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Abstract—Web-based systems commonly face unique set of
vulnerabilities and security threats due to their high exposure,
access by browsers, and integration with databases. In this
paper we present empirical analysis of attackers activities
based on data collected by two high-interaction honeypots.
The contributions of our work include: (1) Classification of the
malicious traffic to port scans, vulnerability scans, and attacks;
(2) Conducting experiments which, in addition to attackers
activities aimed at individual components, allowed us to observe
and study vulnerability scans and attacks that span multiple
system components; and (3) Statistical characterization of the
malicious traffic.

Keywords-port and vulnerability scans; attacks; Web-based
systems; empirical analysis of malicious traffic; distribution
fitting

I. INTRODUCTION

Many business and everyday activities are now built
as Web based applications. These applications commonly
face a unique set of vulnerabilities due to the access
by browsers, high exposure, and their integration with
databases. SANS Institute Annual update of the top 20
security risks (http://www.sans.org/top20/) stated that almost
half of the vulnerabilities discovered in 2007 were Web
application vulnerabilities. Even more, Web application vul-
nerabilities were listed as the top server-side vulnerabilities,
with the number of attempted attacks for some of the large
Web hosting farms ranging from hundreds of thousands
to even millions every day. Computer Security Institute
reported that 92% of respondents to a survey experienced
more than ten Web site incidents [7].

Finding attack attempts in a huge amount of monitored
data from a Web server under regular use is a ‘needle in
a haystack’ problem. Therefore, we decided to develop and
deploy several honeypots that appear to be legitimate servers,
but are actually collecting information on attackers’ activity.
In case of some honeypots the goal is to allow adversaries
to easily penetrate the system, so researchers can study
attackers’ behaviors after successful exploitation [2], [11].
Our goal is different – we aim at studying the patterns and
characteristics of attackers activity on typical Web based
systems. Therefore, our experimental setup has the following
unique features:

• We deployed high-interaction honeypots with standard
off-the-shelf operating system and applications that

follow typical security guidelines and do not include
user accounts with nil or weak passwords.

• We built two identical honeypots. One of them was
advertised and thus allowed for attacks based on search
engines. The IP address of the second honeypot, which
served as a control in our analysis, was not advertised
anywhere on the Web. Surprisingly, honeypots from
related work that included Web servers, with exception
of [11], were not advertised.

• Instead of a set of independent applications typical for
the honeypots in the related work, our honeypots have
meaningful functionality and follow a three-tier archi-
tecture consisting of Web server, application server, and
a database. In addition to capturing the network traffic
as in related work, our data collection process also
included application level logging which appeared to
be very useful and allowed for more efficient, in-depth
analysis of attackers activity.

• Web-based systems running on our honeypots allowed
direct attacks to each component, as well as attacks
on one component through the others. For example, a
database server may be attacked directly on its port, or
through a more complex attack by first accessing the
Web and application servers. This aspect of attackers’
activities has not been addressed in the related work.

The main contributions of our work with respect to the
empirical analysis are as follows:

• Part of our analysis consists of descriptive statistics
aimed at classifying attackers’ activity to part scans,
vulnerability scans, and attacks on different components
of the Web based system. In this context, a port scan
is used to check for open or closed ports and for
used or unused services. A vulnerability scan is used
to explore the presence of a vulnerability. Finally, an
attack is defined as an exploit of vulnerabilities by a
human or a program. In addition to vulnerability scans
and attacks to individual components, we observed
and studied vulnerability scans and attacks that span
multiple system components.

• We carried out formal statistical analysis of the attack-
ers activities, including the number of TCP connections
and packets originated from unique IP sources, and
characteristics of malicious TCP connections (i.e., num-
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ber of packets and bytes transferred per connection and
connection duration). Unlike statistical characterization
of (nonmalicious) network traffic which has a long tra-
dition (see for example [8], [9] and references therein),
it appears that there were only very few attempts to
statistically model some aspects of malicious traffic,
such as the distribution of the time between visits of
reappearing IPs in [4], or time between two consecutive
attacks at a given destination IP [10]. The statistical
analysis of the malicious traffic presented in this paper
is a step towards filling this gap.

