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Abstract 

Software rejuvenation is a preventive maintenance tech- 
nique that has been extensively studied in the recent litera- 
ture. In this paper; we extend the classical result by Huang, 
Kintala, Kolettis and Fulton (1995), and in addition pro- 
pose a mod$ed stochastic model to generate the sojhare 
rejuvenation schedule. More precisely, the software reju- 
venation models are formulated via the semi-Markov pro- 
cess, and the optimal software rejuvenation schedule which 
minimizes the expected costs per  unit time in the steady- 
state are derived analytically for  respective cases. Furthel; 
we develop non-parametric algorithms to estimate the opti- 
mal software rejuvenation schedules, provided that the sta- 
tistical complete (unsensored) sample data of failure time 
is given. In numerical examples, we compare two models 
in terms of economic justification, and examine asymptotic 
properties f o r  the statistical estimation algorithms. 

1. Introduction 

Demands on software reliability and availability have in- 
creased tremendously due to the nature of present day ap- 
plications. They impose stringent requirements in terms 
of cumulative downtime and failure free operation of soft- 
ware, since in many cases, the consequences of software 
failure can lead to huge economic losses or risk to human 
'life. However, these requirements are very difficult to de- 
sign and guarantee, particularly in applications of nontrivial 
complexity. 

When software application executes continuously for 
long periods of time, it ages due to the error conditions that 
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accrue with time and/or load. Software aging will affect the 
performance of the application and eventually cause it to 
fail. Huang et al. [l] report this phenomenon in telecom- 
munications billing applications where over time the appli- 
cation experiences a crash or a hang failure. Avritzer and 
Weyuker [2]  discuss aging in telecommunication switch- 
ing software where the effect manifests as gradual perfor- 
mance degradation. Software aging has also been observed 
in widely-used software like Netscape and xrn. Perhaps the 
most vivid example of aging in safety critical systems is the 
Patriot's software [3], where the accumulated errors led to a 
failure that resulted in loss of human life. 

Resource leaking and other problems causing software to 
age are due to the software faults whose fixing is not always 
possible because, for example, application developer may 
not have the access to the source code. Furthermore, it is al- 
most impossible to fully test and verify if a piece of software 
is fault-free. Testing software becomes harder if it is com- 
plex, and further more testing cycle times are often reduced 
due to smaller release time requirements. Common expe- 
rience suggests that most software failures are transient in 
nature [4]. Since transient failures will disappear if the op- 
eration is retried later in slightly different context, it is diffi- 
cult to characterize their root origin. Therefore, the residual 
faults have to be tolerated in the operational phase. Usual 
strategies to deal with failures in operational phase are re- 
active in nature; they consist of action taken after failure. 

Recently, a complementary approach to handle transient 
software failures, called sofrware rejuvenation, was pro- 
posed [ 11. Software rejuvenation is a preventive and proac- 
tive (as opposite to being reactive) solution that is particu- 
larly useful for counteracting the phenomenon of software 
aging. It involves stopping the running software occasion- 
ally, cleaning its internal state and restarting it. Cleaning the 
intemal state of a software might involve garbage collec- 
tion, flushing operating system kernel tables, reinitializing 
internal data structures, etc. An extreme, but well known 
example of rejuvenation is a hardware reboot. Apart from 
being used in an ad-hoc manner by almost all computer 
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users, rejuvenation has been used in high assurance sys- 
tems, including continuously available telecommunication 
systems [ 1,2] and high consequence systems [SI. Although 
the fault in the software still remains, performing rejuvena- 
tion periodically removes or minimizes potential error con- 
ditions due to that fault, thus preventing failures that might 
have unacceptable consequences. 

Rejuvenation has the same motivation and advan- 
tageddisadvantages as preventive maintenance policies in 
hardware systems. Any rejuvenation typically involves an 
overhead, but, on the other hand, prevents more severe fail- 
ures to occur. The application will of course be unavailable 
during rejuvenation, but since this is a scheduled downtime 
the cost is expected to be much lower than the cost of an 
unscheduled downtime caused by failure. Hence, an impor- 
tant issue is to determine the optimal schedule to perform 
software rejuvenation in terms of availability and cost. 

In this paper, we extend the classical result by Huang et 
al. [ 13, and in addition propose a modified stochastic model 
to determine the optimal software rejuvenation schedule. 
More precisely, the software rejuvenation models are for- 
mulated via the semi-Markov process, and the optimal soft- 
ware rejuvenation schedules which minimize the expected 
costs per unit time in the steady-state are derived analyti- 
cally for respective cases. Further, since the failure time dis- 
tribution can not be easily estimated from a few data sam- 
ples, we develop non-parametric statistical algorithms to 
estimate the optimal software rejuvenation schedules, pro- 
vided that the statistical complete (unsensored) sample data 
of failure times is given. These can be useful in determin- 
ing optimal rejuvenation schedule in the early position of 
the operational phase. In numerical examples, we exam- 
ine asymptotic properties of the statistical estimation algo- 
rithms. 

2. Related work 

In recent years, considerable attention has been devoted 
to the phenomenon of software aging. For extensive sur- 
veys, the reader is referred to [6]. The studies of aging- 
related failures are based on two approaches: measurement- 
based and modeling-based. The measurement-based ap- 
proach is concentrated on the detection and validation of 
the existence of software aging and estimating its effects 
on system resources [7], [8]. The modeling-based approach 
is aimed at evaluating the effectiveness of software rejuve- 
nation and determining the optimal schedules to perform 
rejuvenation. Next, we present the brief overview of the 
previous work related to modeling-based approaches. 

