
Architectural Level Risk Assessment Tool
Based on UML Specifications 1

T.Wang, A. Hassan, A. Guedem, W. Abdelmoez,
 K. Goseva-Popstojanova, H. Ammar

Lane Department of Computer Science and Electrical Engineering,
West Virginia University, Morgantown, WV26506-6109

{twang, hassan, guedem, rabie, katerina, ammar}@csee.wvu.edu

1 This work is funded in part by grants to West Virginia University Research Corp. from the National Science Foundation Information Technology Research
(ITR) Program grant number CCR-0082574, and from the NASA Office of Safety and Mission Assurance (OSMA) Software Assurance Research Program
(SARP) managed through the NASA Independent Verification and Validation (IV&V) Facility, Fairmont, West Virginia.

Abstract

Recent evidences indicate that most faults in software
systems are found in only a few of a system’s components
[1]. The early identification of these components allows
an organization to focus on defect detection activities on
high risk components, for example by optimally allocating
testing resources [2], or redesigning components that are
likely to cause field failures. This paper presents a
prototype tool called Architecture-level Risk Assessment
Tool (ARAT) based on the risk assessment methodology
presented in [3]. The ARAT provides risk assessment
based on measures obtained from Unified Modeling
Language (UML) artifacts [4]. This tool can be used in
the design phase of the software development process. It
estimates dynamic metrics [5] and automatically analyzes
the quality of the architecture to produce architectural-
level software risk assessment [3].

1. Introduction
 There is an increasing need for a tool that can be used
to track the quality of software products during the
software design phase. Some of the proposed tools get
static metrics from source code [6], but source code
metrics are affected by the programming language and
programming style. When calculating the metrics from
architectural descriptions such as UML, we achieve
independency of languages and human factors [7]. Other
metrics tools [8] only produce static metrics to describe
the model with a limited capability to accurately represent
the dynamic behavior of the architecture. We developed a
tool for risk assessment at the architectural level, ARAT,
that produces the dynamic metrics from UML diagrams.
Using the methodology proposed in [3], ARAT estimates
risk factor of a software system in hieratical fashion. This

paper is organized as follow. Section 2 presents an overview
of the tool structure. Section 3 provides some examples of
the outputs from the tool. Finally, Section 4 concludes the
paper.

2. Structure of the tool
The UML use case model of the tool is shown in Figure

1. The tool consists of six main use cases as follows.

Estimate dynamic metrics
Based on cyclomatic complexity [10], the ARAT

computes the dynamic complexity [5] of the UML state
charts as a dynamic complexity metric. It also computes
dynamic coupling between components based on the
message exchange between components in the sequence
diagram [5].

Figure 1. Use case diagram of the ARAT tool

Collect model information
Using a commercial tool Rose Real Time [9] as a front

end for our tool we transform the visual UML model to a
textual format data. We use Rose Script to transform UML
diagrams to textual data.

Estimate component / connector risk factor

 Based on the definition of risk [11], we calculate risk
factors of each component (connector) in the architecture as

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

a product of the dynamic complexity (coupling) and the
severity level of a failure. The severity level of a failure of
component/connector is estimated using FMEA [12].

Estimate scenario risk factor
 The tool automatically constructs the Markov chain
that represents the control flow graph of the active
components and connectors in a specific scenario based
on the textual representation of the UML sequence
diagrams. The scenario risk factor for each severity level
is computed using this Markov chain and the estimated
values of component/connector risk factors [3].

Estimate use case and overall system risk factors.
The risk factors of each scenario in a specific use

case are aggregated to calculate the use case risk factor
[3]. Using the risk factor for each use case, the tool
calculates the overall system risk factor [3].