The paper is organized as follows. Section II presents the
related work, followed by the description of the experimental
set-up given in section III. In-depth analysis of the malicious
TCP traffic is presented in section IV, while the statistical
characterization is given in section V. Section VI concludes
the paper.

II. RELATED WORK

During the last decade several initiatives have been
developed to monitor and collect real world data about
malicious activities on the Internet, including deploying
honeypots. One example is the data collection environment
Leurre.com (http://www.leurrecom.org/) which is based on
low-interaction honeypots that emulate particular operating
systems and services. Analysis of frequently targeted ports,
port sequences, and attack origins, based on data collected
by multiple low-interaction honeypots was presented in [5],
[14]. The analysis presented in [10], based on data collected
from 14 low interaction honeypots, included using linear
regression to model the number of attacks per unit of time
as a function of attacks originating from a single country,
and fitting a mixture of exponential and Pareto distributions
to model the time between two consecutive attacks. Low-
interaction honeypots, however, can be easily fingerprinted
by the attackers. Another limitation is that attackers can only
perform limited activities, without being able to scan for
vulnerabilities or succeed in compromising the server.

In order to provide more realistic experience to the
attackers and gather more information about attacks, high-
interaction honeypots supported by the Honeynet Project
(http://www.honeynet.org/) utilize actual operating systems
and applications. The work presented in [12] was based
on one high-interaction honeypot and two low-interaction
honeypots. The analysis consisted of distribution of attacks
across different ports, attacks origins, and description of two
instances of successful attacks. Similar analysis based on
three high interaction honeypots, each running different op-
erating system, was presented in [6]. [13] explored whether
port scans are precursors to attacks based on network
traffic data collected from two high-interaction honeypots.
The analysis considered only the number of packets per
connection without identifying the specific types of scans
and attacks. The goal of the work presented in [2] was

to analyze the behavior of the attackers who succeeded in
breaking into a high-interaction honeypot which had weak
passwords for multiple SSH user accounts.

A recent work presented in [4] compared the data col-
lected by Leurre.com and two high-interaction honeypots
which ran several unrelated applications. The analysis was
again based only on the network traffic data and included
most often scanned ports, number of attacking hosts, persis-
tence of attackers, and the distribution of the time between
the first packet exchanges from reappearing IPs. Another
recent paper [3], again using only network traffic, compared
the events that targeted similar ports on the same day across
data collected by two high-interaction honeypots and data
from two global repositories. It is also worth mentioning
a recent study based on analysis of firewall logs from over
1600 different networks world wide [15]. This work included
analysis of dominant ports visited by attackers, identification
of the worst offenders, and analysis of the worm related
traffic.

III. EXPERIMENTAL SETUP

In this work we use the experimental setup shown in
Figure 1 which follows the principles of the generation
II high-interaction honeypots developed as a part of the
Honeynet project. An integral part of a honeypot system
is the honeywall which acts as a bridging firewall between
the honeypot and the Internet. Any traffic going to or
from the honeypots passes through the honeywall, which
logs all of the packets using TCPDump and then silently
forwards the traffic without modifying the hop count of the
packets. The honeywall limits the outbound connections an
attacker can initiate from a honeypot to 20 packets per day,
which reduces the risk of malicious activities originated from
a compromised honeypot. The captured network traffic is
stored in a central data repository which ran on a separate
physical host. We also collected information related to the
system activity and various applications running on our
honeypots.

We built two identical honeypots. Each honeypot had its
own IP address and a hostname and ran on a VMWare virtual
machine with a default installation of Ubuntu 7.04. One
of the honeypots was advertised using a technique called
‘transparent linking’ which involves placing a hyperlink
pointing to our honeypot on a regular, public Web page, so
that the advertised honeypot is indexed by search engines

Figure 1. Experimental Setup

782



and Web crawlers, but cannot be accessed directly by
humans. This way we allowed for attacks based on search
engines (using the so called search-based strategy [11])
and thus have a more realistic setup. The second honeypot
was not advertised anywhere on the Web. This unadvertised
honeypot could only be reached by IP-based strategy when
an attacker scans or attacks an IP address without (previ-
ous) involvement of search engines [11]. In our setup the
unadvertised honeypot serves as a control and allows us to
determine the relative contribution of search-based strategies
(which only work on the advertised honeypot) to IP-based
strategies (which work on both honeypts).