A great deal of research effort on modeling software ag- 
ing and rejuvenation considers continuously running soft- 
ware systems. Huang et al. [l] used continuous time 
Markov chain to model software rejuvenation. They con- 

sidered the two-step failure model where the application 
goes from the initial robust (clean) state to a failure prob- 
able (degraded) state from which two actions are possible: 
rejuvenation or transition to failure state. Both rejuvenation 
and recovery from failure return the software system to the 
robust state. Garg et al. [9] introduced into the model the 
idea of periodic rejuvenation. To deal with deterministic in- 
terval between successive rejuvenations the system behav- 
ior was represented through a Markov regenerative stochas- 
tic Petri net model. The subsequent work [lo] involves ar- 
rival and queueing of jobs in the system and computes load 
and time dependent rejuvenation policy. The above mod- 
els consider the effect of aging as crashhang failure, re- 
ferred to as hard failures, which result in unavailability of 
the software. However, due to the aging the software sys- 
tem can exhibit soft failures, that is, performance degrada- 
tion. In [ 1 13 the performance degradation is modeled by the 
gradual decrease of the service rate. Both effects of aging, 
hard failures that result in an unavailability and soft fail- 
ures that result in performance degradation, are considered 
in the model of transaction based software system presented 
in [ 121. This model was recently generalized in [ 131 by con- 
sidering multiple servers. 

The fine grained software rejuvenation model presented 
in [ 141 takes a different approach to characterize the effect 
of software aging. It assumes that the degradation process 
consists of a sequence of additive random shocks; the sys- 
tem is considered out of service as soon as the appropriate 
parameter reaches an assigned threshold level. 

Several studies considered software with a finite mission 
time. The work in [ 151 analyzes the effects of checkpointing 
and rejuvenation used together on the expected completion 
time of a software program. The use of preventive on-board 
maintenance that includes periodic software and system re- 
juvenation is proposed and analyzed in [5]. 

The cost-based models considered in this paper have 
similar but somewhat generalized mathematical structure to 
that in Huang et al. [l]. However, the approaches taken 
to estimate the optimal software rejuvenation schedules are 
quite different. Note that in the above literature, the failure 
time distribution needs to be specified to derive the opti- 
mal rejuvenation schedule and to calculate several reliabil- 
ity measures. This seems to be restrictive, since the deter- 
mination of the theoretical distribution from the real data 
is rather troublesome, and needs both the goodness-of-fit 
test and the parameter estimation based on several candidate 
distribution functions. Although in the existing modeling- 
based approach, the failure time distribution is fixed, for 
instance, the Weibull distribution, this has not yet been val- 
idated for software aging. By contrast, our approach does 
not depend on the kind of distribution function and can pro- 
vide non-parametric estimators of the optimal software re- 
juvenation schedules which minimize the expected costs per 
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unit time in the steady-state. Thus we provide a very pow- 
erful approach for the application of the rejuvenation to a 
real system operation. 

~ 

3. Model description 

3.1. Basic model 

First, we introduce the basic software rejuvenation 
model proposed by Huang et. a1 [l]. Although they for- 
mulated it as a simple continuous-time Markov chain, we 
extend their result in the more general mathematical frame- 
work. In particular, we regard the software rejuvenation 
models as continuous-time semi-Markov processes. Define 
the following four states: 

State 0: highly robust state (normal operation state) 

State 1: failure probable state 

‘State 2: failure state 

State 3: software rejuvenation state. 

Suppose that all the states mentioned above are regener- 
ation points. More specifically, let 2 be the random time 
interval when the highly robust state changes to the fail- 
ure probable state, having the common distribution function 
Pr{Z 5 t }  = &(t )  with finite mean po (> 0). Just after 
the state becomes the failure probable state, a system failure 
may occur with a positive probability. Without loss of gen- 
erality, we assume that the random variable Z is observable 
during the system operation [l, 91. The transition diagram 
for Model 1 is depicted in Fig. 1. 

Define the failure time X (from State 1) and the repair 
time Y, having the distribution functions Pr{X 5 t }  = 
F f ( t )  and Pr{Y 5 t }  = F,(t) with finite means Xf (> 0) 
and pa (> 0). respectively. If the system failure occurs 
before triggering a software rejuvenation, then the repair is 
started immediately at that time and is completed after the 
random time Y elapses. Otherwise, the software rejuvena- 
tion is started. Note that in the basic model referred to as 
Model 1 the software rejuvenation cycle is measured from 
the time instant just after the system enters State 1 from 
State 0. Denote the distribution functions of the time to 
software rejuvenation and its system overhead by F, ( t )  and 
Fc(t) (with mean pc (> 0)), respectively. After completing 
the repair or the rejuvenation, the software system becomes 
as good as new, and the software age is initiated at the be- 
ginning of the next highly robust state. Consequently, we 
define the time interval from the beginning of the system 
operation to the next one as one cycle, and the same cy- 
cle is repeated again and again. If we consider the time to 
software rejuvenation as a constant t o ,  then it follows that 

completion of completion of 
repair rejuvenation 

state 
change (-JL(!J& system failure rejuvenation 

Figure 1. State transition diagram of Model 1 

system failure rejuvenation @-&Q 
completion of repair 

Figure 2. State transition diagram of Model 2 

We call t o  (2  0) as the sofnoare rejuvenation schedule in 
this paper and U ( . )  is the unit step function. Hence, the 
underlying stochastic process is the semi-Markov process 
with four regeneration states. Note that under the assump- 
tion that the sojoum times in all states are exponentially dis- 
tributed, Model I is reduced to the one in Huang er al. [ 13. 

