in the case of

the WebDBAdmin II dataset was very high, the probability

of detecting attacks was low since the attack class consisted

of small number, very diverse attacks.

The best feature selection methods in terms of balance

(which in our case also had the highest probability of

detection and similar or lower probability of false alarm)

selected only three features for each data set. The sets of

best features, however, differed across datasets (see Table III

‘Selected features’ column). Thus, the number of requests

with POST method feature (10) was common across three

out of four datasets. The other two features in the Web

2.0 I and Web 2.0 II datasets were related to the length

of requests substrings (i.e., (25), (26) and (28)). On the

other side, features such as number of requests with GET

method (9), number of requests (1), number of requests

to dynamic application files (18), presence of remote site

injection (37) and string containing suspicious encoding

(39) were good predictors for the WebDBAdmin I and

WebDBAdmin II datasets. This observation can be explained

by the fact that attackers often use search-based strategy

to identify their targets and therefore different systems

are exposed to different malicious activities. Rather than

advocating a particular subset of features as being the best

subset across all data sets, we suggest running combinations

of a clustering algorithm and feature selection methods to

find the most appropriate subset of features for a particular

system configuration and/or time period.

The presented results enrich the empirical evidence on

malicious cyber activities and can help areas such as au-

tomatic labeling of malicious activities, developing attack

patterns for testing intrusion detection systems, and devel-

oping models for attack injection that can be used for testing

services and systems.

ACKNOWLEDGMENTS

This work is funded in part by the National Science Foun-

dation under the grants CNS-0447715 and CCF-0916284.

The authors thank David Krovich, Jonathan Lynch, J. Alex

Baker, Brandon Miller, and Risto Pantev for their support

with the experimental setup and data collection.

REFERENCES

[1] S. Almotairi, A. Clark, G. Mogay, J. Zimmermann, “Char-
acterization of attackers’ activities in honeypot traffic using
Principal Component Analysis,” IFIP Int’l Conf. Network and
Parallel Computing, 2008, pp. 147-154

[2] M. Bailey, J. Oberheide, J. Andersen, Z. M. Mao, F. Jahanian,
and J. Nazario, “Automated classification and analysis of
Internet malware”, Recent Advances in Intrusion Detection
(RAID), LNCS 4637, 2007, pp. 178-197

[3] U. Bayer, P. M. Comparetti, C. Hlauschek, C. Kruegel and
E. Kirda, “Scalable, behavior-based malware clustering”, Net-
work and Distributed System Security Symp. 2009

[4] M. Cukier, R. Berthier, S. Panjwani and S. Tan, “A statistical
analysis of attack data to separate attacks”, 36th Int’l Conf.
Dependable Systems & Networks (DSN), 2006, pp. 383-392

[5] K. Goseva-Popstojanova, B. Miller, R. Pantev and A. Dimitri-
jevikj, “Empirical analysis of attackers’ activity on multi-tier
Web systems”, 24th IEEE Int’l Conf. Advanced Information
Networking and Applications (AINA), 2010, pp. 781-788

[6] K. Goseva-Popstojanova, R. Pantev, A. Dimitrijevikj and
B. Miller, “Quantification of attackers activities on servers
running Web 2.0 applications”, 9th IEEE Int’l Symp. Network
Computing and Applications (NCA), 2010, pp. 108-116

[7] K. Goseva-Popstojanova, G. Anastasovski and R. Pantev,
“Classification of malicious Web sessions”, 21st International
Conference on Computer Communication Networks (ICCCN
2012), 2012, pp.1-9

[8] K. Goseva-Popstojanova, G. Anastasovski and R. Pantev,
“Using multiclass machine learning methods to classify mali-
cious behaviors aimed at Web systems”, 23rd IEEE Interna-
tional Symposium on Software Reliability Engineering (ISSRE
2012), 2012, pp. 81-90

[9] K. Julisch, “Data mining for intrusion detection – A critical
review” Applications of Data Mining in Computer Security,
Advances in Information Security, D. Barbara and S. Jajodia
(Editors), Springer, 2002, pp. 33-62

[10] H. Kikuchi, M. Terada, T. Pikulkaew, “Automated classifica-
tion of port scans from distributed sensors,” 22nd Int’l Conf.
Advanced Information Networking and Application (AINA),
2008, pp. 771-778

[11] H. Liu and L. Yu, “Toward integrating feature selection
algorithms for classification and clustering”, IEEE Trans.
Knowl. Data Eng, vol.17, no.4, 2005, pp. 491-502

[12] R. Perdisci, W. Lee and N. Feamster, “Behavioral clustering
of HTTP-based malware and signature generation using mali-
cious network traces”, 7th USENIX Symp. Networked Systems
Design and Implementation (NSDI), 2010, pp. 26-26

[13] S. Ray and R. H. Turi, “Determination of number of clusters
in K-means clustering and application in colour image seg-
mentation”, Conference on Advances in Pattern Recognition
and Digital Techniques (ICAPRDT), 1999, pp. 137-143

[14] D. Witten, R. Tibshirani, “A framework for feature selection
in clustering”, J Am Stat Assoc, vol. 105, no. 490, 2010, pp.
713-726

[15] SANS Top Security Risks,
http://www.sans.org/top-cyber-security-risks/summary.php

48

