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Abstract The goals of cross-product reuse in a software product line (SPL) are to mitigate pro-
duction costs and improve the quality. In addition to reuse across products, due to the evolutionary
development process, a SPL also exhibits reuse across releases. In this paper, we empirically ex-
plore how the two types of reuse - reuse across products and reuse across releases - affect the quality
of a SPL and our ability to accurately predict fault proneness. We measure the quality in terms
of post-release faults and consider different levels of reuse across products (i.e., common, high-
reuse variation, low-reuse variation, and single-use packages), over multiple releases. Assessment
results showed that quality improved for common, low-reuse variation, and single-use packages as
they evolved across releases. Surprisingly, within each release, among preexisting (‘old’) packages,
the cross-product reuse did not affect the change and fault proneness. Cross-product predictions
based on pre-release data accurately ranked the packages according to their post-release faults and
predicted the 20% most faulty packages. The predictions benefited from data available for other
products in the product line, with models producing better results (1) when making predictions
on smaller products (consisting mostly of common packages) rather than on larger products and
(2) when trained on larger products rather than on smaller products.
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1 Introduction

In software engineering today, a widely used approach to reuse is through development of a
Software Product Line (SPL), which explicitly defines the common and variable components
present in a family of systems (Gomaa, 2004). Weiss and Lai (1999) define a SPL as, “a family of
products designed to take advantage of [their] common aspects and predicted variabilities”. The
goal of SPL engineering is to develop diverse families of software products and software-intensive
systems in shorter time, at lower cost, and with higher quality (Pohl et al, 2005). While there
have been several studies showing the benefits of systematic reuse across applications (Lim, 1994;
Thomas et al, 1997; Frakes and Succi, 2001; Selby, 2005), empirical studies exploring these benefits
in the context of SPLs are lacking.

In this paper we present a longitudinal study of the quality of products in a SPL. The study is
based on a subset of the Eclipse family of products, which has been previously studied by Chastek
et al (2007) and van der Linden (2009) as a SPL. The central concepts of SPL engineering are:
(1) the use of a collection of reusable artifacts and (2) in order to provide mass customization
(Pohl et al, 2005). Eclipse demonstrates the first concept in its management and reuse of both
common and variable components across products. Eclipse demonstrates the second concept in
its introduction of new products customized to the needs of its various user communities.

Specifically, our study examines four products from the Eclipse project, Classic, C/C++, Java,
and JavaEE, through multiple releases. In the early releases Eclipse was developed and used as a
single platform for providing tools to aid software developers. The platform could be customized
to an individual developer’s interests by incorporating specific tool suites as plugins. Starting
with the release codenamed Europa, Eclipse evolved from a single, all-encompassing product into
a true product line by providing separate products which were already customized to specific user
requirements. These products contain shared code reused across multiple products. It appears
that reuse across products in both open source and industrial SPLs is not ‘all or nothing’. Rather,
while some components are reused across all products (so called commonalities), other components
are reused only in a subset of products referred to as high-reuse variation and low-reuse variation
components in this paper. Products in a SPL also have single-use components that are used only
in one product.

It is important to note that a SPL exhibits two types of reuse, as illustrated in Figure 1. Reuse
across releases, represented on the x-axis in Figure 1, exists in all software systems developed in
a release-oriented fashion and represents the evolution of an individual product across releases, as
new functionality is added or improvements are made over time. Reuse across products, represented
by the y-axis in Figure 1, is typical for SPLs and represents the reuse of individual packages in
two or more products within the same release.

The first part of our study focuses on assessing how reuse, both across releases and across
products, affects the quality of a SPL. For this purpose, we focus on four distinct Eclipse products
longitudinally across seven releases and measure quality in terms of the number of post-release
faults'. We specifically explore different levels of reuse across products, over multiple releases,
which provides SPL developers with insights into the utility of product lines and how the two
dimensions of reuse affect the quality of SPL products. With respect to the quality assessment of
the SPL we address the following research questions:

RQ1: Does quality, measured by the number of post-release faults for the packages in each release,
consistently improve as the SPL evolves across releases?

RQ2: Do packages at different levels of reuse across products mature differently across releases?
Does the quality of products benefit from reusing packages in multiple members of the SPL?

1A fault is defined as an accidental condition, which if encountered, may cause the system or system component
to fail to perform as required. We avoid using the term defect, which is used inconsistently in the literature to refer
in some cases to both faults and failures and in other cases only to faults or perhaps, faults detected pre-release.
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Fig. 1: An illustration of the two types of reuse (i.e., reuse across releases and reuse across products)
in Eclipse

The second part of our study focuses on prediction of post-release faults in members of the
product line using models built on previous releases. Specifically, we built generalized linear re-
gression models from each individual member of the product line family, then used them to rank
the packages in each product in the subsequent release by the number of post-release faults they
are likely to contain. This cross-product prediction approach allowed us to explore whether the
predictions for individual products benefit from available data for other members of the product
line. This is a unique aspect of our work, which is especially important because it allows pre-
dicting the post-release fault proneness of new emerging products in the SPL, before they are
released. The following research questions are devoted to the prediction of post-release faults from
pre-release data:

RQ3: Can we accurately predict which packages will contain a high percentage of the total post-
release faults from pre-release data using models built on the previous release?

RQ4: Do the predictions of the most fault prone packages benefit from the data available for other
products? In other words, do cross-product predictions improve the accuracy?

RQL1 can be viewed as conceptual replications of similar research question explored in non-SPL
context by several works (Fenton and Ohlsson, 2000; Ostrand and Weyuker, 2002; Ostrand et al,
2004; Khoshgoftaar and Seliya, 2004), and in only one study of a much smaller SPL (Mohagheghi
and Conradi, 2008). Replicated studies, both exact and conceptual, are vital to empirical software
engineering because they enable the software engineering community to explore the conditions
required to obtain specific results and to determine the external validity of results (Shull et al,
2008). RQ2 is relevant only in a SPL context. The first part of this question furthers the preliminary
investigation of our previous work (Krishnan et al, 2011a) by explicitly exploring different levels
of cross-product reuse over multiple releases, including statistical tests of significance. The second
part of RQ2 was not explored previously, including our previous work (Krishnan et al, 2011a).
RQ3 and RQ4, which are focused on the effects of the reuse across products on cross-product
predictions of fault proneness, are explored for the first time in this paper.

The main contributions of this study are:

— In addition to reuse across releases, which is typical for any evolving software system, we
explored reuse across members of a SPL and how these two different types of reuse affect
products’ quality and our ability to make accurate predictions. A unique characteristic of this
work is our focus on the way packages are grouped in individual products, which allows us to
make predictions for emerging products, even before they are released for the first time. Thus,
we were able to predict the fault proneness of the products C/C++, Java, and Java EE, which
were introduced in the Europa release of Eclipse (see Figure 1), based on the model built on
the product Classic from the previous release, 3.0.
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— The assessment results showed that as the product line continued to evolve through releases,
previously existing (i.e., ‘old’) common packages, high-reuse variation packages and low-reuse
variation packages remained prone to changes; only single-use packages experienced decreasing
change proneness as they evolved, perhaps because they were not affected by changes made
to other products. ‘Old’ common packages, low-reuse variation packages, and single-use pack-
ages improved in quality (measured by their post-release fault density) as they evolved across
releases, despite exhibiting significant change proneness. Previously existing high-reuse varia-
tion packages, however, did not exhibit an improvement in quality. Surprisingly, the level of
cross-product reuse (i.e., common, high-reuse variation, low-reuse variation and single-use)
did not affect the change and fault proneness of ‘old’ packages within each release. Newly de-
veloped low-reuse variation packages tended to have higher post-release fault densities than
either single-use packages or the common package, but the sample size of newly developed
packages was too small to draw strong conclusions.

— A nowel aspect of this research is the exploration of the benefit of using data from other products
in the SPL in support of fault proneness predictions. Specifically, we built models from the
individual products in each release and then used these models to make predictions for each
product in the subsequent release. Overall, we built 15 models, which were used to make
cross-product predictions for a total of 54 combinations of products and releases.

— The predictions were based on a generalized linear regression model with an ordered multino-
mial distribution and cumulative negative log-log linking function, which is specifically appro-
priate for skewed distributions characterized by higher probabilities of lower or zero values, as
is typical for the distributions of post-release faults across software units (i.e., files, compo-
nents, or packages). Models built on the previous release were used to predict the post-release
fault proneness of the following release. This approach mimics the actual data collection pro-
cess and thus has more practical value than using cross-validation or bootstrapping. These
models were used to predict the 20% most faulty packages, as well as to rank software packages
based on the number of post-release faults they contain. Compared to binary classification of
packages as fault-prone or not, this type of prediction conveys more information that is useful
for determining effort required to repair faulty packages, which in turn may allow for more
efficient allocation of verification and validation resources.

— The prediction results showed that models built from the data of one release could accurately
predict the most fault prone packages in a subsequent release from that release’s pre-release
data. Furthermore, rankings of fault prone packages created by our models were positively cor-
related to the actual rankings. The most interesting finding from the product line perspective is
that the best predictive models for each product were built from pre-release data that included
other products. This means that the predictions benefited from the use of data available for
other products. Specifically, models built from larger products with more variability typically
produced better predictions than models built on the smaller products, which mainly con-
sisted of common packages. Furthermore, all models achieved their best results when making
predictions on smaller products.

— We synthesized the findings of this study with the observations made in our previous work
based on a smaller industrial SPL with goal of identifying the trends, both in assessment and
prediction of SPL quality, that are invariant across multiple product lines.

The remainder of this paper is organized as follows. Section 2 presents related work. Section 3
describes the Eclipse product line case study. Section 4 defines our metrics and discusses the
process of their extraction, while Section 5 details our machine learning approach for creating and
evaluating predictive models. The results on assessment of product line quality are presented in
Section 6, followed by the results of the predictive analysis in Section 7. Section 8 offers a synthesis
of the results from this study and our previous work based on an industrial SPL. Section 9 describes
the threats to validity, and Section 10 provides a summary of the main results and concluding
remarks.
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2 Related Work

We first summarize the related work on numerical fault prediction not in SPLs. Then, we present
prior work on assessment and prediction (including classification and numerical prediction) in the
context of SPLs. We end the section with a summary of the main contributions of this paper.

2.1 Numerical prediction of post-release software faults

Several works in the literature have constructed and tested numerical models for fault prediction,
with the aim of predicting the number of faults at a unit level (e.g., file, component, package)
rather than providing a binary classification of whether the unit is fault-prone or not?.