3.2. Modified model 

The next model is a modification of the basic model. 
When the repair is completed after the system failure, is 
the software system really renewed? Probably, the answer 
is “NO” in many cases. If one distinguishes a software re- 
pair and the software rejuvenation, an additional rejuvena- 
tion might be needed after the software repair. For exam- 
ple, restarting the system after repair might require some 
cleanup and resuming the process execution at the check- 
pointed state. Such an additional rejuvenation policy has 
not been considered in the literature in spite of the prac- 
tical need. Figure 2 is the transition diagram for Model 
2 .  In this model, the software rejuvenation is performed 
just after the completion of repair as well as at the con- 
stant time to after the failure probable state is entered, i.e., 
min{Z + X + Y, Z + t o } .  
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4. Cost analysis Also, the LST of the recurrent time distribution is 

For each semi-Markov process described in Sec- 
tion 3, define the transition probability QZ3( t )  ( i , j  = 
0,. . . , 3, i # 3) .  Also, we define the Laplace Stieltjes 
transform (LST) of the transition probability by qv (s) = s," exp{-st)dQ,,(t). For Model 1, it is straightforward 
to obtain 

03 

4 0 l G )  = 1 "xP{-St)dFo(t), (2) 

412 (3) = exp{ - s t )F,  (t1dF.f (4 1 (3) 1- 03 

Im 03 

4 1 3 ( s )  = Jd exp{-st)Ff(t)dFr(t), (4) 

q2o(s) = exP{-st)dFu(t), (5) 

4 3 0 ( s )  = 1 exp{-st)dFc(t), (6) 

where in general $(.) = 1 - $(.). Define the recurrent time 
distribution from State 0 to 0 again by HOO ( t ) .  Then the 
LST of the recurrent time distribution is 

03 

hoo(s) = 1 exP{-stWoo(t)  
= 401 ( s ) q l Z ( s ) q 2 0 ( s )  + 401 (s)'?13(s)'?30(s).  

(7) 

Of our concem is the derivation of the transient probabil- 
ity to stay in State j ( j  = 0, . . . , 3) at arbitrary time t (> 0), 
provided that the initial state at time t = 0 is 0. Define the 
transient probability from State 0 to j ( j  = 0, . . . ,3)  and 
its LST by Po3 ( t )  and po3 (s) = exp{ -st)dPo, ( t ) ,  re- 
spectively. After some manipulations, we have 

POO(S) = q o 1 ( ~ ) / ~ 0 0 ( ~ ) ,  (8) 

P o z ( S )  = 4 0 1 ~ ~ ~ 4 1 2 ~ ~ ~ ~ 2 0 ~ ~ ~ / ~ 0 0 ~ ~ ~ ,  (10) 
P 0 3 ( s )  = 401 (SI413 ( s ) ~ 3 0 ( s ) / x 0 0 ( s ) .  (11) 

POl(s) = '?Ol(s) ( q i 2 ( s )  - 4 1 3 ( s ) ) / E 0 0 ( s ) ,  (9) 

In a fashion similar to Model 1, define the LST of the tran- 
sition probability for Model 2 by 

05 

4 0 1 ( s )  = 1 e.p{-st)dFo(t), (12) 

m(s )  = Jd  exp{-st)dF,(t), (15) 

q 3 0 ( s )  = 1 exp{-st}dFc(t)* (16) 

00 

4 1 2 ( s )  = Jd  exp{-st)FT(t)dFf(t), (13) 
03 

4 1 3 ( s )  = Jd exp{-st)Fc(t)dFv(t), (14) 
03 

00 

Then, we have 

POO(S) = v o d ~ ) / ~ o o ( ~ ) ,  (18) 

PO2(s) = 4 0 1 ( ~ ) ~ 1 2 ( ~ ) ~ 2 3 ( ~ ) / ~ 0 0 ( ~ ) ,  (20) 

POl(s) = q O l ( s ) ( p l 2 ( s )  - q13(S))/xOO(S)r (19) 

P 0 3 ( s )  = { 4 0 1 ( s ) ~ 1 2 ( s ) q 2 3 ( s ) ~ g g ( s )  + 401 (s )q13($)  

x q 3 0 ( s ) >  /EOO(s). (21) 

Define the following cost components: 

cs (> 0) : repair cost per unit time 

cp (> 0): rejuvenation cost per unit time. 

Further, we make the following assumptions: 

(-4-1) Pa > Pc 

(A-2) C, > cp.  

The assumption (A-1) means that the mean time to repair 
is strictly larger than the mean time to complete software 
rejuvenation. Also, the assumption (A-2) implies that the 
cost of repair is larger than the cost of software rejuvenation. 
These assumptions are quite reasonable and intuitive. 