Instead of a collection of independent services typical for
related work, each of our honeypots ran a Web based system
with a three-tier architecture (i.e., Web server, an application
server, and database). The particular configuration consisted
of an Apache2 (version 2.2.3-3) used as a Web server.
PHP5 (version 5.2.1) serves the phpMyAdmin application
(version 2.9.1.1), which is the front-end of the MySQL
database (version 5.0.38-0). In addition, OpenSSH server
and client (version 4.3p2-8) were installed to allow for
remote login, as it is typical for many Web systems. The
SSH user account was set up with a strong password. The
MySQL server allowed for a user login via phpMyAdmin
interface. No user accounts in the MySQL server, however,
were directly accessible by remote systems. The software
packages installed on the honeypots are typical installa-
tions of somewhat older versions, each with a number of
known vulnerabilities. Such configurations provided plenty
of opportunities for compromising the honeypots, while still
running applications new enough to be found on Internet.

In addition to the network traffic typically collected by
honeypots, our setup included operating system and applica-
tion level logging, which appeared to be very useful and of-
ten allowed for more efficient analysis of attackers’ activity.
Specifically, Apache, SSH, and MySQL logs were integrated
into the syslogs. We used custom developed scripts to parse
the network traffic capture file and application level logs.

For both the advertised and unadvertised honeypot we
first removed the legitimate nonmalicious traffic which con-
sisted of the system management traffic and legitimate Web
crawlers such as Google and MSNbot. The crawlers were
removed based on the IP addresses listed in iplists.com,
a Web site which publishes lists of crawler’s IP addresses
and other similar sites and based on manual inspection of
the reminding traffic. As expected, the unadvertised Web
server did not receive traffic from legitimate crawlers. We
decided to analyze only the incoming traffic because the
outgoing traffic consisted only of responses to requests sent
to the honeypots. It should be emphasized that neither of
our honeypots was exploited successfully in the four months
duration of the experiment.

IV. WHAT DID ATTACKERS DO?

Our honeypots ran during the period of almost four
months (June 2 to September 28, 2008). As expected the
traffic was dominated by the TCP component. Thus, 91.25%
of unique IP sources and 99.95% of the packets on the ad-
vertised honeypot, that is, 87.41% of unique IP sources and
99.95% of the packets on the unadvertised honeypot were
due to TCP traffic. With respect to TCP which is connection
oriented protocol, following the definition used in the area
of network traffic analysis [9], we define a connection as a
unique tuple {source IP address, source port, destination IP
address, destination port} with a maximum inter-arrival time
between packets of 64 seconds. Advertised and unadvertised
honeypots had 41,359 and 52,017 connections, respectively.

We start with discussing the distribution of the malicious
TCP traffic across different ports based on the results shown
in Table I.

• SSH (port 22) and MySQL (port 3306) traffic dominate
the malicious TCP traffic on each honeypot, contribut-
ing over 99% of the total number of packets.

• HTTP (port 80) was the third most popular port, with
significantly more traffic on the advertised than on the
unadvertised honeypot, which shows that search-based
strategies dominate the malicious visits on port 80.

• In addition to the six ports given in Table I, only three
other ports FTP (21), HTTP ALT (8000) and SSL (443)
were targeted more than once.

Next, we provide a detailed analysis of TCP traffic across
HTTP, MySQL, and SSH protocols. A unique characteristic
of our analysis is that we distinguish between port scans,
vulnerability scans, and attacks. For this purpose, we first
identify the port scans to ports 80, 3306, and 22 by extracting
from the pcap files the TCP connections to each of these
ports that did not end up in the corresponding application
log. Then, we analyze the application logs to identify
vulnerability scans and attacks.