Of these papers, four have used Eclipse as a case study (D’Ambros et al, 2009, 2010; Kamei
et al, 2010; Zimmermann et al, 2007). It should be noted that none of them considered the SPL
aspects of Eclipse. Rather, they analyzed collections of files and/or packages in several releases of
Eclipse. In particular, D’Ambros et al (2009) used generalized linear models to explore the utility
of change coupling metrics for predicting post-release faults and to compare predictive techniques
on four different Eclipse components (D’Ambros et al, 2010). Both D’Ambros et al (2009) and
D’Ambros et al (2010) used n-fold cross validation within a single data set to arrive at their final
results. Kamei et al (2010) used linear regression, regression tree, and random forest models to
predict post-release faults in three components of Eclipse. Experimental data showed that fusion
performed after making file-level predictions provided slightly better results than aggregating file-
level static code and process metrics to make predictions on the package-level. The results were
validated by both a fifty-fifty split, where training was performed on half of the data and the
model was tested on the other half, and by building models on one release and predicting on the
next. Zimmermann et al (2007) used linear regression models on both file and package levels to
perform a ranking from most to least faulty file and package, respectively. Models were built for
each of three releases of Eclipse (2.0, 2.1, and 3.0) and tested on all three releases.

Numerical, post-release fault prediction studies of other software products not related to
Eclipse include (Bibi et al, 2006; Kastro and Bener, 2008; Khoshgoftaar and Munson, 1990; Li
et al, 2006; Nagappan et al, 2006; Ostrand et al, 2004, 2005, 2010; Bell et al, 2006; Weyuker et al,
2008; Shin et al, 2009).

Bibi et al (2006) compared twelve different models to determine the benefits of regression
via classification. Results were validated using n-fold cross validation. Static code metrics were
combined with change metrics by Kastro and Bener (2008) to create neural network prediction
models for Linux. Khoshgoftaar and Munson (1990) used complexity metric features selected
by stepwise regression or factor analysis to compare linear regression models which predicted
fault densities. Li et al (2006) also used linear regression and neural network models, as well as
clustering, tree, and moving average models built from previous releases to predict the number
of faults in the next release. The models were constructed from source code, change, deployment,
and usage metrics. Nagappan et al (2006) built logistic regression models from static code metrics
alone on the module level and made predictions within a single project and across five different
Microsoft projects (Internet Explorer 6, IIS W3 Server Core, Process Messaging Component,
DirectX, and NetMeeting).

The remaining studies all used negative binomial regression model on different software systems
to predict fault-proneness and validated their results by building models on one or all previous
releases, then making predictions on the next. Ostrand et al (2004) and Ostrand et al (2005)
built models from file level information on LOC, number of previous faults, and change metrics.
Bell et al (2006) compared the predictive ability of several negative binomial models built using
different combinations of LOC and change metrics on the data extracted from an automated

2 For a comprehensive survey of binary classification studies the reader is referred to the recent paper by Hall
et al (2012).
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voice response system. A primary focus of the work by Weyuker et al (2008) was to investigate
the impact of the number of developers to the accuracy of predictions. The results showed that
the metrics related to the number of developers led to “no more than a modest improvement
in the predictive accuracy”. Ostrand et al (2010) also used negative binomial regression model
and explored whether including information about individual developers can be used to improve
the predictions. The results showed that the individual developer’s past performance was not
an effective predictor of future bug locations. Shin et al (2009) used different combinations of
LOC, static code metrics, change metrics, faults from previous releases, and calling structure
information to construct negative binomial regression models. It appeared that the addition of
calling structure information to a model based solely on non-calling structure code attributes
provided noticeable improvement in prediction accuracy, but only marginally improved the best
model based on history (i.e., change) and non-calling structure code attributes.

2.2 Assessment and prediction in a SPL context

Large, industrial product lines rarely provide data for academic research. To bypass this prob-
lem, Zhang and Jarzabek (2005) developed four members of a mobile gaming product line, both
simultaneously using a SPL architecture and developing each product independently. The results
showed that the products developed under the SPL architecture were easier to develop and main-
tain, consisted of less total code, and also showed a decrease in execution speed and memory
usage.

Mohagheghi et al. examined data from two products of a large telecom product line (Mo-
hagheghi et al, 2004; Mohagheghi and Conradi, 2008). Subsystems and blocks (each consisting
of multiple source code files) were considered as components in these studies. The components
reused in the two distinct products were developed in-house and reused as-is. The data used in
these studies covered three years of development of the reused (i.e., common) components in the
two products and the variable components of product 1. (Variable components of product 2 were
not available to the research team.) The empirical analysis showed that within each release the
fault density of reused subsystems was lower than the fault density of non-reused ones, but the
sample size was too small to perform statistical tests. The results at block level were consistent
— within each release reused blocks had lower fault density than non-reused ones, and the result
was statistically significant. In this case study, neither the number of faults nor the fault density
experienced reduction over time (that is, across the three releases considered in the paper).

In our previous work (Devine et al, 2012) we presented an empirical study of pre-release faults in
a medium-size, industrial product line. Specifically, we studied four products of the SPL PolyFlow.
These four products collectively consisted of 42 components totaling approximately 65,000 LOC.
The study characterized the fault and change proneness at various levels of reuse and explored the
benefits of SPL development to newly developed products, both in improved quality and in the
ability to predict pre-release faults. The results showed that single-use components had the highest
fault density and were the most prone to change. We also found that the number of pre-release
faults in variation components of new products could be accurately predicted using stepwise linear
regression models built on data from the previous products. It should be noted that post-release
faults were not available for this industrial case study (Devine et al, 2012).

Some of our earlier works were also based on Eclipse viewed as a SPL. First, we analyzed
change metrics (e.g., new files per component) and post-release fault data from four releases (i.e.,
Europa, Ganymede, Galileo, and Helios) of the Eclipse project (Krishnan et al, 2011a). In that
work, the analysis was done at the component level (i.e., at a coarser level of granularity than
package level) for severe faults (i.e., Eclipse’s blocker, critical, and major categories). Components
were grouped based on the level of reuse across the product line into common components (a total
of six components), high-reuse variation components (a total of seven components), and low-
reuse variation components (a total of three components). Single-use variation components were
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not considered. The results showed that commonalities followed a decreasing trend in file churn
through subsequent releases and exhibited fewer severe post-release faults. Conversely, both high-
reuse and low-reuse variation components exhibited a high degree of change as the SPL evolved
through releases and had mixed behavior with respect to the severe post-release faults. Note that
components at different levels of reuse were not compared within each release in (Krishnan et al,
2011a). Also, the small sample sizes at component level prevented us from using statistical tests.

Then, in (Krishnan et al, 2011b) we classified Eclipse files as fault-prone or not fault-prone
using change metrics as features and the J48 decision tree algorithm. The classification results
were very good (probability of detection 79% to 85%, probability of false positive 2% to 4%),
with the particular subset of change metrics {number of Authors, Changeset (i.e., number of files
committed along with this particular file), number of Revisions} performing well throughout all
the studied releases of the SPL. Additionally, the results showed that as the product line evolved,
the learner’s performance improved, suggesting that classification in a SPL might be useful.

In the follow-up work (Krishnan et al, 2012) we studied multiple learners for classification and
compared three data collection approaches: using change and fault data from the entire release
(i.e., no distinction between pre-release and post-release faults); using twelve months of change
data and considering the file as faulty only if it displayed post-release faults; and using pre-release
change and fault data to predict fault-prone files post-release. The best results were achieved via
the first data collection technique, while using pre-release data to classify the files as fault-prone or
not fault-prone post-release resulted in much lower true positive classification rates. It should be
noted these papers (Krishnan et al, 2011b, 2012) conducted classification (rather than numerical
predictions) on collection of Eclipse files and did not investigate cross-product predictions as is
done in this paper.

2.3 Contributions of this paper

The empirical results presented in this paper are based on a large amount of data in both size, as
measured in number of files and lines of code, and duration, as measured by number of releases
and weeks in existence. We gathered both static code and change metrics and linked them to
post-release faults for seven releases of Eclipse. This information totaled 125,118 files containing
over 20 million lines of code.

A major difference of this study from the related work on analysis and prediction of fault
proneness is the fact that in addition to reuse across releases we considered reuse across products
in the SPL. For this purpose our analysis considered multiple products from the Eclipse product
line rather than a collection of individual files and/or packages. This allowed us to determine the
benefits of building models and making predictions across different products in a SPL, including
newly introduced products before they have been released. Related work that used regression to make
numerical predictions of post-release faults across software applications (Nagappan et al, 2006) was
based on unrelated software applications (i.e., five Microsoft software systems: Internet Explorer
6, IIS W3 Server Core, Process Messaging Component, DirectX, and NetMeeting), rather than
products that are members of a SPL. These cross-application predictions in a non-SPL context
(often referred to as cross-project predictions) did not show promising results.

This paper extends our previous work (Devine et al, 2012) which analyzed pre-release faults
in a much smaller industrial product line and predicted the number of pre-release faults in newly
developed components using a model built on the existing components. In this paper our focus
is on post-release faults observed over multiple releases in four much larger products from an
open-source, evolving product line. Furthermore, in this paper we apply a specific generalized
linear model to the problem of software fault prediction for the first time. While generalized linear
models were used by others in (D’Ambros et al, 2009, 2010), they did not specify the distribution
and linking function. In this paper, we model post-release faults as an ordered multinomial distri-
bution and use the cumulative negative log-log linking function. This combination is specifically
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appropriate for skewed distributions characterized by higher probabilities of lower or zero values
(Norusis, 2012), as is typical for the distributions of post-release faults across software units (i.e.,
files, components, or packages).

The assessment part of this paper clearly distinguishes between the two dimensions of reuse
(i.e., reuse across releases and reuse across products) for the first time and explores how they affect
the SPL change proneness and fault proneness, including the statistical significance of the results.
The effect of reuse across releases on software quality has been studied both in non-SPL context
(Fenton and Ohlsson, 2000; Ostrand and Weyuker, 2002; Ostrand et al, 2004; Khoshgoftaar and
Seliya, 2004) and in SPL context (Mohagheghi and Conradi, 2008) and, therefore, this part of our
study is a conceptual replication. On the other side, the reuse across products is relevant only in
a SPL context. In this paper, we distinguish among different levels of reuse across products (i.e.,
commonalities, high-reuse variation, low-reuse variation and single-use variation packages) and
explore two aspects: (1) each of the specific levels of reuse across products over multiple releases
and (2) different levels of reuse across products within individual releases. While the former aspect
furthers our initial work (Krishnan et al, 2011a), the latter is explored for the first time in this
paper.

Compared to our previous prediction studies based on Eclipse (Krishnan et al, 2011b, 2012),
this study incorporates both change and static code metrics, and performs numerical prediction
rather than binary classification. We also present a new machine learning approach, which has
not been used previously either for numerical prediction or for classification of fault-prone units.
Specifically, we construct a model from the data of one member of the product line family and
use it to rank the packages of other members in the subsequent release by the amount of post-
release faults they are likely to exhibit. This approach allowed us to explore for the first time
whether predictions benefit from data available for other products in the SPL, that is, to explore
the usefulness and accuracy of cross-product predictions, as well as to make predictions for new
products before they were released.