Then, the expected cost per unit time in the steady-state 
for Model 1 becomes 

E[total cost during (0, t ] ]  
t C l ( t 0 )  = 

= t+w lim {c.Poz(t) + C p ~ O 3 ( t ) )  

- - C s P a F f ( t 0 )  + C P P C F f ( t 0 )  

Po + PclaFf(t0) +&(to)  + 

= lim - { csPO2 (s) + cpP03 (SI> 
s+o 

F f ( t ) d t  
= Vl(tO)/Sl(tO). (22) 

Also, the expected cost per unit time in the steady-state for 
Model 2 is 

= V2(tO)/S2(tO). (23) 

The problem is to derive the optimal software rejuvenation 
schedule tc which minimizes the expected cost per unit time 
in the steady-state Cz(t0) ( i  = 1 ,2 ) .  The following results 
give the optimal software rejuvenation schedule for Model 
i (i = 1 ,2 ) .  
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Theorem 1: For Model 1,  (1) suppose that the failure time 
distribution is strictly IFR (increasing failure rate) under the 
assumptions (A-1) and (A-2). Define the following non- 
linear function: 

q1(to) = (calla - CpPc).f(tO)Sl(tO) 

-{(Pa - P C ) . f ( t O )  + l}Vl(tO), (24) 

where ~f ( t )  = (dFf ( t )  / d t )  /Ff ( t )  is the failure rate. 

(i) If n ( 0 )  < 0 and q1 (m) > 0, then there exists a finite 
and unique optimal software rejuvenation schedule t: 
(0 < t: < m) satisfying q l ( t ; )  = 0, and the mini- 
mum expected cost is 

(ii) If ql(0) 2 0, then the optimal software rejuvena- 
tion schedule is t: = 0, i.e. it is optimal to start 
the software rejuvenation just after entering the fail- 
ure probable state, and the minimum expected cost is 
Cl (0) = C P P C / ( P O  + P c ) .  

(iii) If q1 (m) 5 0, then the optimal software rejuvenation 
schedule is t: -+ CO, i.e. it is optimal not to carry out 
the software rejuvenation, and the minimum expected 
cost is C1(mf = (CsPa)/(Po + Pa + A f ) .  

( 2 )  Suppose that the failure time distribution is DFR (de- 
creasing failure rate) under the assumptions (A-l) and (A- 
2). Then, the expected cost function C1 ( t o )  is a concave 
function of t o ,  and the optimal software rejuvenation sched- 
ule is t: = 0 or t; -+ m. 

Proof: Differentiating CI ( t o )  with respect to t o  and setting 
it equal to 0 implies q l ( t 0 )  = 0. Further differentiation 
yields 

(26) 

If the term in the bracket of the right hand side in Eq.(26) 
is negative, then c, + pc(ca - c P ) / ( p a  - pC) I G ( t o )  
for all to  E [O,m). Since pc(ca - c p ) / ( p a  - pc) > 0 
from the assumptions (A-1) and (A-2), this contradicts the 
probability law even if the repair occurs in the steady-state 
with probability one. Hence, it follows from the reduction 
argument that cs + pC(ca - c P ) / ( p a  - pC) > C l ( t 0 ) .  

If ~f ( t o )  is strictly increasing, then the function q1 (to) 
is strictly increasing and the expected cost CI ( t o )  is strictly 
convex in t o .  Further, if ql (0)  < 0 and q1 (m) > 0, then 
there exists a unique optimal software rejuvenation sched- 
ule t: (0 < t: < CO) satisfying q l ( t ; )  = 0. If q l (0 )  2 0 

or q1 (M). 5 0, then the expected cost is monotonically de- 
creasing or increasing in t o ,  and the optimal policy becomes 
t; = 0 or t; -+ 03. On the other hand, if r f ( t0)  is a de- 
creasing function of t o ,  then Cl ( t o )  is a concave function of 
t o ,  and the optimal software rejuvenation schedule is t{ = 0 
or t: -+ ca. The proof is thus completed. 

It is easy to check that the result above implies that in 
Huang et. a1 [ 11, although they used the system downtime 
and its associated cost as criteria of optimality. As is clear 
from Theorem 1,  when the failure time obeys the exponen- 
tial distribution, the optimal software rejuvenation schedule 
becomes t$ = 0 or t; -+ CO. It means that the rejuvenation 
should be performed as soon as the software enters the fail- 
ure probable state (to = 0) or should not be performed at all 
( t o  -+ CO). Therefore, the determination of the optimal re- 
juvenation schedule based on the the expected cost is never 
motivated in such a situation. Since for a software system 
which ages it is more realistic to assume that failure time 
distribution is strictly IFR, our general setting is plausible 
and the result satisfies our intuition. 

Similarly, consider Model 2. The result is given without 
proof for brevity. 

Theorem 2: For Model 2, (1) suppose that the failure time 
distribution is strictly IFR. Define the following non-linear 
function: 

@ ( t o )  = C a P a T f ( t O ) S 2 ( t O )  - (P .T f ( t0 )  + l}vz( to) .  
(27) 

(i) If qz(0) < 0 and q2(m)  > 0, then there exists a finite 
and unique optimal software rejuvenation schedule t; 
(0 < t: < ca) satisfying q2( t ; ) )  = 0, and the mini- 
mum expected cost is 

(ii) If qZ(0) 2 0, then the optimal software rejuvenation 
schedule is t; = 0, and the minimum expected cost is 
C2(0) = C P P C / ( P O  + Pc). 