A. HTTP traffic

Only 4.59% of connections to port 80 on the advertised
honeypot and 23.07% of the connections to port 80 on the
unadvertised honeypot were port scans to port 80. Total of
18 unique IP addresses on advertised and 15 on unadver-
tised honeypot scanned port 80, out of which 14 scanned
both honeypots. It should be noted that four attackers on
advertised honeypt and three on unadvertised honeypot (with
two being common) first port scanned 80 before attacking
Apache, PHP, or MySQL servers.

Based on the data extracted from Apache logs, in addition
to the request level traffic, we analyzed the session level
traffic, where a session is defined as a sequence of requests
from the same source IP address to port 80, with a time
between two successive request not exceeding 30 minutes
[8]. For both vulnerability scans and attacks coming through
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Advertised honeypot Unadvertised honeypot
Port Connections Packets Connections Packets
SSH (22) 16,908 40.88% 203,569 64.59% 28,777 55.32% 346,164 77.91%
MySQL (3306) 23,649 57.18% 100,765 31.97% 22,874 43.97% 97,163 21.87%
HTTP (80) 522 1.26% 10,301 3.27% 78 0.15% 463 0.10%
SMTP (25) 53 0.13% 53 0.02% 58 0.11% 58 0.01%
MS SQL (1433) 35 0.08% 74 0.02% 37 0.07% 76 0.02%
HTTP ALT (8080) 25 0.06% 54 0.02% 26 0.05% 52 0.01%
Other 167 0.40% 346 0.11% 166 0.32% 352 0.08%
Total 41,359 100.00% 315,162 100.00% 52,017 100.00% 444,328 100.00%

Table I
BASIC STATISTICS ABOUT TCP PORTS VISITED ON EACH HONEYPOT

the front-end Apache server, we specifically distinguished
between those ending up at Apache and those spanning
multiple components of the Web-based system, which is
unique to our study. The following observations can be made
from the results presented in Table II.

• The advertised honeypot received significantly more
HTTP requests and sessions than the unadvertised
honeypot.

• The number of sessions and requests due to vulnerabil-
ity scans were significantly higher than the number of
sessions and requests due to attacks on both honeypots.

• Unlike the advertised honeypot, vulnerability scans to
multiple components, password cracking and e-mail
harvesting attacks did not reach the unadvertised hon-
eypot.

Specifically, vulnerability scans were distributed among
the following categories:

• DFind is a vulenrability scanning tool utility which
allows an attacker to probe whether a host is vulnerable
to specific exploits or is running certain services.

• OPTIONS is an HTTP method which allows the client
to determine the options and/or requirements associated
with a resource, or the capabilities of a server.

• CONNECT is an HTTP method which in our case was
used by an attacker to establish a connection to another
server using our Web server as a proxy.

• Fingerprinting category subsumes all fingerprinting
done to different components in our setup. Apache
server and phpMyAdmin were fingerprinted by sending
GET requests. Each server returned information about
the corresponding installation. Multiple components
within individual session were fingerprinted only on
the advertised server, in two different ways. In 6.54%
of the malicious sessions, similarly to fingerprinting of
Apache and phpMyAdmin, the agent field was either
missing or identified as a library used in programming
language. In additional 17.29% of sessions, attackers
accessed the phpMyAdmin page with a Mozilla like
or Opera browser and found out the versions of the
phpMyAdmin, Apache, and even the Linux distribution.

Next, we briefly describe different types of attacks ob-

served on our honeypots.

• E-mail harvesting1 was done by four attackers in five
sessions. Each session consisted of 49 requests, re-
peating the following sequence several times: list the
directory structure, access each directory and list the
files looking for e-mail addresses to harvest.

• CVE-2008-3906 is a CRLF injection vulnerability in
Mono 2.0 and earlier. One attacker launched this attack
assuming Mono was running on the server.

• CVE-2006-6374 is related to multiple CRLF injection
vulnerabilities in phpMyAdmin 2.7.0-pl2.

