A New Markov Model of N Version Programming Systems

Katerina D. Goseva—Popstojanova
Aksenti L. Grnarov

Faculty of Electrical Engineering, University of Skopje
P.0.Box 574, Karpos bb, Skopje 91000, Yugoslavia

Abstrac‘_c

The paper presents reliability performance modeling of
N Version Programming. The study is based on con-
tinuous time Markov model for the general case of N
versions. Derived mathematical relations between re-
liability performances (as a function of version ezecu-
tion time) and modeling parameters enable us to gain
a great deal of quantitative results. The obtained re-
sults can be used to guide a design of actual systems.
Topic: Reliability modeling

Domain Area: Software fault — tolerant, NVP

Language/Tool: IBM PC Turbo Pascal

Status: Research

Effort: 1 person - year

Impact: The assessment of the NVP reli-

ability

1 Introduction

Computing systems are used in increasingly complex
situations, hence system complexity itself becomes one
of the major barriers to achieve required high level of
reliability. A great part of this complexity is in the
software so it is a critical part of any high reliable
computing system. Despite of fault prevention tech-
niques (precise specifications, design methodologies,
structured programming techniques, proving, testing,
etc.) which may have been used, a complex software
system will always contain design faults when it is put
into operation. Therefore, the importance of software
fault — tolerance techniques can only increase.

N Version Programming [2], [3] has been proposed as
a method of providing fault — tolerance in software.
The approach (so called design diversity) requires in-
dependent design of multiple (N > 2) versions of a
piece of software for the same application which sat-
isfy a common specification. These versions are exe-
cuted in parallel in the same application environment:
each of them receives identical inputs and each pro-
duces its version of the required outputs. The outputs

THO0336-5/91/0000/0210$01.00 © 1991 IEEE

are collected by a voter and results of the majority are
assumed to be the correct output used by the system.
The “bad” versions are recovered by updating them
with data provided by a majority vote and processing
of all N versions can be resumed.

The use of design diversity introduces “similarity” con-
siderations about results and errors. A decision algo-
rithm has to determine the decision result from a set of
similar, but not identical, results. Similar results are
defined as two or more results (correct or erroneous)
that are within the range of variation (inexact voting).
If there is an agreement of the majority correct out-
puts, the system is entered in the state of successful
execution. Similar, but not identical, errors can cause
the decision algorithm to produce an erroneous deci-
sion result. This means that invalid results are passed
to the next segment without warning or attempt for
global recovery. In that case, the system is entered in
the state of undetected failure which may have catas-
trophic consequences. In the detected failure state a
high level (global) recovery is initiated (if there is one)
since no acceptable result has been produced because
of the majority of distinct erronecus results. We as-
sume that the N Version Programming is not used in
situations that can have multiple distinct correct out-
puts (because the NVP does not recognize an output
as correct if it occurs more than once). A flowchart
of N Version Programming execution is presented in
Fig.1.

Execute N
versions

majority
agrees

no agree-
. ment

Detected
failure

Consensus
correct

~

yes .- . no

~

Undetected
failure

Successful
execution

Fig.1. Flowchart of NVP execution

2 N Version Programming Reliability
Model

According to widely accepted definition, reliability is
the probability of fault-free operation of a system for a
specified time in a specified environment. Mathemati-
cal modeling is the major approach to the assessment
of the reliability in fault — tolerant computer systems.
There have been a number of reliability models for N
Version Programming system. In [6] a queueing model
for the assessment of the average segment processing
time of software fault tolerant systems is presented.
The reliability model of the N Version Programming
system is based on correlated errors and the time is not
incorporated in the expression of the reliability. Also,
a N Version Programming reliability model based on
probability axioms is proposed in [5]. In the case of
the independent model, it is the well known reliability
of a 2-out-of-n system. The proposed dependent N
Version Programming reliability model can be used to
predict reliability only if the joint probabilities could
be found. These models do not incorporate a time
parameter. In [11] the reliability of the NVP system
(three versions and a decider) is modeled asymptoti-
cally by a homogeneous Poisson process. An equivalent
failure rate is derived using the departure rate and the
probability of failure obtained from the embedded dis-
crete Markov chain.