3 Case study description

Eclipse is a set of products developed by an open-source collaboration to create integrated develop-
ment environments (IDEs) to aid software development. The Eclipse wiki refers to the emergence
of Eclipse from a long product line of development environments (Laffra and Veys, 2013). Origi-
nally created by IBM in November 2001, it is currently maintained by the Eclipse Foundation, a
not-for-profit member supported corporation that hosts various Eclipse projects. Eclipse is written
in Java, and the original platform was a single product designed for Java and plug-in development.
However, as support and ambition in the community grew, the scope of the projects also expanded
to encompass (currently) fourteen different products designed for development in many different
languages and several different industries. Each of these products builds upon the common Eclipse
platform shared by all. With well over a million downloads, Eclipse has an active user base. These
qualities make Eclipse a fertile ground for testing research questions from the SPL community.

Eclipse has been studied as a product line (Chastek et al, 2007; van der Linden, 2009) and in
the context of open source product family engineering (van Gurp et al, 2010). Pohl et al (2005)
identify two key differences between SPL engineering and single-system development: the need for
two distinct development processes, namely, the domain engineering process and the application
engineering process; and the need to explicitly define and manage variability. In both these regards,
the Eclipse project demonstrates SPL engineering practices. With regard to the first criterion, the
Eclipse project employs both domain engineering and application engineering, as described below,
to plan for and implement reuse. With regard to the second criterion, Eclipse explicitly defines
and manages variability across products through its customization to specific user-community
requirements.
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Eclipse has also been referred to as an ecosystem, both in its own wiki (Laffra and Veys,
2013), and in a recent keynote by Taylor (2013). Taylor draws a distinction between a product
line, which he considers to have a single agency developing it, and an ecosystem, in which there may
be multiple development agencies. He considers the open-source nature of Eclipse’s development
to move it beyond a product line. Our view is closer to that of van der Linden (2013), who
considers the benefits of the heterogeneous, distributed development of product lines. Similarly,
Pohl et al (2005) describe a wide variety of organizational structures that are used to develop
product lines. They indicate that, for an organization with strong project groups and with a need
for a strong customer focus, the distributed domain engineering organization (as with Eclipse)
is best suited. In such an organization, domain engineering is distributed among business units,
with each producing products for a specific customer group or market segment. The development
of open-source product lines such as Eclipse is a natural outgrowth of industry’s investments and
interest in distributed development and open source systems. The Eclipse project development
practices and suite of products are well within the scope of current product line engineering.

Our study encompasses a total of seven Eclipse releases, whose names and dates are given in
Table 1. As mentioned in the Introduction, starting with the Europa release, Eclipse evolved from
a single, all-encompassing product into several specialized products (see Figure 1). In the early
releases 2.0, 2.1, and 3.0, only one product existed, namely Classic. These early releases have been
analyzed before based on the data set provided by Zimmermann et al (2007), and are included in
this study for several reasons. First, it allows us to compare our results with related work. Second,
it allows us to explore the evolution of Eclipse from a single product (in releases 2.0, 2.1, and
3.0) to a SPL with multiple products (starting from the release 3.3 codenamed Europa). Finally,
it allows us to explore whether accurate predictions can be made for newly emerging products.
We examined four products from the Eclipse project: Classic, C/C++, Java, and JavaEE. These
products were chosen due to their persistence throughout the examined releases. The Europa
release contained only one additional product, RCP, which is not considered in this study because
it differs from the product Java by only one package. The sizes and the number of faulty packages®
in each product, for each release are given in Table 1.

Table 1: A timeline of the products examined in this study with the sizes (in thousands of lines
of code) and number of packages. and number of faulty packages

Release Date Classic C/C++ Java JavaEE Total

(codename) KLOC | Pkgs KLOC | Pkgs KLOC | Pkgs KLOC | Pkgs KLOC | Pkgs | Faulty
2.0 June 27, 2002 773 34 773 34 26

2.1 March 27, 2003 1,054 41 1,054 41 37

3.0 June 25, 2004 1,756 76 1,756 76 70

3.3 (Europa) June 25, 2007 2,317 85 1,107 62 2,633 103 3,988 185 3,988 185 148
3.4 (Ganymede) June 25, 2008 2,505 89 1,158 62 2,788 105 4,291 200 4,291 200 152
3.5 (Galileo) June 24, 2009 2,125 77 1,117 61 2,748 104 3,913 188 3,913 188 120
3.6 (Helios) June 23, 2010 2,208 T 1,184 61 2,921 105 4,262 206 4,262 206 103

Figure 2 provides a visual overview of the amount of code shared among the four products
on the package level for the releases codenamed Europa through Helios. We first introduced the
Venn diagram representation® in our earlier work (Devine et al, 2012) to illustrate the amount of
code shared between the products. In each Venn diagram, the 61 to 62 packages in the central
region, which are shared by all four products, are common packages. For example, the package

3 For this study, a package is considered faulty if any file contained in that package exhibited one or more
post-release faults.

4 Thompson and Heimdahl (2003) proposed a set-theoretic approach to represent requirements reuse in product
line engineering, which described the boundaries of sets as commonalities and the members within the sets as
products. The approach taken in our previous work (Devine et al, 2012) and used here is complementary to
(Thompson and Heimdahl, 2003). Specifically, it is used to illustrate the amount of shared code at different levels
of cross-product reuse; the elements within the sets are packages of the SPL, and the boundaries of sets define the
products.



10 Thomas Devine et al.
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Fig. 2: Venn diagrams showing the distribution of packages among the four products for the four
multiple-product releases studied

org.eclipse.ui.ide, which contains many of the classes involved in the user interface for the inte-
grated development environments, is included in every product in the Eclipse SPL.

As noticed in our previous work based on an industrial product line (Devine et al, 2012) and
confirmed on Eclipse, there are different levels of reuse across the products of the SPL. The four
regions directly adjacent to the center in Figure 2 contain packages that are reused in three out
of the four products. We label these packages used in all but one product high-reuse variation
packages. In this study there are sixteen shared packages found in each release of Classic, Java,
and JavaEE. For example, the package org.eclipse.jdt.core contains the classes that are the core
of Eclipse’s Java Development Tools, so it is naturally not included in the product C/C++.

Low-reuse variation packages are in the regions where only two products overlap. In this study,
for example, these are 25 to 28 packages (depending on the release) shared by Java and JavaEE,
such as Eclipse’s Graphical Editing Framework (org.eclipse.gef).

The remaining 75 to 101 packages are used in only one product, and can be found in the
perimeter regions of Figure 2. We call these packages single-use packages. For example, the Web
Standard Tools package org.eclipse.wst.wsi, which is used only in JavaEE, belongs to this group.

Figure 2 shows that C/C++ is made entirely of common packages, and is thus a subset of
the three remaining products. Java and Classic are specific subsets of JavaEE, which contains all
the studied packages. Java and Classic contain a mixture of common, high-reuse variation, and
low-reuse variation packages. JavaEE contains all the single-use packages. It is important to note
that, while several other products exist in addition to the four products examined in this study
for the Galileo and Helios releases of Eclipse, the packages marked as single-use and low-reuse in
this study are not used in any additional products. In other words, throughout the entire Eclipse
product line family the single-use and low-reuse packages analyzed in this study are used in only
one and two products, respectively.

Ensuring data quality is a very important aspect of empirical research. Therefore, in the process
of collecting metrics, we made great efforts to assure that the data we collected was as complete
and accurate as possible. We also explicitly documented the inclusion / exclusion criteria. Data
quality and the potential threats to validity are discussed in detail in Section 9. Here we briefly
describe several points.

As expected, because we were dealing with massive downloads of source code files that have
been archived for close to a decade, locating every single file was unrealistic, despite our best
efforts. Not all source code files for which CVS logs were recorded were available to anonymous
developers at the Eclipse CVS repository server®. In particular, no code was available for any
files in the package CDT. This package includes C/C++ development tools and would have been
the single-use package for the C/C++ product. C/C++ thus became a product composed of
only common packages in this study. We retained it as relevant to the study because it provides
important insights into how the most reused packages, those common to all products, behave in
predictive models. Additionally, the source code for the Galileo and Helios releases of PDE (Plug-

5 pserver:anonymous@dev.eclipse.org:2401/cvsroot
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in Development Environment) was unavailable, as shown in Figure 2 by the eleven packages shared
between Classic and JavaEE which are present in the Ganymede release, but do not appear in the
Galileo or Helios releases. For consistency with respect to our predictive models, the unavailability
of the PDE source code in the final two releases prompted us to omit the PDE packages when
creating the predictive models from the Ganymede release.

Since the analysis and predictions in this paper were carried on at the package level, whenever
a part of the data was not available for a package, that package and the associated number of post-
release faults were not included in the dataset. The total number of packages for which data were
complete and accurate, and the number of those complete packages that exhibited post-release
faults for each release, are given in the two rightmost columns in Table 1 and shown in the bar
graph in Figure 3.
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Fig. 3: A histogram showing the total number of packages and the number of packages which
contain at least one post-release fault, for each of the releases

4 Description of metrics and their extraction

We use the post-release faults as a measure of software quality. Specifically, we considered the top
five severity categories of Eclipse faults: blocker, critical, major, normal and minor. This study
uses two types of software metrics — change metrics and static code metrics. These metrics were
collected at the file level and then aggregated to the package level for our analysis. This section
details the techniques we used to gather, combine, and aggregate the metrics to achieve our final
data set. Each of these metrics was then treated as a feature, in the machine learning sense, when
building and evaluating the predictive models.

4.1 Change metrics
The alterations made to a source code file over the course of its existence are captured by the

change metrics. Change metrics used in this study were collected previously and used for classifi-
cation of fault-proneness at a file level in our previous work (Krishnan et al, 2012). In particular,
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Table 2: A list of change metrics and their descriptions

Change Metric Description

Revisions Number of revisions made to a file

Refactorings Number of times a file has been refactored

Bugfizes Number of times a file was involved in bug-fixing (pre-release bugs)
Authors Number of distinct authors who made revisions to the file

LOC Added Sum over all revisions of the number of lines of code added to the file
Maz LOC Added Maximum number of lines of code added for all revisions

Ave LOC Added Average lines of code added per revision

LOC Deleted Sum over all revisions of the number of lines of code deleted from the file

Max LOC Deleted | Maximum number of lines of code deleted for all revisions
Ave LOC Deleted | Average lines of code deleted per revision

Codechurn Sum of (added lines of code - deleted lines of code) over all revisions
Maz Codechurn Maximum Codechurn for all revisions

Ave Codechurn Average Codechurn per revision

Maz Changeset Maximum number of files committed together to the repository

Ave Changeset Average number of files committed together to the repository

Age Age of a file in weeks (counting backwards from a specific release)

dor, Age(i)x LOC Added(i)
S " LOC Added:)

Weighted Age

for each file we extracted the same set of seventeen change metrics as in the work by Moser et al
(2008). These metrics are defined in Table 2, while detailed descriptions can be found in (Moser
et al, 2008).