• Password cracking attacks were attempts to access
the MySQL server through port 80 by accessing the
phpMyAdmin application. They were observed only on
the advertised server. In all password cracking sessions
attackers tried at most two single username/password
combinations within each session, which prevents easy
detection based on long sessions.

• MySQL attack was trying to break into the MySQL
server by searching for the ‘main.php’ script in differ-
ent locations on both the advertised and unadvertised
server. This attacker obviously used IP-based strategy
to reach the servers.

The last two type of attacks, Password cracking and
MySQL, which constitute 8.94% of the total HTTP sessions
on the advertised honeypot, are attacks that span multiple
Web system components.

B. MySQL traffic

The MySQL database server, which runs on port 3306,
received a significant portion of the traffic to both honeypots.
The port scans originated from nine unique IP addresses
which visited each honeypot only once. Vulnerability scans
and attacks to specific known vulnerabilities directly to
the MySQL servers were not observed since the servers
were configured to reject the connections to port 3306 from
remote users.

99.9% of the connections and packets that came to port
3306 originated from the same source IP address. This

1Harvesting e-mail addresses from the Internet is the primary way
spammers build their lists.
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Advertised honeypot Unadvertised honeypot
Sessions Requests Session Requests

Vulnerability scans: Total 185 86.44% 443 43.95% 30 88.24% 37 69.81%
DFind 17 7.94% 17 1.69% 16 47.06% 16 30.19%
OPTIONS 13 6.07% 13 1.29% 11 32.35% 11 20.75%
CONNECT 1 0.47% 1 0.10% 1 2.94% 1 1.89%
Fingerprinting

Apache 26 12.15% 31 3.08% 1 2.94% 1 1.89%
PHP/phpMyAdmin 77 35.98% 71 7.04% 1 2.94% 8 15.09%
Multiple components 51 23.83% 310 30.75% 0 0.00% 0 0.00%

Attacks: Total 29 13.56% 565 56.05% 4 11.76% 16 30.19%
E-mail harvesting 5 2.34% 245 24.31% 0 0.00% 0 0.00%
CVE-2008-3906 1 0.47% 14 1.39% 0 0.00% 0 0.00%
CVE-2006-6374 4 1.87% 34 3.37% 3 8.82% 4 7.55%
Password cracking 18 8.41% 260 25.79% 0 0.00% 0 0.00%
MySQL 1 0.47% 12 1.19% 1 2.94% 12 22.64%

Total 214 100% 1008 100% 34 100% 53 100%

Table II
BREAKDOWN OF VULNERABILITY SCANS AND ATTACKS OF THE HTTP APPLICATION LEVEL TRAFFIC

attacker scanned port 80 on both honeypots and then re-
turned 20 days later launching direct attacks on both MySQL
servers. This shows that there may be a temporal depen-
dence, often long time apart, between scans and attacks. The
attack on each server lasted over two hours during which
the attacker generated 23,663 connections to the advertised
honeypot and 22,858 connections to the unadvertised hon-
eypot. In these connections the attacker used almost every
source port between 1025 and 5000, which suggests a use
of an automated script. We suspect that these attacks were
password cracking attempts, although we cannot be certain
since MySQL servers did not allow direct access through
port 3306 and thus no login information could be exchanged.

Note that MySQL server was fingerprinted and attacked
through port 80, as a part of the multiple components
vulnerability scans and attacks (see Table II).

C. SSH traffic

In case of the SSH protocol, the number of ports scans
was also small; there were 8 port scans on the advertised and
5 port scans on the unadvertised server, which contributed
respectively to only 0.05% and 0.02% of the total number
of TCP connections to port 22. One attacker on each server
first completed port scans to port 22, and then attempted a
password cracking attacks.

The summary of the vulnerability scans and attack anal-
ysis is presented in Table III. Unlike the malicious HTTP
traffic, the SSH traffic was dominated by attacks. On the ad-
vertised honeypot 23 unique IP sources first ran a vulnerabil-
ity scan consisting of only one connection with 6-9 packets
and than started a password cracking attack consisting of
many connections, each with typically 10-15 packets. Very
similar behavior was noticed on the unadvertised honeypot.