In the reliability modeling of fault — tolerant computer
systems, we are interested in whether the system is
in an operational or in a failure state. In our model
we distinguish two failure states: undetected and de-
tected failure. The N Version Programming failure
probabilities and the reliability are modeled by means
of mathematical relations on well-defined parameters
(measured or derived) which characterize a configura-
tion of the system, its various failure mechanisms and
its ability to recover from failures.

We consider the execution of the N Version Program-
ming system because software faults can manifest only
when it is executed. During the execution no error
compensation may take place. We made an assump-
tion that the number of failures, in a given time period,
follows a Poisson distribution (i.e. the failure intervals
follow an exponential distribution) with a failure rate
A as a parameter.

This assumption guarantees that a finite state con-
tinuous time Markov chain can be used for reliability
modeling of the N version system.

During the operational phase the failure rate X is con-
stant and it can be determinated using the maximum

211

likelihood estimation applied to failure data [7]. Ex-
periments in multiversion programming [3], [4] indi-
cate a surprisingly high number of coincident failures
(on the same input data) in the set of independently
developed programs. In many cases, similar errors are
caused by related faults, but independent faults often
produce similar errors {3]. However, from the oper-
ational viewpoint, it does not matter why programs
fail on the same input, it merely matters that they do.
Therefore, we define ¢ as the fraction of version fail-
ures that are similar (0 < ¢ < 1). Hence, each version
failure rate A is the sum of the distinct (1 — ¢)A and
the similar failure rate cA.

Fig. 2 presents the proposed Markov reliability model
for the N Version Programming system. A state is
defined as a vector (7,j) where:

¢ 1s the number of versions with similar failures
j 1s the number of versions with distinct failures

(0<ij<n).

The states of this Markov chain are either transient
(i+J < n) or absorbing (i + j = n) and the total
number of states is 1+ n(n+ 1)/2.

The Chapman-Kolmogorov equations are not easy to
handle for the general case of n versions. Using theory
of Lumpable Markov chains we lump equivalent states
and obtain a pure death process presented in Fig. 3,
whose state probabilities Pr(t) are given by:

The state probabilities P;;(t) of the chain presented in
Fig. 2 are now easily evaluated as:

Py(t) = <i+§~l> ¢THL = e Pa_yi(t),

forl<i<n, 0<j<n,

Poj(t) = (1 —c) ™! P,_j(t), for0<j<nm,

Poo(t) = P,(t).

The operational states of the N version system (ac-
cording to Fig. 1) are characterized by a collection of
states, each corresponding to the following operational
configurations:

)

Fig.2. Continuous time Markov model of NVP System

nA (n-1A 2) A

Fig.3. Equivalent Markov chain

successful execution at least m correct outputs Product form solutions of these probabilities are:
agree n
P.(t) = Pi(t
undetected failure at least m erroneous out- w(1) f__:] ®
puts agree "
P n i1 —iA
detected failure at least m erroneous out- = Z(—l)' m (,) (m _ 1) et
puts disagree i=m
n n—i
where majority m is defined as m = [(n +1)/2]. Py(t) = Z Z Pij(t)
We also define the following associated probabilities to i=m j=0
these states: Po(t) = 1= Py(t) — Ps(t)
P,(t) = Prob (successful execution state is entered) .
P;(t) = Prob (undetected failure state is entered) If we denote the probability c,)f s.u.cces.sfu} global recov-
P,(t) = Prob (detected failure state is entered) ery as 7, than the system reliability is given by:
where t is the execution time. Rt)=1-[P®)+ (1~)P (1))

212

,/"'—‘— —————————————— -
-~ "
w C=1," .~
X 08 e
o // s7c08 e
W= 7’/ T
Su gg S/ _~"C=05
28 v
Ew "o,
59 04 /e
25 e)
:Cz’g 0.24 I'///
ad ¥ ;;/
4
7.
0 1 2 N 3 4 5
(a)
1
08
lﬁ =02
w -
SZ o6
> o
':O
3904
25 e C=05
ok /" “““““““““““““
Euw o2 /
/ C=08
T
0 1 2 M 3 4 5