Next, we provide a brief description of the change metrics extraction process. Eclipse uses
CVS as a version control system, which maintains timestamped log files detailing the history of
changes made to any given source code file. The first step in the process of extracting the change
metrics was to map the CVS log entries to the bug database at a file level. For this purpose, we
followed the approach of Zimmermann et al (2007). Specifically, for each entry in the bug database
with one of the top five severity categories (i.e., blocker, critical, major, normal and minor), we
matched the bug ID with the commit messages from the CVS logs. (The trivial and enhancement
categories were not considered.) We used strings such as ‘bug’ and ‘fix’ followed by numbers that
match the IDs from the bug repository. If a match was found, we mapped the bug entry to the
corresponding source code file. In case of releases 2.0, 2.1, and 3.0, the bug IDs were either four
or five digit strings. while for Europa and later releases the bug IDs were six digits strings. A
manual review showed no entries containing the word ‘bug’ that were not caught by this pattern
matching.

For each file the Revisions metric denotes the number of times that file was involved in changes,
including bug fixes, improvements to existing features, and addition of new features. The Refactor-
ings metric (i.e., the number of times a file was refactored) was extracted following the approach
of Moser et al (2008), which consists of tagging all log entries with the word ‘refactor’ in their
commit comments. Change metrics also include Bugfizes metric, which represents the number of
times a file was involved in pre-release bug fixes. The pre-release bugs were distinguished from
post-release bugs using the bug creation date from the bug repository. If the bug was created be-
fore the release date, we denoted it as pre-release bug. In this work we accounted for five categories
of bugs (i.e., faults): blocker, critical, major, normal and minor (that is, only the trivial faults
were not considered). The Authors metric is the total number of developers who contributed to
a given file. LOC Added and LOC Deleted denote the number of lines added and deleted in all
the revisions. Codechurn denotes the effective lines added and was calculated by subtracting the
LOC Added from the LOC Deleted. As in (Moser et al, 2008) we also calculated the maximum
and average values for the lines added, lines deleted and codechurn. To determine the Changeset
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size (i.e., the files that were committed together with the file of interest) we used the CVSPS
tool (Mansfield, 2012) after making slight modifications to it. For extracting the Age metric we
reviewed all CVS log data from 2001 onward to identify the timestamp of the first occurrence of
each file name. The Weighted Age metric, in addition to when the change was made, takes into
account the size of change and is computed using the formula given in Table 2.

To ensure the data quality we made a few modifications to the log script so that the data
collected from various input sources were compatible and mapped accurately. For example, files
marked as ‘dead’ in the Eclipse project are often moved to the Attic in CVS, which results in
different file path. To handle this, we excluded from our study all instances that had the pattern
‘/Attic/’ in their file paths. Another modification was needed to handle the fact that when using
the CVS rlog tool with date, files that were not changed during the specific filter period were listed
as having no revision-specific information such as date, author, etc. This is true even if the file was
previously marked ‘dead’ on a branch. In order to determine which files were ‘alive’ and which
revisions applied to each release, rather than examining only the date of each specific release we
examined the rlog for the entire file history.

4.2 Static code metrics

Static code metrics capture information pertaining to the source code. They range from simple
metrics, such as lines of code (LOC), to metrics that measure structural intricacy, such as cyclo-
matic complexity. Static code metrics can easily be gathered via a variety of software tools available
online. In part for this reason, static code metrics have been frequently used in fault prediction
studies. For this study, we used the freeware code analysis tool SourceMonitor® (SourceMonitor,
2011) to extract the static code metrics.

A list of the gathered static code metrics and their brief descriptions are given in Table 3.
To gather these metrics, we downloaded the source code from the Eclipse CVS repository. First,
batch files were generated to download the code for each set of packages for which we already had
change metrics. In these batch files, the exact date of the release to be downloaded was specified in
the CVS commands to ensure retrieval of the proper versions of the code. We then created XML
files to automate and guide the code analysis performed by SourceMonitor. The result was a text
file containing twenty-two static code metrics for every file, in each release under consideration.

Table 3: A list of static code metrics and their descriptions

Static Code Metrics Description

LOC Total number of lines

Statements Any LOC terminated by ‘3’

Percent Branch Statements Percentage of statements causing a break in sequential execution, e.g., if, for, try, throw

Method Call Statements All method calls, in statements and in logical expressions

Percent Lines with Comments | Percentage of comment lines

Classes and Interfaces Total number of classes and interfaces, including anonymous inner classes

Methods per Class Total method count divided by the total class count

Ave Statements per Method Total number of statements found inside of methods divided by the number of methods

Maz Complexity Complexity value of the most complex method

Ave Complexity Sum of all method complexity values divided by the number of methods

Mazx Block Depth Maximum nested block depth level found within each method, starting at block level zero for each file.
Depths up to 9 are recorded and all statements at deeper levels are counted as depth 9.

Awve Block Depth Sum of all method block depths divided by the number of methods

Statements at Block Level x Total number of statements in all methods contained at block level x.

where £ =0,1,2,...,9

6 The complexity measure used by SourceMonitor approximately follows the definition by McConnell (2004).
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4.3 Aggregation

We performed aggregation of all file-level metrics to the package level to achieve a coarser gran-
ularity, which offered a key advantage to our analysis. The vast majority of files in the various
products contained no post-release faults, making the file level data more suited to binary clas-
sification than ordered multinomial fault prediction. On the other hand, when viewed from the
package level, the skewness of the distribution of post-release faults towards zero is much less
pronounced. Such aggregations have been performed and supported in the literature, such as
(Zimmermann et al, 2007; D’Ambros et al, 2012).

Before aggregation could occur, the change metrics and source code metrics had to be combined
for each file. Code was written to accomplish this utilizing the detailed file names of the Eclipse
project as combination indices. Selected matchings were manually validated to ensure the accuracy
of the resulting data sets.

Change and static code metrics were then aggregated using the naming conventions of the
Eclipse project, as in (Zimmermann et al, 2007). For example, the metrics for the file named
org.eclipse.gef. Command.java were combined with those for all the class files named
org.eclipse.gef.[Class name].java. Faults, initially mapped at file level, were attributed to the pack-
age to which these files belong. The total number of faults in a product includes the total number
of faults for each package in that product. The aggregations were performed using the Aggregate
function in IBM SPSS (v. 20.0), and the mean, median, maximum, and total (i.e., sum) were
maintained for each metric, when appropriate. For instance, the file-level static code metric LOC
after the aggregation became Mean LOC, Median LOC, Max LOC, and Total LOC, while the
change metric Ave Changeset maintained only the mean value after the aggregation. (For the
specific aggregations for each static code metric and change metric the reader is referred to the
Appendix.) The aggregation process resulted in a total of 112 metrics (i.e., features) for each pack-
age. (The total number of packages for each product, by release are listed in Table 1.) Thus, each
package was characterized by a vector m of 112 metrics (i.e., features), where m[i],i =1,...,73
were static code metrics, while m [i],i = 74, ..., 112 were change metrics.

5 Machine learning approach

This section describes the data preprocessing steps, some background on the generalized linear
regression models, our machine learning approach, including the feature selection method, and
the performance metrics used to quantify the results.

5.1 Data preprocessing

Before creating regression models, we normalized the aggregated data. Normalization is a common
practice in machine learning, see for example (Bell et al, 2006; Kitchenham and Mendes, 2009;
Ostrand et al, 2004, 2005). For this study, we performed a logarithmic transformation of the
following metrics which had very skewed distributions: LOC, Statements, Method Call Statements,
Classes and Interfaces, Statements at Block Level [0-9], LOC Added, and LOC Deleted. All other
metrics were normalized using a min-max transformation, where each instance x of an attribute
1 is calculated according to
/ MATyser — MiNyser

r = - (.13 - mlnz) + minusera (1)
max; — min;

where max se,r and mingse, are the user selected maxima and minima of the transformed values
and max; and min; are the actual maximum and minimum values. For our analysis, we selected
values of zero for min,se, and one for max, e -
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5.2 Background on Generalized Linear Regression models

To determine the packages likely to exhibit post-release faults we used the generalized linear
models (GLMs) introduced by Nelder and Wedderburn (1972) and later extended by McCullagh
and Nelder (1983), which are implemented in IBM SPSS (v. 20.0). These models are of the general
form given by

link(vij) = 0; — [B1s, + Baziy, + ... + Bpwi, ], (2)

where y;; is the cumulative probability of the jth category for the ith case, 6; is the threshold for
the jth category, p is the number of regression coefficients, 1, ..., 5, are regression coefficients,
and ;,, ..., z;, are the values of the predictors for the ith case.

The generality of GLMs comes from their flexibility. Model builders are able to specify the type
of distribution to model as well as the transformative linking function to use. The linking function
is a transformation of the cumulative probabilities that allows estimation of the model. To deter-
mine which regression model to apply to our data, we considered both theory and implementation.
The best ranking results were achieved when treating post-release faults as an ordered multino-
mial distribution (treating each recorded value as an ordinal category) and using the cumulative
negative log log linking function,

link(z) = —log(—log(x)). (3)

This is due to the fact that this combination is theoretically well-suited for data with many lower
or zero values and fewer higher values (Norusis, 2012). Since post-release fault distributions are
typically skewed (i.e., have many packages with a few or no faults and a few packages with many
faults), GLMs are more suitable to the task of software fault prediction than standard linear
regression models. It should be noted that we also tried negative binomial model and logistic
regression model. Both models performed comparably, but the results tended to be more extreme
than the cumulative negative log log GLM model, i.e., they performed much better in some cases
and much worse in others. Due to its consistently good predictions, we chose to present the
prediction results of the cumulative negative log log GLM model.

5.3 Cross-product prediction of fault proneness

Software development and testing teams want to use models constructed from data for the previous
release of their product to predict which packages are likely to exhibit the most post-release faults
in the next release. Our approach seeks to mimic this actionable procedure for the development
community in order to investigate the merit of such prediction.

Specifically, we built regression models for each product in each release of Eclipse from the
aggregated and normalized data, consisting of 112 features (i.e., metrics) as described in Section 4.
The change metrics were gathered for a six month period before each release date, and static code
metrics were extracted from the source code available on each release date. As a response variable
for the predictive models, we used the number of faults in a package reported during a six months
period after each product’s release, referred to as post-release faults throughout the paper.

We built a model for each of the products in release n and used it to predict the degree of
post-release faults for each product in the following release n + 1. Thus, we built a total of fifteen
predictive models — one model for each of the first three releases (which contained only one product
each), and four for each of the next three releases (which contained four products each). Models
built for each product in each release n were then used to make predictions for all products in
the subsequent release n + 1, resulting in a total of fifty-four trials. We tested the models on all
products in the subsequent release, rather than on only the same product, because one of our main
research questions was to explore whether reuse across products in a product line and additional
data from other product line members can provide benefits for post-release fault prediction. This
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research question has not been explored previously in either the related work, or in our previous
work.

It should be emphasized that building a model on the previous release (i.e., n-th release) to
predict the post-release faults of the (n + 1)-th release from the pre-release data of the (n + 1)-th
release is an unbiased approach, which mimics the software development process across releases
and is motivated by practical needs. In addition, this prediction approach preserves the temporal
order of the fault detection process, thus contributing to more realistic predictions’.