(iii) If QZ (03) 5 0, then the optimal software rejuvenation 
schedule is t: -+ 00, and the minimum expected cost 
is G(M) = (CsPa + C p U / ( P O  + Pa + P c  + Af). 

(2) Suppose that the failure time distribution is DFR. Then, 
the expected cost Cz(t0) is a concave function of t o ,  and the 
optimal software rejuvenation schedule is t; = 0 or t; + 
Co. 

Notice that the assumptions (A-1) and (A-2) are not needed 
for Model 2. It can be seen from the fact ca > Cz(t0) for 
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all t o  E [0,00) that the expected cost is convex (concave) in 
t o  when the failure time distribution is IFR (DFR). 

In this section, we derived the optimal software rejuvena- 
tion schedules which minimize the expected costs per unit 
time in the steady-state. It should be noted, however, that 
the optimal software rejuvenation schedule has to be deter- 
mined from model parameters; po, p c ,  p a ,  c ,  and cp  and 
the failure time distribution Ff ( t ) .  In other words, it is not 
easy in general to specify the failure time distribution in the 
software operational phase. In the following section, we de- 
velop statistical non-parametric algorithms to estimate the 
optimal software rejuvenation schedules, provided that the 
complete (unsensored) sample data of failure times is given. 

5. Statistical optimization algorithms 

Before developing the statistical estimation algorithms 
for the optimal software rejuvenation schedules, we trans- 
late the underlying problems mino<to<w Ci(t0) (i = 1,2) 
to graphical ones. Following Barlow and Campo [16], de- 
fine the scaled total time on test (TIT) transform of the fail- 
ure time distribution: 

where 

F;l(P) = inf{to;Ff(to) 2 P I ,  (0 L p I 1). (30) 

It is well known [16] that F f ( t )  is IFR @FR) if and only 
if $ ( p )  is concave (convex) on p E [0,1]. After a few alge- 
braic manipulations, we have the following result. 

Theorem 3: Suppose that the assumptions (A-1) and (A-2) 
are satisfied. For Model i (i = 1,2),  obtaining the optimal 
software rejuvenation schedule t o  * minimizing the expected 
cost per unit time in the steady-state Ci(t0) is equivalent to 
obtainingp' (0 5 p* 5 1) such as 

where 

(34) 

Theorem 3 is the dual of Theorem 1 and Theorem 2. 
From this result, it is seen that the optimal software rejuve- 
nation schedule to* = FY1 @') is determined by calculat- 
ing the optimal point p' (0 5 p* 5 1) maximizing the tan- 
gent slope from the point ( -p i ,  -ai) E ( -CO, 0) x (-m, 0) 
to the curve ( p ,  4 ( p ) )  E [0,1] x [0,1]. This idea is essen- 
tially due to the statistical checkpointing algorithms in [17]. 

Next, suppose that the optimal software rejuvenation 
schedule has to be estimated from an ordered complete (un- 
sensored) observation 0 = zo 5 x1 5 2 2  5 * .  . 5 zn of 
the failure times from an absolutely continuous distribution 
Ff  , which is unknown. Then the scaled TTT statistics based 
on this sample are defined by q5nj = $ j / & ,  where 

j 

$ j  = z (n -k+ l ) (xk -zk - l ) ,  ( j  = 1, 2, ' ' *  , n; $0 = 0). 
k = l  

(36) 
Since the empirical distribution function Fn (z) correspond- 
ing to the sample data z j  ( j  = 0, 1,2,  . . . , n) is 

the resulting polygon by plotting the points (Fn(z),  &) 
(j = 0,1,2,  . . . , n) and connecting them by line segments 
is called the scaled Z7Tplot. In other words, the scaled 
l-IT plot can be regarded as a numerical counter part of the 
scaled TIT transform. 

The following result gives non-parametric statistical es- 
timation algorithms for the optimal software rejuvenation 
schedules. 

Theorem 4: (i) Suppose that the optimal software rejuvena- 
tion schedule has to be estimated from n ordered complete 
sample 0 = 20 I z1 5 22 5 ... 5 zn of the failure 
times from an absolutely continuous distribution F f ,  which 
is unknown. Then, a non-parametric estimator of the op- 
timal software rejuvenation schedule $, which minimizes 
Ci(t0) (i = 1,2)  is given by x i . ,  where 

and Xf in Eqs. (32) and (34) is replaced by xi==, zk/n. 
(ii) The estimator given in (i) is strongly consistent, i.e. zj. 
converges to the optimal solution to* uniformly with prob- 
ability one as n + 00, if a unique optimal software rejuve- 
nation schedule exists. 

It is straightforward to prove the above result in (i) from 
Theorem 3. The uniform convergence property in (ii) is due 
to the Glivenko-Cantelli lemma [16] and the strong law of 
large numbers. The graphical procedure proposed here has 
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an educational value for better understanding of the opti- 
mization problem and it is convenient for performing sen- 
sitivity analysis of the optimal software rejuvenation policy 
when different values are assigned to the model parame- 
ters. The special interest is, of course, to estimate the op- 
timal schedule without specifying the failure time distribu- 
tion. Although some typical theoretical distribution func- 
tions such as the Weibull distribution and the gamma dis- 
tribution are assumed in the reliability analysis, our non- 
parametric estimation algorithm can generate the optimal 
software rejuvenation schedule using the on-line knowledge 
about the observed failure times. 