Fig. 4. Undetected (a) and detected (b) failure
probability of 3VP

\:-\ €=02
~
081 \\ >«
\ \\‘
\ Rt LTS . B
E 0.6 \\\
= \\
[se}
< 044 S~ 105
@ | 0\ @ TUme—J0s §
[+
02
r=0
0 1 2 M 3 3 5

Fig. 5. Reliability of 3VP

3 Reliability Evaluation

Derived time dependent failure probabilities enable us
to gain a great deal of quantitative results about the
influence of the execution time and various parame-
ters on the system performances. As expected, failure
probabilities increase with version failure rate A and
the execution time ¢. This confirms a general system

213

w >
v =
352
£2
z5
—w
e
w
>
EE
-
Wi
x o
S
10 /’ . C=02
8 / /
>
HE A //
< /=t
&< S
i Y% /=05
=wié 7 /
w / 7/
ZY¥ 2 ayad
o
- -
W _-—
xo 0 r=0
-2
0 1 2 M 3 4 5
(b)

Fig. 6. Relative increase of the reliability

reliability result i.e. the use of more reliable compo-
nents leads to more reliable fault ~ tolerant system.

Fig. 4 (a) and 4 (b) present the probabilities of un-
detected and detected failure of the 3 Version Pro-
gramming as a function of At (for different values of
the fraction of similar failures ¢). In both cases, the
undetected and the detected failure probabilities are
extremely sensitive to the variation of ¢. When ¢ in-
creases, the undetected failure probability increases
and the detected failure probability decreases.

A comparison of the 3VP system reliability for differ-
ent values of the probability of successful global recov-
ery r is presente in Fig. 5. It can be seen that the
reliability of N Version Programming increases with
the parameter 7. In the case of r = 0, the reliability is
minimal and it does not depend on ¢. The best relia-
bility is obtained in the case of an ideal global recovery
(r=1).

As indicated in Fig. 6 (a and b), the relative increase
of the reliability that results from the use of the 3VP
(compared to a nonfault — tolerant system) strongly
depends on ¢ and r. In the cases when r =0 (for

1
c=02
& 08
2
-
<
“ 06
ar
53
L'A_JE 04 1 n=3
Lo
=g =}
Z& 024 L. T -
L T T T T
L= . r
0 1 2 M 3 4 5
(a)
1
______ n=h C=02
//’ —— T
w 08 ST s
5 s
< 08 / !/ n=3
v /!
a5 1/
WH0eq 1/
5% Y/
- O
@& o024/
/
/
0 1 2 M3 4 5

(b)

Fig. 7. Undetected (a) and detected (b) failure
probability for different number of versions

any ¢) and ¢ = 1 (for any), the reliability of the 3VP
is equal to the probability of successful execution Py(t)
and provides better performance than a single version
only for At < 0.7. It means that if similar failures
dominate (¢ &~ 1) no improvement can be achieved
and this confirms the results obtained in (3], 4], [11].

Fig. 7 presents the probability of undetected (a) and
detected failure (b) for different number of versions n,
as a function of At. It can be seen that the probability
of undetected failure is smaller and the probability of
detected failure is greater for 2k than (2k 4 1) Version
Programming (because of the same majority). Hence,
if we are interested only in the undetected failure prob-
ability it is better to use an even number of versions.
The same conclusion is obtained in [11] for the special
case of two and three versions in spite of all differences
of model assumptions.

Fig. 8 compares total failure probability for different
number of versions n and ¢ = 0.2, 7 = 0 (a) i.e. ¢ =0.2,
r=0.5 (b). It can be seen that if we are interested in
total failure probability it is better to use odd number

214

s c-02
08 //// r=0
/L
W /.
0.6 1 /
o2z /
<3 /
w o= /
Q04 /
] .
e al:. / 4
- J 4
02 /// n=3
(4 am——e Nzh
{/ ——e——nz5
0 1 At 2 3
(a)
1
C=02
r=05
08 1
g a4 00000 .]
3 : /"::’ ———————
23 Z
o Q04 2
<@ A
= O 4
28 024 S
/e n=3
y/ =—— n=h
A —-— n=5
0 1 A 2 3
(b)
Fig. 8. Total failure probability for different n
1 Epr—re—
-
o /”’
s
08 L c=08
_/'// r=05
W 084 v
g, ¢ /
JF
£3 04
.Jg ‘ 4
2 /
58 4
~a 02 '/ n=3
./ ——— 0=l
/7’ —_—— =
0 1 At 2 3

Fig. 9. Total failure probability for different number
of versions

of versions. The reliability improvement for greater r
is pointed out in Fig. 5. One can notice that for r =1
(ideal global recovery) the total failure probability is
equal to the undetected failure probability (analyzed
above).