5.4 Feature selection

In order to select the features that have the best predictive capability out of the (typically) many
available features, we applied feature selection, a standard step used in machine learning. Reducing
the number of features by removing the irrelevant and noisy features usually speeds up machine
learning algorithms and improves their performance.

In particular, we performed feature selection via stepwise regression (Kleinbaum et al, 1988) to
determine the best features to use in the generalized linear models used for prediction. In stepwise
regression, the features in the final model are selected in one of three ways: forward selection,
backward elimination, or bidirectional elimination. The forward selection process starts with the
single feature model with the best fit and adds features that most improve the model, one at
a time, until no significant improvement can be achieved. Backward elimination begins with all
features in the model and eliminates as many as possible while the model improves. Bidirectional
elimination is a combination of the other two techniques, that adds and deletes features from the
model until the best fit is achieved. For feature selection we used bidirectional elimination, which
only includes features that improve the fit of the model as a whole and gives each feature an
equal chance to gain inclusion in the model. This method is also suggested as a way to handle the
problem of multicollinearity® in linear regression models (Bingham and Fry, 2010). Our stepwise
regression models were implemented in IBM SPSS (v. 20.0), using the default maximum number
of steps (twice the number of features).

5.5 Performance metrics

We report three performance metrics, the nTop20%, which is a normalized version of the percent-
age of total post-release faults found in the top 20% of packages predicted to be faulty, and the
rank correlation coefficients Spearman’s p and Kendall’s 7,. The latter measure the association
between two ranked lists of packages — one based on the actual number of post-release faults and
the other based on the predicted number of post-release faults.

5.5.1 nTop20%

The percentage of actual faults found in the 20% most faulty packages calculated by the predictive
model is a common performance metric reported in several other works (Ohlsson and Alberg, 1996;

7 Some form of k-fold cross validation is commonly employed in machine learning in general and software en-
gineering in particular. Cross validation is the process of splitting the data randomly into k groups, and then
predicting values for the k-th group by building a model on the other &k — 1 groups. This is repeated using each
of the k groups as a testing group and the average value of the predicted variable is reported. Cross validation
may provide better results than building models and predicting on disjoint data sets (as was done in this paper)
because averaging the results over k repeated trials offers more consistent, flattened end results than one achieved
via building models and predicting on disjoint sets.

8 Many software metrics are highly correlated to each other, which engenders a problem that is commonly referred
to as multicollinearity. To quote Kutner et al (2004) “The fact that some or all predictor variables are correlated
among themselves does not, in general, inhibit our ability to obtain a good fit nor does it tend to affect inferences
about mean responses or predictions of new observations ...” However, multicollinearity may cause the estimated
regression coefficients to have a large sampling variability and thus affect explanatory studies.
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Fenton and Ohlsson, 2000; Ostrand et al, 2004, 2005; Bell et al, 2006; Shin et al, 2009). To justify
the use of this metric for our data we explored how the post-release faults are distributed among
Eclipse packages. Here, we only present the histogram and detailed analysis for the Europa release
because the results for the other releases were very similar. As can be seen from the histogram
in Figure 4a, the distribution of post-release faults across packages is skewed — many packages
had no faults or a small number of faults, but some packages had a very large number of faults.
Specifically, 20% of the packages did not have any post-release faults (i.e., were fault free) and
51% of the packages contained ten or fewer post-release faults. These packages together contained
less than 3% of the total faults. On the other side, the faultiest packages (shown at the right tail
of the histogram in Figure 4a) had as many as 1,920 faults each. Overall, the 20% most faulty
packages contained over 85% of the total faults. (The cumulative negative log log linking function,
given by equation (3), was also chosen based on these observations.)

The results were consistent for all releases of Eclipse considered in this paper, as it can be seen
in Figure 4b, which shows the percentages of the total number of post-release faults located in the
20% most faulty packages for each of the seven releases, together with the descriptive statistics
of the results. It follows that from 66% to 93% of the post-release faults detected across
all products in each release were located in approximately 20% of the packages, with
the average and median around 81% and 84%, respectively.
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Fig. 4: A histogram and bar graph addressing the location of the majority of post-release faults

These results generally agree with other works (Andersson and Runeson, 2007; Boehm and
Basili, 2001; Fenton and Ohlsson, 2000; Hamill and Goseva-Popstojanova, 2009; Ostrand and
Weyuker, 2002), which have consistently found that between 60 and 90% of faults normally reside
in around 20% of the lines of code, files, or packages, depending on the unit. Furthermore, these
results confirm that 20% is a good cut-off point for the most faulty packages used in the nTop20%
performance metric.

To determine the nTop20% metric for our predictive models we used Alberg diagrams. The
Alberg diagram is a standard way to show the relative accuracy of a set of predictions made by
regression for software products (Ohlsson and Alberg, 1996), which provides a succinct manner of
showing the ability of independent variables to rank a dependent variable (Fenton and Ohlsson,
2000).
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Fig. 5: Alberg diagrams showing the effectiveness of regression models (dashed lines) built on
previous releases at predicting faults in the next release. The dotted vertical line marks the top
20% of the faultiest packages.

As an illustration we show two Alberg diagrams — in Figure 5(a) for release 2.1 and in Fig-
ure 5(b) for release 3.0 of Classic. The solid lines show the percentages of the cumulative number
of post-release faults contained by packages, which are sorted on the horizontal axis in decreasing
order by their actual number of faults in the corresponding release. (This means that the faultiest
package is furthest to the left and the least faulty package in the release is furthest to the right).
For the Alberg diagram in Figure 5(a) (Figure 5(b)) the dashed line shows the total number of
actual faults located in the packages identified as the faultiest in release 2.1 (3.0) by the predictive
model built using the data from the previous release 2.0 (2.1). Note that the predicted number of
faults for each package of Classic 2.1 (3.0) based on the model built from the previous release of
Classic 2.0 (2.1) is used to order the packages in decreasing order. Ordering the packages in this
way provides a ranking of the packages which were predicted to be the faultiest by the model. The
area between the dashed and solid lines shows how close the model’s ranking comes to identifying
the actual faultiest packages. It is important to note that we were conservative when plotting the
predictive models’ performances. That is, we only ranked and plotted in dashed lines in our Alberg
diagrams the packages with nonzero predicted fault values. This is the reason why the dashed lines
in Figures 5(a) and (b) terminate before convergence with the solid line. We chose this approach
because packages with zero number of predicted faults cannot be ordered in a meaningful way
and should not be contributing to the accuracy of the predicted ranked lists.

The vertical dotted line at 20% is a reference line used for measuring the effectiveness of a
predictive model. For example, 65.5% of the total post-release faults (solid line) were located in
the top 20% of actual faulty packages in the 2.1 release of Classic. The top 20% of faulty packages
identified by our predictive regression model contained 58.7% of the total post-release faults. Due
to its dependence on the total number of faults residing in the top 20% of the software packages
analyzed, and the fact that this number varies from product to product, the number of faults in the
top 20% of the faultiest packages does not generalize well enough to allow comparisons between
different products or even different releases. To overcome this and support comparison, we used a
normalized version of the Alberg measure consisting of the percentage of faults calculated by the
predictive model found in the top 20% of packages, divided by the actual number of faults in the 20%
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most faulty packages for that product. For brevity, we refer to this normalized performance metric
taken from Alberg diagrams as the nTop20% score for a model. For 2.1 Classic (see Figure 5) the
metric normalized in this way is nTop20% = 58.7/65.5 and it shows that the predicted faultiest
20% of packages account for approzimately 90% of the faults occurring in the actual top 20% of
the faultiest packages. It should be noted that adding a new product would not require rescaling
of the nTop20% scores for the existing products because the normalization is done per product,
that is, with the actual number of faults in the faultiest 20% of packages in that specific product.

We prefer nTop20% over other performance metrics, such as the coefficient of determination
R?, due to its ease of comparison across software products combined with its robustness to outliers,
as detailed by Ohlsson and Alberg (1996).

5.5.2 Rank correlation measured by the Spearman’s p and Kendall’s T,

The Alberg diagram basically shows two ranked lists of packages — one based on the actual number
of post-release faults in each package (shown as a solid line) and another based on the predicted
number of post-release faults in each package using the model built on the previous release (shown
as a dashed line).

The association between two ranked lists is measured by Spearman’s p and Kendall’s 73, cor-
relation coefficients. The values returned by each metric range from -1 to 1, with lower values
showing an indirect correlation, higher values indicating direct correlation, and values around
zero representing no correlation between the two lists.

Spearman’s p is the nonparametric version of Pearson’s r correlation coefficient, and is used
when the assumptions of normality and equal variance are not fulfilled or when the data are given
in an ordinal scale (i.e., data are comprised of ranks), as in this case. For a sample of size n of
two variables X and Y, the differences in ranks on the two variables d; = X; — Y; are used as an
indication of the disparity between the two sets of rankings. Spearman’s p is computed by:

(4)

Tied values among the ranks are handled by assigning them the average of their positions in the
ascending order of the values. For a full description of Spearman’s p correlation coefficient see
(Agresti, 2010).

Kendall’s 73, also described by Agresti (2010), is a variant of the Kendall’s 7 coefficient specif-
ically designed to handle ties within the ranked lists. The Kendall 7, coefficient is defined as:

Ne — Ng
\/(no —n1)(no — nz)

where n. is the number of concordant pairs, ng is the number of discordant pairs, ng = n(n —
1)/2,n1 =Y, ti(ti — 1)/2,m2 = >, u;(uj — 1)/2,t; is the number of tied values in the i" group
of ties for the first quantity, and u; is the number of tied values in the jt group of ties for the
second quantity.

Kendall’s 7, has several advantages® over Spearman’s p. Nevertheless, in order to be able to
compare our results with the previous works which used the Spearman’s p metric we used both
metrics to measure the association of the ranked lists based on the actual and predicted number
of post-release faults. It should be noted that when Spearman’s p and Kendall’s 7, are both used
on the same data, typically Spearman’s p tends to be larger than Kendall’s 73, in absolute value.
However, as a test of significance both produce nearly identical results in most cases.

()

Ty =

9 Kendall’s 7, approaches the normal distribution quite rapidly so that the normal approximation is better for
Kendall’s 7, than it is for Spearman’s p. Another advantage of Kendall’s 73, is its direct and simple interpretation
in terms of probabilities of observing concordant pairs (both numbers of one observation are larger than their
respective members of the other observation) and discordant pairs (the two numbers in one observation differ in
opposite directions from the respective members in the other observation).
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6 Assessment of the SPL quality

The research questions in this section assess the quality of Eclipse as a product line. First, we
study the cross-release reuse by considering the distribution of post-release faults occurring in all
products, by release. Then, we examine the change and fault proneness for packages at different
levels of cross-product reuse as they evolve throughout multiple release and within each release.

6.1 RQ1: Does quality, measured by the number of post-release faults for the packages in each
release, consistently improve as the SPL evolves across releases?