3.. 

Figure 3. Estimation of the optimal soft- 
ware rejuvenation schedule on the two- 
dimensional graph (Model 1): 8 = 9.0 x 
p = 4.0, po = 2.0, pa = 4.0 x lo-', pc = 
3.0 x lo-', c, = 2.0 x lo-', cp = 1.0 x lo-'. 

Figure 4. Estimation of the optimal soft- 
ware rejuvenation schedule on the two- 
dimensional graph (Model 2): 8 = 9.0 x lop1, 
p = 4.0, po = 2.0, pa = 4.0 x lo-', pc = 
3.0 x lo-', cS = 2.0 x lo-', cP = 1.0 x lo-'. 

Figures 3 and 4 show the estimation results of the opti- 
mal software rejuvenation schedule for Model 1 and Model 
2, respectively, where the failure time data is generated from 
the Weibull distribution &(t)  = 1 - e-(*)' with shape pa- 

rameter p = 4.0 and scale parameter 0 = 0.9. For 100 
failure data points, we have j * / l O O  = 0.1170 in Fig.3. 
The estimates of the optimal rejuvenation schedule q d  the 
minimum expected cost are i; = 0.401221 and Cl (t;) = 
0.000131508, respectively. On the other hand, in Model 2, 
one estimates i!; = 0.30165 and Cz(i;) = 0.000132982 
from j * / l O O  = 0.0900 (see Fig.4). 

In the following section, we compare two models numer- 
ically in terms of cost minimization. Then, the dependence 
of model parameters in the respective optimal rejuvenation 
schedules is investigated in numerical examples. Also, we 
examine asymptotic properties for the statistical estimation 
algorithms using the simulation data. 

6. Numerical examples 

6.1. Performance comparison 

In this section, we compare two cost models and carry 
out the sensitivity analysis on the model parameters. Fig- 
ures 5 and 6 show the behavior of the expected costs for 
Model 1 and Model 2, respectively, where the failure time 
distribution is the Weibull distribution in Figs. 3 and 4. 
As the MTTF (A, = 8 r ( l  + l/p), where I?(.) denotes 
the standard gamma function) becomes larger for a fixed 
shape parameter, the optimal software rejuvenation sched- 
ule which minimizes the expected cost takes larger value for 
each case. Also, dependences of hT"F on the optimal soft- 
ware rejuvenation time and its associated cost value are in- 
vestigated in Figs. 7 and 8, respectively. As the MlTF gets 
larger, the rejuvenation schedule becomes monotonically 
larger, but the minimum expected cost becomes smaller for 
both models. In particular, it is found that the rejuvenation 
time (expected cost) for Model 1 is always larger (smaller) 
than that for Model 2. Intuitively, if restarting the system af- 
ter repair requires rejuvenation as in Model 2 system down- 
time due to a failure is higher than in the case without reju- 
venation after repair (Model 1). Therefore, the rejuvenation 
schedule should be set at a smaller value so that the system 
stays in State 0 longer, and hence, the chance of a failure 
becomes smaller. 

Table 1 presents the dependence of cost ratio c, /cp on 
the rejuvenation schedule. As the cost ratio c8/cp increases, 
the rejuvenation time monotonically decreases, but the cost 
value increases for both models. This monotone tendency 
can be also observed for other parameters. In Table 2, we 
examine the dependence of ratio palpc on the rejuvena- 
tion schedule. If the mean repair time becomes larger for 
fixed time to complete rejuvenation, the resulting optimal 
rejuvenation schedule can take rather smaller value. The 
final example in Table 3 presents the relationship between 
X f / p o  and the optimal rejuvenation schedule. As Xf takes 
larger value with respect to po, i.e. the system tends to be 
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Figure 5. Behavior of expected cost in Model 
1: pa = 0.6, pc = 0.3, po = 2.4 x lo', ,O = 2.0, 
c, = 5.0 x lo3, cp = 5.0 x 10'. 
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Figure 6. Behavior of expected cost in Model 

c, = 5.0 x lo3, cp = 5.0 x 10'. 
2: pa = 0.6, pc = 0.3, po = 2.4 x lo', p = 2.0, 

Table 1. Dependence of cost ratio c , / cp  on the 
rejuvenation schedule: pa = 0.6, pc = 0.3, 
po = 2.4 x lo', /3 = 2.0, X f  = 21.6 x lo', C, = 

more reliable, t; becomes larger and the optimistic preven- 
tive maintenance should be carried out. 
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Figure 7. Dependence of MlTF on the optimal 
software rejuvenation time: pa = 0.6, pc = 0.3, 
po = 2.4 x lo', /3 = 2.0, e, = 5.0 x lo3, c, = 
5.0 x lo2. 
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Figure 8. Dependence of MTTF in the mini- 
mum expected cost: pa = 0.6, pc = 0.3, PO = 
2.4 x lo2, /3 = 2.0, c,  = 5.0 x lo3, cp = 5.0 x 10'. 