If similar failures dominate significantly over distinct
failures (¢ > 0.8) no improvement is obtained using
higher number of versions (Fig. 9).

4 Conclusion

The paper presents a new Markov model of the N Ver-
sion Programming systems. The main goal in our work
was to develop reliability modeling as a practical easy—
to—use analysis tool for software fault — tolerant de-
signer.

Experiments in multiversion programming have shown
that, in spite of the independent version design, there
are coincident failures (on the same input data) in two
or more versions. Therefore, in our model, we distin-
guish two types of failures: similar and distinct. Con-
sequently, there are three operational states: successful
execution, detected and undetected failure.

We use continuous time Markov chain for reliability
modeling of N Version Programming for the general
case of n versions. The power and simplicity of the
used Markov approach led to a more usable model than
existing reliability models on N version systems and
it allows incorporation of version execution time into
the analysis. The failure probabilities i.e. the reliabil-
ity are dependent not only on the system parameters
but also on the period of version execution time. The
established mathematical relations enable us to make
dynamic analysis and to gain a great deal of quanti-
tative results from the model. The presented model
of the N Version Programming could be used both to
gain a deeper understanding of system behavior and
to guide a design of actual systems.

Finally, it is worth noting that we focus our future
work on the consideration of the faults in the decider
and the specific fault treatment mechanisms in our
model.

References

[1] T.Anderson, P.A .Lee, "FAULT TOLERANCE -
Principles and Practice”, Prentice/Hall Interna-
tional, 1981.

[2] Liming Chen, ”Improving Software Reliability by

215

(5

(6]

(8]

9]

(10]

(11]

N Version Programming”, Ph.D. Thesis, Depart-
ment of Computer Science, UCLA, Los Angeles,
1978.

A .Avizienis, J Kelly, ”Fault Tolerance by Design
Diversity: Concepts and Experiments”, IEEE
Computers, pp. 67 - 80, August 1984.

J.Knight, N.Leveson, ” An Experimental Evalua-
tion of the Assumption of Independence in Mul-
tiversion Programming”, IEEE Transactions of
Software Engineering, Vol.SE-12, No.1, pp. 96 -
109, 1986.

R.Scott, J.Gault, D.McAllister, ”Fault Tolerant
Software Reliability Modeling”, IEEE Transac-
tions of Software Engineering, Vol.SE-13, No.5,
pp. 582 - 592, May 1987.

A.Grnarov, J.Arlat, A.Avizienis, ”On the Perfor-
mance of Software Fault — Tolerance Strategies”,
in Proc. FTCS-10, Kyoto, Japan, Oct. 1980, pp.
251 - 253.

J.D.Musa, A .lannino, K.Okumoto, ”Software Re-
liability, Measurement, Prediction, Application”
Mc Graw-Hill, 1987.

M .Trachtenberg, ”The Linear Software Reliability
Model and Uniform Testing”, IEEE Transactions
on Reliability, Vol.R-34, No.1, pp. 8 - 16, April
1985.

B. Gnedenko, The Theory of Probability, Nauka,
Moscow, 1988.

K. Goseva — Popstojanova, ”Software Fault —
Tolerant Performance Modeling”, M.Sc. Thesis,
Faculty of Electrical Engineering, University of
Skopje, Yugoslavia, April 1990.

J.Arlat, K.Kanoun, J.C.Laprie, ”Dependabil-
ity Modeling and Evaluation of Software Fault-
Tolerant Systems”, IEEFE Transaction on Com-
puters, Vol. 39, No. 4, pp. 504 - 513, April 1990.