Perhaps the most obvious measure of quality for any piece of software is the number of faults
reported after the software’s release. To discern trends in post-release faults across releases we
offer the three plots in Figure 6. The box plot in Figure 6(a) shows the median value and vari-
ance of post-release faults for the packages in each release. As the Eclipse product line evolves
through releases, there is a noticeable trend of decreasing median values, decreasing variances,
and decreasing interquartile ranges in post-release faults.

The bar graph in Figure 6(b) displays the total number of post-release faults for each release.
As shown, the total number of post-release faults peaks in the Furopa release, then follows a
decreasing trend. This peak can be explained by the developmental changes that took place
between release 3.0 and Europa. Namely, Eclipse, which initially consisted of only one product
Classic, starting from the Europa release began to resemble a true product line with multiple
products. To accommodate this, many changes were made to the structure of the packages and to
the source code itself. Compared to release 3.0 the Europa release had 128 new packages and the
source code more than doubled in size.

To account for this size increase, Figure 6(c) shows post-release faults normalized by size, i.e.,
the average number of faults for each package per one thousand lines of code. When the data
is viewed in this light, the peak is seen in the first studied release and gradually declines to the
lowest value for the Helios release, with the exception of the Ganymede release. It is important
to emphasize that despite the fact that three new products (i.e., C/C++, Java, and JavaEE)
were introduced in the Europa release with 128 new packages, the post-release fault density of the
Europa release still fits the decreasing trend.
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Fig. 6: Plots showing post-release fault data over all packages for each release

To statistically confirm that the SPL quality improves as it evolves across releases we performed
a Kruskal-Wallis test on the distribution of the number of post-release faults shown in Figure 6(a),
as well as on the post-release fault densities shown in Figure 6(c). In both cases, the Kruskal-Wallis
test confirmed that the distributions were not equal for Eclipse releases 2.0, 2.1, 3.0, Europa,
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Ganymede, Galileo, and Helios. Then we ran the post-hoc Jonckheere-Terpstra test, which rejected
the null hypotheses in favor of the ordered alternative hypotheses that the number of post-release
faults, as well as the post-release fault density for each release was less than or equal to those
of the previous release (p = 6.2 x 10722). (Note that even though there is a small visible spike
of the average post-release density in the Ganymede release shown in Figure 6(c), the variation
of the fault density was not statistically significant and did not lead to rejection of the null
hypothesis.) This strong evidence of overall decreasing trends in both the number of
post-release faults and post-release fault densities show that quality did improve as
the SPL evolved through releases.

Quality improvement is intuitively expected in release-based software as it evolves over time,
and several case studies have corroborated this expectation. In a non-SPL context, consistent with
our results, faults have been shown to decrease over multiple releases in empirical software studies
conducted by Ostrand and Weyuker (2002), Ostrand et al (2004), and Khoshgoftaar and Seliya
(2004). However, another non-SPL study conducted by Fenton and Ohlsson (2000) produced con-
flicting results, that is, reported that fault densities remained roughly the same across two releases
of telecommunications software. In a SPL context Mohagheghi and Conradi (2008) reported an
increase in faults across three releases of a telecommunications product, which was a part of a
SPL. The authors claimed that this result was due to improved testing and larger user base. Our
finding that the SPL’s quality improves as it evolves through releases is significant for the follow-
ing two reasons. First, the improved quality was shown to be statistically significant, which was
not the case with related works in non-SPL context (Ostrand and Weyuker, 2002; Ostrand et al,
2004; Khoshgoftaar and Seliya, 2004). More importantly, we showed that the improved quality
over releases exists in a SPL context, which was not the case with the much smaller SPL study
reported by Mohagheghi and Conradi (2008). It appears that, as pointed out by Lim (1994),
“Because work products are used multiple times, the defect fixes from each reuse accumulate,
resulting in higher quality.”

6.2 RQ2: Do packages at different levels of reuse across products mature differently across
releases? Does the quality of products benefit from reusing packages in multiple members of the
SPL?

A key goal of product line engineering is the application of reuse across products to achieve
higher quality, in a cost efficient way (Gomaa, 2004; Pohl et al, 2005). In addition, reuse is also
expected to reduce the changes to software (Weiss and Lai, 1999), that is, reused components
are expected to remain more stable. Therefore, metrics of software change were used as quality
indicators of reused programs, both in a non-SPL context (Thomas et al, 1997; Selby, 2005) and
in a SPL context (Mohagheghi and Conradi, 2008). RQ2 evaluates the change and fault proneness
behaviors of different levels of reuse across products, over multiple releases of the Eclipse product
line and within each release individually. The first part of this research question furthers the very
preliminary observations made in our previous work (Krishnan et al, 2011a), while the second
part is explored for the first time in this paper. It should be noted that RQ2 is relevant only in
the SPL context.

To evaluate the benefits of reuse across products (i.e., from code shared among multiple prod-
ucts,) we grouped the packages in each release into four categories according to their level of
cross-product reuse: single-use packages (used in only one product in this release), low-reuse vari-
ation packages (used in two products in this release), high-reuse variation packages (used in three
products in this release), and common packages (used in all four products in this release). These
categories are visualized by the Venn diagrams in Figure 2. In addition, for each release we ex-
plicitly distinguished between previously existing (‘old’) packages and newly developed (‘new’)
packages. Note that the use of the term ‘old’ refers to packages which were reused across releases.
Packages in any level of cross-product reuse can be ‘old’ (i.e., reused across releases) or newly
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Fig. 7: Box plots showing the total Codechurn of previously existing (‘old’) packages (first row),
the post-release fault densities of previously existing (‘old’) packages (second row) and post-
release fault densities of newly developed (‘new’) packages (third row) grouped by their level of
reuse across products, for releases Ganymede, Galileo, and Helios. The values 1, 2, 3, and 4 on
x-axes note, for each release, the single-use, low-reuse variation, high-reuse variation, and common
packages, respectively. In Ganymede, Galileo, and Helios releases the number of previously existing
packages per level of reuse (single-use, low-reuse, high-reuse, and common) were (74, 32, 16, 61),
(83, 27, 16, 61), and (83, 27, 16, 61), respectively. The sample sizes of newly developed packages
were (10, 6, 0, 1), (1, 0, 0, 0), (18, 1, 0, 0)for Ganymede, Galileo, and Helios releases, respectively.

developed. For example, one newly developed common package (reused across all four products
considered in this paper) was introduced in the Ganymede release.

Figure 7 depicts the total Codechurn of previously existing packages (the first row), the post-
release fault densities of previously existing packages (the second row), and the post-release fault
densities of newly developed packages (the third row) for the Ganymede, Galileo, and Helios
releases. The Europa release is not considered in this section due to the three years time difference
from the previously considered release, 3.0, which made the identification of newly developed
packages impossible.

Exploring the total Codechurn, shown in the top row in Figure 7, showed that previously
existing packages at all levels of reuse, including the common packages, continued to change.
This suggests that rather than becoming stable over time in terms of lines of code,
common packages may acquire new functionality and must also adapt to coexist with
newly introduced variation packages. This evidence-based observation does not support the
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traditional expectation that commonalities would remain stable (Weiss and Lai, 1999), that is,
would not be change prone. Interestingly, even though the introduction of new functionality and
adaptation also introduced new post-release faults, the fault density of the common packages
remained fairly low, that is, the common packages incurred a low number of faults for their size.
In general, the second row of Figure 7 shows that even though pre-existing (‘old’) packages
had a relatively high total Codechurn, they showed low post-release fault densities,
clearly illustrating a benefit of reuse across releases.

To examine how ‘old’ packages at different level of cross-product reuse (i.e., single-use, low-
reuse, high-reuse, and common packages) evolve across releases, we ran two tests — the Friedman
test and Page test for ordered alternatives — first for total Codechurn and then for post-release
fault density. These tests are applicable here because for each level of reuse across products, we
examined the values of the corresponding attribute (i.e., total Codechurn and post-release fault
density) of the same packages through three releases (i.e., Ganymede, Galileo, and Helios), which
resulted in a related, not independent, samples. The results of the tests are summarized in Table 4
and briefly described below.

For common packages, the Friedman test did not reject the null hypothesis that there is no
difference between the total Codechurn across the three releases (i.e., Ganymede, Galileo, and
Helios). The results were the same for high-reuse variation packages and low-reuse variation pack-
ages. In other words, at each of these three levels of cross-product reuse, packages continued to
change, that is, the amount of changes did not decrease as they matured through the releases.
On the other side, the Friedman test rejected the null hypothesis that there is no difference in
total Codechurn for the single-use packages. The Page test for ordered alternatives'® showed (with
a significance of 0.05) that the total Codechurn of single-use packages decreased monotonically
through releases, that is, single-use packages had less total Codechurn in the later releases. The
decreasing change proneness for single-use packages is likely due to the fact that they
were not affected by changes made in other products. (The results for the Codechurn den-
sity (i.e., total Codechurn divided by the size measured in thousand lines of code) were consistent
with these results for the total Codechurn.)

The Friedman test rejected the null hypotheses that there is no difference in the quality
(measured by post-release fault density) of the three subsequent releases for all levels of reuse
across products, except for the high-reuse variation packages. Based on the Page test for ordered
alternatives, the post-release fault densities showed a decreasing trend across the three releases
under consideration for both common packages and single-use packages. The test for multiple
comparisons between releases for low-reuse variation packages showed a statistically significant
decrease in post-release fault densities between the Ganymede and Helios releases.

To summarize, for the old packages only single-use packages showed a decreasing change
proneness as they evolved across releases. Packages at other levels of cross-product
reuse (i.e., low-reuse, high-reuse, and common packages) did not experience a statis-
tically significant difference in change proneness. When it comes to quality measured by
the post-release fault density, only high-reuse variation packages did not improve their
quality as they evolved across releases. On the other hand, the common, low-reuse
variation and single-use packages experienced statistically significant quality improve-
ments, which explains the improvement of SPL quality as it matured through releases shown to
exist in RQ1.

Next, we focus on the ‘old’ packages within each of the three releases and test how change
and fault proneness differ among different levels of cross-product reuse (i.e., singe-use, low-reuse,
high-reuse, and common packages). This part of RQ2 was not explored in our previous work

10 If the Friedman test results in rejection of the null hypothesis that there is no difference, a post hoc multiple
comparison test is used to identify where the difference is. Alternatively, instead of the Friedman test, one can use
the Page test which is used to test the null hypothesis that there is no statistically significant difference in several
related samples (i.e., Ho : p1 = p2 = p3) against the ordered alternative that the samples differ in a specified
direction, with at least one inequality (i.e., H1 : p1 > p2 > p3).
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Table 4: Trends of change and fault proneness across three releases (Ganymede, Galileo, and
Helios), for different levels of cross-product reuse (i.e., common packages, high-reuse packages,
low-reuse packages, and single-use packages). The term ‘No difference’ is used for the cases in
which the null hypothesis that there is no difference across the three releases cannot be rejected.