In case of almost all password cracking attacks, when an
attempt to guess a pair of username and password failed,
the attacker broke down the connection and tried again in a
new connection with a different source port, most likely to

avoid detection. The longest sequences lasted 4 hours and
51 minutes on the advertised honeypot, and 10 hours and 4
minutes on the unadvertised honeypot.

V. STATISTICAL CHARACTERIZATION

Based on the descriptive statistical analysis presented in
section IV and characteristics of the nonmalicious traffic
we suspected that heavy-tailed distributions may be a good
model for some characteristics of the malicious traffic.

The simplest heavy-tailed distribution is the classical
Pareto distribution with a shape parameter α and location
parameter b which has the cumulative distribution function
(CDF) F (x) = P [X ≤ x] = 1− (b/x)α. In practical terms,
a random variable that follows a heavy-tailed distribution
can give rise to extremely large values with non-negligible
probability.

To estimate the tail index α of a Pareto distribution we
employed the log-log complementary distribution (LLCD)
plots and Hill estimator [8]. LLCD plot is a plot of the
complementary cumulative distribution function P [X >
x] = 1 − F (x) on log-log axes. Linear behavior for the
upper tail is an evidence of a heavy-tailed distribution. In
that case, we select value for x from the LLCD plot above
which the plot appears to be linear. Then, we estimate the
slope, which is equal to −α, using least-square regression.

Hill estimator is an alternative, more robust approach
for estimating the tail index α of a semiparametric Pareto
type model. It estimates α as a function of the k largest
elements in the data set. Thus, for each value of k we obtain
an estimate of the tail index parameter αk,n. When these
estimates are plotted as a function of k, if the estimator
stabilizes to a constant value this provides an estimate of α.
The absence of such straight line behavior is an indication
that the data are not consistent with Pareto-like distribution.

Our analysis included goodness-of-fit-testing for Pareto
distribution, and in cases when the test failed fitting alterna-
tive distribution(s) into the data sample.
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Advertised honeypot Unadvertised honeypot
Unique IPs Connections Packets Unique IPs Connections Packets

Vulnerability scans 7 8 37 8 10 48
Vulner. scans followed by password attacks 23 16,725 201,467 21 28,592 344,047
Password cracking attacks 1 171 2.053 1 173 2,060
Total 31 16,904 203,557 30 28,775 346,155

Table III
BREAKDOWN OF THE SSH VULNERABILITY SCANS AND ATTACKS

A. Connections and packets per unique IP

The fact that 97% of all TCP connections to the advertised
honeypot were generated by only 3.8% of the unique IP
sources indicates that a heavy-tailed distribution may be
a good fit. Similar observations were made in [10], [15],
without actually performing the distribution fitting.

From the Hill plot of the connections per unique IP ad-
dress shown in Figure 2, we observe that α is approximately
0.4, which is consistent with the estimate from the LLCD
plot (see Figure 3). The high value of the coefficient of
determination R2 = 0.91 indicates a good fit between the
empirical and mathematical distributions.

Hill estimator and LLCD plot also gave consistent es-
timates for the heavy-tailed index α for the number of
packets on the advertised honeypot (≈ 0.4), and number
of connections (≈ 0.4) and packets (≈ 0.3) on the un-
advertised honeypot. In all cases these random variables
follow a heavy-tailed distributions with both infinite mean
and variance. In practical terms, this means that extremely
large number of connections (or packets) can originate from
a small number of attackers with non-negligible probability.
These events from the tail of the distribution, although rare,
often may have the mass of the probability distribution
function, that is, generate the majority of the connections (or
packets) to the server. An example of this is the malicious
user who attacked the MySQL server directly on port 3306
and produced 99.9% of the MySQL connections and packets
on both honeypots (see section IV-B).

B. Attributes of TCP connections

In this subsection we present statistical analysis of the
TCP connection attributes: connection duration, number of
packets per connection, and bytes transferred per connection,
which to the best of our knowledge has not been done in
the past for malicious TCP traffic.