3. Illustration of the tool outputs
Due to a space limitation we only illustrate some of

the output results provided by the ARAT. These results
are for the pacemaker [12] which is an implanted device
that assists cardiac functions of the heart when the
underlying pathologies make the intrinsic heartbeats low.
Pacemaker is an example of a critical real-time
application because the failure of the software operation
of the device can cause loss of a patient’s life. Figure 3
presents the identification of the critical components in
the pacemaker example provided by ARAT. Thus, the
components that have high risk factors with catastrophic
severity in multiple scenarios are the most critical
components that would require more careful development
and/or more testing effort.

Figure 3. Identification of critical components
The distribution of the overall system risk factor

among severity classes is presented in Figure 4. We see
that the overall system risk factor is mostly distributed
among marginal and catastrophic severity classes, which
confirms that this is a high risk system.

4. Conclusion and future work
 In this paper, we present ARAT, a tool for
architectural level risk assessment based on UML
specifications. The tool enables early assessment of risk
and hence makes it possible for the analyst to identify
critical components/connectors and scenarios/use cases
early in the software lifecycle. The output of the tool can

guide the allocation of development and testing effort based
on critical use cases, scenarios, components, and connectors.
Our future plan is to further extend the tool so that it
computes static metrics, as well as to collect, store and
analyze data which is used for interpretation of quality
metrics, even though the result maybe not as sensitive and
complete as dynamic metrics for early risk assessment. In
addition, we plan to integrate the hazard analysis
methodology into our tool to allow automatic and precise
estimation of the severity level for each architectural
element.

Figure 4. Distribution of the overall system risk factor

5. References
[1] N. Fenton, N. Ohlsson, “Quantitative Analysis of Faults and
Failures in a Complex Software System”, IEEE Trans. Software
Engineering, Vol. 26, No. 8, pp. 797 -814, 2000.
[2] W. Harrison, “Using Software Metrics to Allocate Testing
Resources”, Journal of Management Information Systems, Vol. 4,
No. 4, 1988, pp. 93-105.
[3] K. Goseva-Popstojanova , A. Hassan, A. Guedem, W.
Abdelmoez, D. Nassar, H. Ammar, A. Mili, “Architectural-Level
Risk Analysis using UML”, submitted for publication.
[4] J. Rumbaugh, I. Jacobson, G. Booach, The Unified Modeling
Language Reference Manual, Addison-Wesley, 1999.
[5] A. Hassan, W. M. Abdelmoez, R. M. Elnaggar, H. H. Ammar,
“An Approach to Measure the Quality of Software Designs from
UML Specifications,” 7th International Conference Information
Systems, Analysis and Synthesis, 2001, Vol.IV, pp.559-564.
[6] M. Stojanovic, K. El-Emam, “ES1: A tool for collecting object-
oriented design metrics”, NRC/ERB-1087, May 2001.
[7] M. Hitz, K. Neuhold, “A Framework for Product Analysis”,
OOPSLA 1998 Workshop on Model Engineering, Methods and
Tools Interaction with CDIF, 1998.
[8] L. Nenonen, J. Gustafsson, J. Paakki A. Inkeri Verkamo,
“Measuring object - oriented software architectures from UML
diagrams”, Proc. 4th International ECOOP Workshop on
Quantitative Approaches in Object-Oriented Software
Engineering, 2000, pp. 87-100.
[9] UML Language Resource Center: Unified Modeling anguage,
Standard Software Notation, http://www.rational.com.
[10] T. McCabe, “A Complexity Metrics”, IEEE Trans. Software
Engineering, Vol.2, No.4, 1976, pp 308-320.
[11] H. Ammar, T. Nikzadeh, J. Dugan, “A Methodology for Risk
Assessment of Functional Specification of Software Systems
Using Coherent Petri Nets”, Proc. 4th Inernationall Software
Metrics Symposium, 1997, pp. 108-117.
[12] S. Yacoub, H. Ammar, “A Methodology for Architectural-
Level Reliability Risk Analysis,” IEEE Trans. Software
Engineering, Vol. 28, No. 6, 2002, pp.529-547.

���������	
����
�����
����
����
�����������������������
�������	�������	�����������
������������� !�"���#�����������

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