Cross-product reuse level Trend of Total Codechurn  Trend of Post-release Fault Density
across releases across releases
Common packages No difference Decreasing trend
High-reuse variation packages No difference No difference
Low-reuse variation packages No difference Decreasing trend between Ganymede & Helios
single-use packages Decreasing trend Decreasing trend

Table 5: Effects of cross-product reuse (i.e., common packages, high-reuse packages, low-reuse
packages, and single-use packages) on change and fault proneness for each release (Ganymede,
Galileo, and Helios). The term ‘No difference’ is used for the cases in which the null hypothesis
that there is no difference across different levels of reuse cannot be rejected.

Release Trend of Total Codechurn  Trend of Post-release Fault Density
within release within release

Ganymede No difference No difference

Galileo No difference No difference

Helios No difference No difference

(Krishnan et al, 2011a). Interestingly, for each of the three releases, Kruskal Wallis tests retained
the null hypothesis that there is no difference among total Codechurn in different levels of reuse
across releases, as well as among post-release fault density (see Table 5). In other words, change
proneness (measured in total Codechurn or Codechurn density) and fault proneness
(measured in post-release fault density) of ‘old’ packages, within each release did not
experience a statistically significant difference among common, high-reuse, low-reuse
and single-use packages. This means that within one release, cross-product reuse did not affect
the change and fault proneness of the ‘old’ packages (i.e., packages reused across releases). This
unexpected result is not consistent with the results of related work based on a much smaller SPL
(Mohagheghi et al, 2004; Mohagheghi and Conradi, 2008), which reported that reused components
were less modified and had lower fault density than the non-reused components. Some reasons for
these inconsistent results may be the different domain and development dynamics between Eclipse
and the industrial product line from Ericsson, and the facts that the study by Mohagheghi and
Conradi (2008) was based on only two products that shared ‘as-is’ 60% of the components and,
furthermore, only included the variable components of one of these two products because the
variable components of the second product were not available.

For the newly introduced (‘new’) packages, shown in the third row of Figure 7, no clear trend
for post-release fault densities was observed. In the Ganymede release the ten newly developed
single-use packages of JavaEE had noticeably lower post-release fault densities than the six newly
developed low-reuse variation packages, which were shared between Classic and JavaEE. The
one common package had very few post-release faults. In the Galileo release, only one newly
developed single-use package existed in our dataset; it had no post-release faults. Of the nineteen
newly introduced packages in the Helios release, eighteen were single-use packages and one was a
low-reuse variation package. The eighteen new single-use packages, which belong to JavaEE, had
nearly twice the total Codechurn as the one newly introduced low-reuse package, but together
contained only two post-release faults. Basically, the new single-use packages had the highest
total Codechurn and the lowest fault density. In contrast, the low-reuse package, shared by Java
and JavaEE, had over a thousand post-release faults and the highest post-release fault density.

In summary, newly developed low-reuse variation packages showed higher post-
release fault densities than either single-use packages or the common package. However,
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we do not draw strong conclusions with respect to the post-release fault densities of the newly
developed packages due to the small sample sizes, especially when compared to the sample sizes
of the previously existing packages.

7 Prediction of post-release faults from pre-release data

This section discusses findings related to the predictive ability of models generated according
to the methods described in Section 5. Basically, in each release we built a model from each
product and then used it to make predictions for each product of the subsequent release from the
corresponding pre-release data. This process resulted in building fifteen models which were then
used for prediction in 54 trials.

For each of the fifteen models, we performed feature selection using stepwise regression with
bidirectional elimination. Basically, the selection method incrementally determined a set of features
which improved the fit of the model. The number of features selected for each of the fifteen models
created in this study ranged from 4 to 16, with a mean value of 8.7. This indicates that a small
number of features is sufficient to rank packages by the predicted number of post-release faults
using the model built on the previous release and the pre-release data of the current release.

The Alberg diagrams for each of the 54 trials are shown in Figures 5 and 8. The solid lines
in each diagram represent the actual percentage of post-release faults, while the dashed lines
represent the performance of each predictive model constructed from a product of the previous
release, as labeled in the legend at the bottom of the figures. The vertical dotted lines represent
the 20% cut off point for ease of reference as described in Section 5.5.1.

The Alberg diagrams shown in Figures 5 and 8 were used to compute the n'Top20% performance
metric (i.e., the percentages of actual faults found in the top 20% of faulty packages identified by
the predictive models), which are presented in a tabular form in Figure 9(a). Figures 9(b) and (c)
show the values of the other two performance metrics — Spearman p and Kendall’s 7, — each of
which measures the association between two ranked lists of packages: the list ranked by the actual
number of post-release faults and the list ranked by the predicted number of post-release faults.
The tables in Figure 9 (a)-(c) are shown as heat maps where, for each performance metric, the
better results are shaded darker.

Specifically, Figures 9 (a)-(c) show the results (i.e., the three performance metrics nTop20%,
Spearman p and Kendall’s 73,) of the cross-product predictions (i.e., the 54 combinations of model-
building and model-evaluation described in Section 5.3). In these figures, the releases on which the
predictions were made are labeled on the bottom. The models were built on the previous release.
The columns represent the products on which predictive models were built. Columns are labeled
at the top by product name. The rows represent the products on which the predictive models were
evaluated, and are labeled on the left. Each value in the heat map tables represents a performance
metric score achieved by evaluating the predictions made on the release of the row-labeled product
by the model built on the previous release of the column labeled product. We use Figures 5, 8
and 9(a)-(c) to answer RQ3 and RQ4, which are focused on the cross-product predictions.

7.1 RQ3: Can we accurately predict which packages will contain a high percentage of the total
post-release faults from pre-release data using the models built on the previous release?

To address this question, we first discuss the results for the nTop20% performance metric pre-
sented in Figure 9(a). The results show that the best nTop20% metric for each product across all
releases is in the range of 76% to 97%, which indicates that a high percentage of the faultiest
packages post-release within a product can be consistently predicted from the pack-
ages’ pre-release data. As can be seen from the third column from the left in Figure 9(a), the
prediction model built on the Classic product in the release 3.0 was able to predict
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Fig. 8: Alberg diagrams for each product’s predictive trials in the Europa, Ganymede, Galileo,
and Helios releases. The releases on which the predictions were made are shown on the bottom.
The predictive models were built on the previous release. The rows represent the products on
which the predictive models were evaluated and are labeled on the left by the product name. In
each Alberg diagram the full line represents the cumulative number of actually observed faults
and each of the four different dashed lines represent the predicted values by the model built on
one of the four products given in the legend.

very accurately the nTop20% scores of the three new products introduced in the
Europa release (i.e., C/C++, Java, and JavaEE).

Moreover, the nTop20% scores for all releases remain at high levels, not only for the best model,
but in general. The only exceptions are two groups — the first full column of Galileo predictions
(made by models built on C/C++ data in Ganymede release), and the last three cells of the
bottom two rows in the Helios predictions (predictions made for Java and JavaEE). Examination
of the raw data and Alberg diagrams shown in Figure 8 showed that these two groups of particular
models performed worse than others due to an outlier package in each case, as detailed next.

Models built from the Ganymede version of C/C++ provided uncharacteristically poor pre-
dictions for all products in the Galileo release (see the first column of the Galileo release in



Assessment and cross-product prediction of SPL quality 27

Classic Classic Classic C/C++ Classic Java lavaEE  C/C++ Classic Java lavaEE
C/CH 89%
Classic 36%
Java
JavaEE 67%

21 3.0 Europa Helios

(a) A heat map of the values for the performance metric nTop20%. Higher values represent better results
and are shaded darker.
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(b) A heat map of the values for the performance metric Spearman’s p. Higher values represent better
results and are shaded darker.
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(c) A heat map of the values for the performance metric Kendall’s 7,. Higher values represent better results
and are shaded darker.

Fig. 9: Heat maps showing the results of the predictive trials for each product, in each release.
The releases on which the predictions were made are shown on the bottom. The predictive models
were built on the previous release. The columns represent the products on which predictive models
were built, and are labeled at the top by product name. The rows represent the products on which
the predictive models were evaluated and are labeled on the left by the product name. Each value
in the table represents a performance metric score achieved by evaluating the predictions made
for that release of the row-labeled product, using the model built on the previous release of the
column labeled product.

Figure 9(a)). The model built on Ganymede’s C/C++ data predicted fewer faulty packages for
every product than other models. This is represented by the low values of predictions from the
models built on C/C++ (shown with a dashed line) at the vertical 20% line in the Alberg dia-
grams for Galileo Classic, Java, and JavaEE. These are shown respectively in the second, third,
and fourth rows of the third column in Figure 8.

Upon closer examination, we saw that Ganymede’s release of C/C++ had a much different
distribution of faults than the other products in any release. As shown in Figure 10, most products
showed a similar distribution of faults, with one very faulty package followed by several packages
with a relatively high number of faults, then a small spread of the majority of packages with very
few faults. However, as the boxplot in Figure 10 shows, Ganymede’s C/C++ had one very faulty
package and a large difference with the next faulty package. This absence of packages between
the faultiest packages and those with relatively few faults created an “all or nothing” effect in the
predictive model.

Predictions for the Helios versions of Java and JavaEE made by the model built from the
Galileo versions of Classic, Java, and JavaEE were also worse than others (see the last table in
Figure 9(a)). The data revealed that the faultiest package in the Helios release had 1,021 total post-
release faults and was a low-reuse variation package shared by Java and JavaEE. This package,
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Fig. 10: A boxplot of the distributions of post-release faults of C/C++ product across releases.
Notice the one extremely faulty package in the Ganymede release compared to the other packages
in that release.

which comprised 36% and 25% of the total faults for the Helios release of Java and JavaEE,
respectively, was not identified as one of the top 20% of faulty packages by the three specified
models. In the Alberg diagrams for Java and JavaEE in the Helios release (shown in the last
column of the third and fourth rows in Figure 8), this is indicated by the low values at the 20%
vertical line followed by large vertical jumps for the predictive models built on Classic, Java, and
JavaEE of the Galileo release. Looking more closely, it appeared that this particular package was
not identified among the faultiest 20% of packages in the Helios release because it had different
values for the two main features common to the predictive models of Classic, Java, and JavaEE
(i.e., the values for both Authors and Bugfizes were much lower).

We also tracked the fault proneness of individual packages as they evolved through releases.
As shown in Figure 1la, many packages did not appear among the 20% most faulty packages
for every release in which they existed, meaning that their fault proneness did not persist across
all releases. This shows that while some packages may be identified by developers as “the usual
suspects”, there are many other packages that are among the faultiest in only one or two releases.
Identification of these intermittently faulty packages is not a trivial problem and is likely to be
quite useful to development teams. Figure 11b shows that our predictive models were able
to identify not only the usual suspects (i.e., packages that were consistently among
the most fault prone in the releases they existed in), but also to identify accurately
the intermittently faulty packages, with an overall accuracy close to 80%.