Table 2. Dependence of ratio palpc on the re- 
juvenation schedule: pc = 0.3, po = 2.4 x lo', 
/3 = 2.0, Xf = 21.6 x lo', c, = 5.0 x lo3, 
cp = 5.0 x 10'. 

Model 2 Model 1 
palpc 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

t; 
355.72 
265.58 
213.93 
179.93 
155.65 
137.36 
123.04 
111.50 
101.98 
93.999 

6.2. Asymptotic behavior 

Next, we examine the asymptotic properties of the esti- 
mators developed in Section 5. Of the most important prob- 
lem in practical applications is the speed of convergence of 
the estimates for the optimal software rejuvenation sched- 
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Table 3. Dependence of ratio Xf/po on the 
rejuvenation schedule: pa = 0.6, pc = 0.3, 
po = 2.4 x lo2, p = 2.0, c, = 5.0 x lo3, 
cp = 5.0 x lo2. 

Model 1 Model 2 
Xf / P o  

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

t; cl(t:) t; C2(tG) 
30.23 0.5873 28.80 0.5889 
63.82 0.5511 60.95 0.5540 

105.42 0.5121 100.93 0.5160 
152.51 0.4741 146.31 0.4788 
203.34 0.4390 195.43 0.4408 
256.78 0.4073 247.15 0.4126 
312.08 0.3790 300.75 0.3844 
368.74 0.3538 355.72 0.3593 
426.41 0.3314 411.71 0.3368 
484.85 0.3114 468.48 0.3167 

ules. In other words, since a large number of sample failure 
time data points are not available in the earlier operational 
phase, it is significant to investigate the number of data at 
which one can estimate the optimal software rejuvenation 
schedule accurately without specifying the failure time dis- 
tribution. Figures 9 and 10 illustrate the asymptotic behav- 
ior of the estimates for the optimal software rejuvenation 
schedule and its associated minimum expected cost, respec- 
tively, in Model 1, where the failure time data are generated 
from a Weibull distribution with shape parameter /3 = 4.0 
and scale parameter 8 = 9.0 x 10-l. 

In these figures, estimates of the optimal policy f; and 
the corresponding minimum cost value Cl (g) are calcu- 
lated in accordance with the estimation algorithm in Theo- 
rem 4, where the sample mean Xf = E:==, xk/n changes 
as the failure time data is observed, where the horizon- 
tal line in the figures denotes the real optimal rejuvenation 
schedule and the minimum cost value (t; = 0.401221 and 
Cl(t(;) = 0.000131508). From Figs. 9 and 10, it is seen 
that the estimate of the optimal rejuvenation schedule fluc- 
tuates until the number of observations is about 50. On the 
other hand, it is found that the expected cost per unit time in 
the steady state can be estimated accurately after the num- 
ber of observations becomes about 20. These results enable 
us to use the non-parametric algorithm proposed here to es- 
timate precisely the optimal software rejuvenation schedule 
under the incomplete knowledge of the failure time distribu- 
tion. In Figs. 11 and 12, asymptotic behavior in Model 2 are 
presented, where the simulation data is based on the Weibull 
distribution with /3 = 4.0 and 0 = 9.0 x 10-=, and where the 
real optima are t;  = 0.30165 and CZ (t;) = 0.000132982. 
The results are quite similar to Figs. 9 and 10. 

7. Concluding remarks 

In this paper, we have analyzed two generalized soft- 
ware rejuvenation models and developed a statistical non- 
parametric algorithms to estimate the optimal software re- 

Figure 9. Asymptotic behavior of the optimal 
software rejuvenation schedule for Model 1 : 
8 = 9 . 0 ~  /3 = 4.0, PO = 2.0, Pa = 4 . 0 ~  
pc = 3.0 x C, = 2.0 x C, = 1.0 x lop2. 
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Figure 10. Asymptotic behavior of the mini- 
mum expected cost for Model 1 : 8 = 9 . 0 ~  lo--', 
/3 = 4.0, PO = 2.0, pa = 4.0 x pc = 
3.0 x loW2, c, = 2.0 x cP = 1.0 x 

juvenation schedules which minimize the expected costs 
per unit time in the steady-state. The resulting estimators 
for the optimal software rejuvenation schedules have quite 
nice convergence properties and are useful to apply to a 
real software operation without specifying the underlying 
failure time distribution. In fact, the measurement-based 
approach [7, 81 to perform the effective software rejuve- 
nation requires much effort to measure the physical char- 
acteristics for the system. Also, the modeling-based ap- 
proaches studied in the literature [lo, 11, 12, 13, 141 can 
not explain the software aging phenomenon completely, 
since the underlying failure time distribution is unknown 
in many cases. The statistical approach developed in this 
paper is simple, but can guarantee the real optimal soft- 
ware rejuvenation schedule if the number of failure time 
data becomes large. Such an on-line estimation algorithm 
should be applied to other complex software systems, as the 
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Figure 11. Asymptotic behavior of the optimal 
software rejuvenation schedule for Model 2: 
e = 9.oxio-1 ,p  = 4 . 0 , ~ ~  = 2 . 0 , ~ ~  = 4.oxio-2, 
pc = 3.0 x c, = 2.0 x lo-’, cp = 1.0 x 
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Figure 12. Asymptotic behavior of the mini- 
mum expected cost for Model 2: e = 9 . 0 ~  lO-l, 
,B = 4.0, po = 2.0, pa = 4.0 x lo-’, pc = 
3.0 x c, = 2.0 x cp = 1.0 x 

transaction-based software systems. In the future, we plan 
to develop non-parametric estimation algorithms for other 
fault-tolerant software systems with rejuvenation. 