The 3D scatter plot of all TCP connections is shown in
Figure 4. We explored the correlation coefficients between
the pairs of connection attributes. To measure the extent
of the correlation, we use the Spearman’s rank correlation
coefficient rs since the connection attributes, as shown later
in this section, are not normally distributed. In addition,
Spearman’s correlation coefficient is rather robust to outliers,
which may consist up to 20% of the data sample. The
results show that Number of packets and Bytes transferred
per TCP connection have the highest positive correlation

rs = 0.98 among the pairs of attributes, which is statistically
significant at significance level of 0.05. Connection duration
and Number of packets and Connection duration and Bytes
transferred are also positively correlated with rs = 0.84 and
rs = 0.83, respectively. The main reason for this positive
correlation is the high number of points in the body of
the distributions, that are closer to the origin in Figure 4.
However, we also observe some long TCP connections,
mainly due to the MySQL traffic, which have very few
packets and bytes transferred. These connections are less
than 1% and therefore do not affect the Spearman correlation
coefficient.

Table IV shows the minimum, median, and maximum
values of each connection attribute, for TCP traffic to all
ports, and TCP traffic to port 80 for the advertised honeypot.
Since our goal was to study whether these attributes follow
a heavy-tailed distributions, we again used LLCD plot and
Hill estimator to estimate the heavy-tail index α. In addition,
we used Anderson-Darling (A2) test [1] to test the null
hypothesis that an attribute fits a specific distribution. This
test is generally much more powerful than either of better
known Kolmogorov-Smirnov or χ2 tests, particularly for
detecting deviations in the tail of a distribution.

As it can be seen from Table IV, the Number of packets
and Bytes transferred per TCP connection follow a Pareto
distribution, both with heavy-tailed index 1 < α < 2, that is,
have a finite mean and infinite variance. It is interesting to
explore what are the points in the tails of these distribution.
Thus, 77.50% of the 80 connections in the tail of the Number
of packets per TCP connection were attacks, including
38.75% e-mail harvesting and 35.00% password cracking
attacks. The remaining 22.50% were due to vulnerability
scans to multiple components which accessed the Web
server with a Mozilla like or Opera browser. Out of the
250 connections in the tail of the Bytes transferred per
connection, 62.00% were attacks (including 15.60% e-mail
harvesting and 26.40% password cracking attacks through
port 80 shown in Table II).

On the other side, the hypotheses that connection duration
can be modeled with either Pareto distribution or log-
normal distribution failed. Instead, log-logistic distribution
with CDF F (x) = [1 + [β/(x − γ)]α]−1 and parameter
values given in Table IV is a good fit. Note that log-logistic
distribution is similar in shape to the log-normal distribution,
but has heavier tail. Unlike the Number of packets and
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Figure 4. Malicious TCP traffic

TCP all ports TCP port 80
# of packets Bytes transferred Duration # of packets Bytes transferred Duration

min/median/max 1/4/325 60B/242B/23.7KB 0/1/144 sec 1/14/325 66B/1.3KB/23.7KB 0/2/39 sec
Distribution Pareto Pareto Log-logistic Pareto Pareto Log-logistic
Parameters α = 1.2 α = 1.5 α = 2.2092 α = 1.1 α = 1.3 α = 1.6118

b = 24 b = 1546 β = 8.2387 b = 24 b = 1443 β = 3.1898
γ = 49.321 γ = 14.963

Table IV
DISTRIBUTION FUNCTIONS OF TCP CONNECTION ATTRIBUTES FOR THE ADVERTISED HONEYPOT

Bytes Transferred per TCP connection, the connections with
the longest durations (approximately 1–2.4 minutes) were
to destination port 3306 (i.e., password cracking attacks
directly to the MySQL server).

The right part of Table IV shows the results of the same
analysis, this time for the TCP connections to port 80 only.
Perhaps the most interesting observation is that the heavy-
tailness of the Number of packets and Bytes transferred per
TCP connection are actually due to the TCP traffic to port
80 even though only 522 out of 41,359 connections were
to port 80. This formally confirms the previous analysis
which showed that almost all points in the tails of these
two distributions were due to attacks or vulnerability scans
to port 80 (i.e., HTTP traffic shown in Table II).

Figure 4 clearly explains the reasons behind this behavior.
It is obvious that connections with large number of packets
and bytes transferred all belong to the malicious traffic to
port 80 (annotated by ’o’). MySQL traffic (annotated by ’x’)
had connections with variable duration, but very few packets
and bytes transferred. Even more, all SSH connections were
close to the origin in the 3D plot, with small duration,
number of packets, and bytes transferred. (SSH connections
are annotated with ’+’, but cannot be seen in Figure 4
because they overlap with HTTP, MySQL and other TCP
connections close to the origin.)

The analysis of the TCP connection attributes for the
unadvertised server is not as interesting, mainly due to the
fact that this server has seen significantly less HTTP traffic.

Thus, neither Number of packets nor Bytes transferred per
TCP connection of the unadvertised server were heavy-
tailed. Actually, these are not even skewed distribution which
is obvious from the min/median/max values (1/12/14 packets
and 60/1320/2640 bytes transferred). The most similar be-
havior to the advertised server has the Connection duration
attribute, with min/median/max = 0/3/124 seconds, which is
due to the fact that the longest TCP connections were due
to traffic to port 3306 (MySQL). This, in addition to the
results in section IV based on search-based strategies, clearly
show that honypots deploying Web-based systems have to
be advertised to reflect the realistic attackers activities.

VI. CONCLUSION

In this paper we presented an empirical analysis of
attackers activity on typical multi-tier Web servers based
on data collected by two high-interaction honeypots. We
believe that it is of utmost importance to deploy honeypots
that run typical configurations and fully functional systems
to allow for realistic studies of attackers’ activity. Although
this approach led to more complex analysis, it allowed us
to observe phenomena that would not have surfaced in a
collection of independently running applications typically
deployed on honeypots in related work. As an illustration we
point out the vulnerability scans and attacks which spanned
multiple components, such as fingerprinting Apache and
phpMyAdmin in a single session (24% of HTTP sessions)
and password cracking attacks to MySQL server through
Apache and phpMyAdmin (9% of HTTP sessions). Our
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work also illustrates that Web-based honeypots have to
be advertised to enable for search-based strategy, which
appeared to be used for majority of vulnerability scans and
attacks on port 80. Surprisingly, most of the honeypots from
related work that included Web servers were not advertised.

An interesting observation is that the relative contributions
of vulnerability scans and attacks are different for different
protocols. Thus, while vulnerability scans tended to out-
number attacks for HTTP, attacks dominated the MySQL
and SSH malicious traffic. Furthermore, password cracking
attacks were prevalent, with some instances of attacks based
on applications’ vulnerabilities. The consequence of this
observation is that using weak passwords may still be the
weakest link in systems security, leading to many systems
being compromised.

The statistical analysis showed that the number of connec-
tions and packets per unique attacker follow a heavy-tailed
distribution with a small number of attackers submitting
most of the malicious traffic. As illustrated by the TCP
traffic directed to the MySQL server these heavy hitters
drastically change the profile of the traffic, and although rare,
can actually contribute to the majority of the connections and
packets.

The analysis of the TCP connection attributes of the
advertised server showed that the Number of packets and
Bytes transferred per connection follow Pareto distribution
with finite mean and infinite variance. This practically means
that connections with extremely large number of packets
and/or bytes transferred can happen with non-negligible
probability. Perhaps the most interesting observation in this
respect is that the heavy-tailness of these distributions is due
to the HTTP component of the TCP traffic. On the other side,
the distribution of the TCP connection duration, although
skewed, is not heavy-tailed. The longest connections were
not due to HTTP traffic; rather they belonged to the direct
attacks to the MySQL server.

Potentially, there is a significant benefit from statistical
modeling of the malicious traffic. For example, these models
can be used for generating realistic malicious traffic for
verification and validation of systems’ security or to help
the intrusion detection process. Our future work includes
deployment of honeypots with different technologies and
further statistical analysis of the malicious traffic.
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