References 

[ 11 Y.Huang, C.Kintala, N.Kolettis, and N.D.Funton, “Software 
Rejuvenation: Analysis, Module and Applications”, Proc. 
25th IEEE Int’l Symp. on Fault Tolerant Computing, IEEE 
Computer Society Press, Los Alamitos, CA, 1995, pp. 381- 
390. 

[2] A.Avritzer, and E.J.Weyuker, “Monitoring Smoothly De- 
grading Systems for Increased Dependability”, Empirical 
Software Engineering, 2, 1997, pp. 59-77. 

[3] E.Marshall, “Fatal Error: How Patriot Overlooked a Scud”, 
Science, 255, 1992, pp. 1347. 

[4] J.Gray, and D.P.Siewiorek, “High-Availability Computer 
Systems”, IEEE Computer, 9, 1991, pp. 39-48. 

[5] A.T.Tai, L.Alkalai, and S.N.Chau, “On-board Preventive 
Maintenance for Long-Life Deep-Space Missions: a Model- 
Based Analysis”, Proc. 3’d Annual IEEE Int ’1 Computer 
Performance & Dependability Symp., IEEE Computer So- 
ciety Press, Los Alamitos, CA, 1998, pp. 196-205. 

[6] K.S.Trivedi, K.Vaidyanathan, and K.GoSeva-Postojanova, 
“Modeling and Analysis of Software Aging and Rejuvena- 
tion”, Proc. 33‘d Annual Simulation Symp., IEEE Computer 
Society Press, Los Alamitos, CA, 2000, pp. 270-279. 

[7] S.Garg, A.Van Moorsel, K.Vaidyanathan, and K.S.Trivedi, 
“A Methodology for Detection and Estimation of Software 
Aging”, Proc. gth Int’l Symp. on Software Reliability Eng., 
IEEE Computer Society Press, Los Alamitos, CA, 1998, 

[8] K.Vaidyanathan, and K.S.Trivedi, “A Measurement-Based 
Model for Estimation of Resource Exhaustion in Operational 
Software Systems”, Proc. loth Int’l Symp. on Software Re- 
liability Eng., IEEE Computer Society Press, Los Alamitos, 

[9] S.Garg, A.Puliafito, M.Telek, and K.S.Trivedi, “Analysis of 
Software Rejuvenation using Markov Regenerative Stochas- 
tic Petri Net”, Proc. 6th Int’l Symp. on Software Reliabil- 
ity Eng., IEEE Computer Society Press, Los Alamitos, CA, 

[lo] S.Garg, Y.Huang, CXntala, and K.Trivedi, “Time and Load 
Based Software Rejuvenation: Policy, Evaluation and Opti- 
mality”, Proc. lS t  Fault-Tolerant Symp., 1995, pp. 22-25. 

[ l l]  S.Pfening, S.Garg, A.Puli&to, M.Telek, and K.S.Trivedi, 
“Optimal Rejuvenation for Toleranting Soft Failure”, Perfor- 
mance Evaluation, 27/28, 1996, pp. 491-506. 

[12] S.Garg, S.Pfening, A.Puli&to, M.Telek, and K.S.Trivedi, 
“Analysis of Preventive Maintenance in Transactions Based 
Software Systems”, IEEE Tram. Computers, 47, 1998, 
pp. 96-107. 

[13] H.Okamura, A.Fujimoto, T.Dohi, S.Osaki, and K.S.Trivedi, 
“The Optimal Preventive Maintenance Policy for a Software 
System with Multi Server Station”, Proc. 6th ISSAT Int’l 
Con$ Reliability and Quality in Design, 2000, pp. 275-279. 

[14] A.Bobbio, and M.Sereno, “Fine Grained Software Rejuvena- 
tion Models”, Proc. 3’d IEEE Int’l Computer Performance 
& Dependability Symp., IEEE Computer Society Press, Los 

[15] S.Garg, Y.Huang, C.Kintala, and K.S.Trivedi, “Minimizing 
Completion Time of a Program by Checkpointing and Re- 
juvenation”, Proc. 1996 ACM SIGMETRICS Con$, ACM 
Press, Cambridge, MA, 1996, pp. 252-261. 

[16] R.E.Barlow, and R.Campo, “Total Time on Test Processes 
and Applications to Failure Data Analysis”, Reliability and 
Fault Tree Analysis (R. E. Barlow, J. Fussell and N. D. 
Singpurwalla, eds.), SIAM, Philadelphia, 1975, pp. 451-481. 

[17] T.Dohi, N.Kaio, and Sosaki, “Optimal Checkpointing and 
Rollback Strategies with Media Failures: Statistical Esti- 
mation Algorithms”, Proc. I999 Pacific Rim Int’l Symp. 
Dependable Comput., IEEE Computer Society Press, Los 

pp. 282-292. 

CA, 1999, pp. 84-93. 

1995, pp. 24-27. 

Alamitos, CA, 1998, pp. 4-12. 

Alamitos, CA, 1999, pp. 161-168. 

34 