Next, we discuss the two additional performance metrics, Spearman’s p and Kendall’s 73, which
are shown in Figures 9(b) and 9(c), respectively. Each of these two correlation coefficients measures
the association between two ranked lists of packages: the list ranked based on the actual number of
post-release faults and the list ranked based on the number of post-release faults predicted by our
models. It should be noted that, in general, the values of Spearman’s p are higher than the values
of Kendall’s 7. As discussed in Section 5.5.2, Kendall’s 7, has some advantages for measuring the
association of two ranked lists. Nevertheless, we present the Spearman’s p values as well in order
to be able to compare our results with the results presented in the related work.

Specifically, we compare our results shown in Figure 9(b) with the related works which used
Eclipse as a case study (D’Ambros et al, 2009, 2010; Zimmermann et al, 2007). It should be noted
that none of these three previous studies treated Eclipse as a product line, that is, they did not
consider reuse across products and its effect on quality and predictions. D’Ambros et al (2009)
examined two components of Eclipse from releases 3.1 and 3.3 using 50-fold cross validation of
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Fig. 11: Visualizations of the fault proneness for 81 packages that were among the 20% of the
most faulty packages in at least one of the seven releases considered in this paper.

regression models built on different combinations of metrics. Spearman correlation p values ranged
from 0.4 to 0.81. D’Ambros et al (2010) evaluated many different prediction approaches on several
components of Eclipse versions 3.1, 3.4, and 3.4.1. The Spearman’s p values attained when using
the same change metrics as in this study ranged from 0.165 to 0.534 and, when using comparable
static code metrics, ranged from 0.277 to 0.547. The values of Spearman’s p shown in Figure 9(b)
are comparable with values reported by D’Ambros et al (2009, 2010). It should be noted, however,
that exact comparison with D’Ambros et al (2009, 2010) is not possible because they used cross
validation and studied different releases of Eclipse. More accurate comparison can be made with
the results presented by Zimmermann et al (2007), which were based on using logistic regression
models built from static code metrics on Eclipse Classic releases 2.0 and 2.1 to predict the post-
release faults for releases 2.1 and 3.0, respectively (among other combinations). The obtained
values for Spearman’s p were 0.420 for the release 2.1 predictions and 0.449 for the release 3.0
predictions. Our results for these same combinations of Classic releases, as shown in Figure 9(b),
are better (i.e., 0.570 and 0.520, respectively), which could be due to the addition of change metrics
to our features and/or to the different machine learning technique we employed.

In summary, results presented in Figures 9(a)-(c) show that models built from the data of
one release could accurately predict the most fault prone packages in the subsequent
release from the pre-release data of that release. More importantly, the prediction
model built on Classic, the only existing product in release 3.0, was able to very
accurately predict the fault proneness of the three new products (i.e., C/C++, Java,
and JavaEE) introduced for the first time in the Europa release. Furthermore, rank-
ings of fault prone packages created by our models were positively correlated to the
actual rankings, and the values are comparable or better than those in related works
using Eclipse as a case study.

7.2 RQ4: Do the predictions of the most fault prone packages benefit from the available data for
other products? In other words, do cross-product predictions improve the accuracy?

This research question considers the benefit of the product line approach for the prediction of
post-release fault proneness. This has not been previously explored in the related works, including



30 Thomas Devine et al.

our previous work (Devine et al, 2012; Krishnan et al, 2011b,a, 2012), and is of significant interest
to SPL developers.

As shown in Figure 9(a), the best predicted values of nTop20% are typically not found on the
main diagonal, i.e., where the predictive model for a product is constructed from the data of the
same product in the previous release. This suggests that fault predictions for a member of a SPL
can benefit from using data available for other members of the family. We speculate that this
benefit comes from the reuse inherent in the structure of SPLs. To test this, when examining the
values within the tables in Figure 9(a), we focus on exploring row trends and column trends.

First, we note that row patterns show trends in which particular products have consistently
good predictions made by models built from any product. Specifically, we make several interesting
observations. C/C++ and Classic show a strong row consistency, i.e., regardless of the product
from the previous release from which a model is constructed, it will consistently make accurate
predictions for C/C++ and Classic. As shown in Figure 2, these two products are comprised
mostly of common code and are the smallest of the four products. The only exception to this
trend is the prediction made in the Galileo release by the model built from the Ganymede release
of C/C++, which resulted in poor predictions across the board due to an outlier package, as
discussed in RQ4.

Second, column patterns emerge when the models built by a particular product have consistent
results regardless of the product on which they are evaluated. Thus, Java and JavaEE show a
strong column consistency, i.e., predictions made on any product by models built from these two
products are consistently very good. These two products are the largest in terms of source code
and packages, and also include the most variability. The only exceptions are the predictions made
on the Helios versions of Java and JavaEE, which suffered from a very large outlier, as discussed
in RQ4.

Based on these observations for the nTop20% metric, we conclude that models produced better
results when built on larger products with more variation (non-shared packages) than when built
on smaller products. Models also produced better predictions for smaller products (consisting
mostly of common packages) than they did for larger products. This is evidence that prediction
of the most fault prone packages benefited from data available from other products, that is, cross-
product predictions provided accurate results.

Next, we explore whether these trends remain valid with respect to the performance metrics
that measure how well packages are ranked based on predicted numbers of post-release faults. As
shown in Figures 9(b) and 9(c), while some of the best values for Spearman’s p and Kendall’s 7,
appeared on the main diagonals, at least three fourths of the best rankings for both performance
metrics were made by models built from previous releases of other products. As in the case of the
nTop20% metric, this suggests that post-release fault rankings for products in a product line may
benefit from the data available from other members of the product line family. When examining
the results for values of Spearman’s p and Kendall’s 75, row and column patterns also emerged.
As was the case for the nTop20% performance metric, both Classic and C/C++ displayed a
strong row consistency. Furthermore, Java and JavaEE showed a strong column consistency with
the ranking performance metrics Kendall’s 7, and Spearman’s p, as they did with the nTop20%
metric.

In summary, the results based on all three performance metrics are consistent and show that
models produced the best results when built from larger products with more variation
(non-shared packages), and when making predictions on smaller products consisting
mostly of common packages. That is, cross-product predictions produced more accu-
rate results.

It should be noted that in a non-SPL context the cross-project predictions were not successful.
The closest to our work is a study which used regression with five principal components as inde-
pendent variables to predict the post-release faults of five Microsoft products (Nagappan et al,
2006). The results of cross-project predictions were mixed — some product histories could serve
as predictors for other products, while most could not. The authors concluded that predictions
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were accurate only when obtained from the same or similar products. Another group of non-SPL
related papers was focused on classification of software units into fault-prone and fault-free. Zim-
mermann et al (2009) used 12 real-world software applications (i.e., non-SPL products) and ran
622 cross-project predictions. That work showed “an alarmingly low success rate of 3.4%”, where
a prediction was considered successful if the precision, recall, and accuracy values were above 0.75.
Interestingly, even using models from applications in the same domain or with the same process
did not lead to accurate predictions. Attempts to improve the performance of cross-project fault
classification were based on several approaches, such as data transformation, data selection, and
transfer learning. The data transformation approach was based on adjusting the average values
of each metric in the training and testing sets (Watanabe et al, 2008). The data selection ap-
proaches included a Nearest Neighbors filter (Turhan et al, 2009), brute force selection method
based on combination of projects (He et al, 2012), and selection of similar projects combined with
feature subset selection (He et al, 2013). Transfer learning methods, on the other side, tried to
improve the classification algorithmically (Ma et al, 2012; Nam et al, 2013). In all these cases
the improvements were in terms of the average performance metrics, with not all cross-project
prediction being improved and, more importantly, resulted in cross-project predictions that were
worse than within project predictions.

8 Generalizability of the findings and implications for software product lines
development

In this section we synthesize the findings from this study with our findings based on a much smaller
industrial software product line of software testing tools, called PolyFlow (Devine et al, 2012) with
a goal to identify the results that generalize across different software product lines. It should be
noted that the study of the industrial product line (Devine et al, 2012) was focused only on pre-
release faults (data on post-release faults were not available) and the sample size of predictions was
small (i.e., pre-release faults were predicted only for two components). Nevertheless, the following
findings are consistent across both case studies and provide insights into characteristics of reuse
across products in a software product line, and the benefit of such reuse to the quality of products
and accuracy of predictions.

— The cross-product reuse in software product lines is not ‘all or nothing’, that is, packages are
either reused in all products or they are implementing variabilities used in a single product
only. On the contrary, there is a wide spectrum of levels of cross-product reuse, from common
packages shared among all products, to high-reuse and low-reuse variation packages shared
among some, but not all products, to single-use packages used in only one product.

— Both pre-release faults and post-release faults have skewed distributions, that is, most of the
faults are contained in a small set of components/packages.

— Pre-existing components/packages, including the common components/packages, continuously
change, but tend to have low fault densities. This is not always true for newly developed
components/packages.

— Predictions of pre-release faults in case of PolyFlow and post-release faults in the case of
Eclipse can be done accurately from pre-release data. Moreover, predictions benefit from data
available from other products in the software product line.

The consequences of the data-driven investigations described in this paper and in our previous
work (Devine et al, 2012) for product line developers lie primarily in the intended future use of
the empirical results to assist in decisions as to which techniques are best suited to product line
change and quality management. We describe here three areas in which these works can inform
and improve product line development.

— Assessment of product line evolvability. It is especially important in a product line to assess
how readily its domain engineering assets will support change. For example, Breivold et al
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(2012) in their recent review of software architecture evolution research, described several
techniques that have been suggested to assess evolvability. Data-driven analyses such as those
presented here can help in evaluating these techniques, in determining which of these are well
suited to product lines, and in customizing the use of techniques to anticipate change to the
attributes (size in number of products, legacy or greenfield, commercial or open-source, etc.)
of individual product lines.

— Accurate, early prediction of quality in new products. One of the most promising results from
the work reported here is related to cross-product predictions, that is, to the fact that using
data from previous products enabled good predictions of the quality of new products. Being
able to predict with some confidence which packages are likely to be among the most fault-
prone leads to better decisions as to where to place scarce testing resources and when to deploy
new products.

— A need for better traceability and identification of the rationales for changes. Some questions
that product line organizations ask are currently stymied by a lack of data. Improving the
traceability and identification of the rationales for changes, including bug fixes, is needed
to support the improvement of product line practices. In the case of Eclipse, we discussed
with an IBM manager additional traceability links that, if added, will improve the variability
management of Eclipse. In the industrial product line PolyFlow, missing information about who
had touched the code added uncertainty. Therefore, we collaborated with the lead developer
and suggested additional fields to be added to the product line’s bug-reporting database. In
general, knowledge management tends to be an even bigger problem for successful product
lines than for individual systems because of the change across both releases and products.

9 Threats to validity

In this section, we describe several threats to the validity of this study and the measures taken to
mitigate them.

Construct validity addresses whether we are testing what we intended to test. An obvi-
ous and prevalent construct validity threat is insufficiently defining constructs before translating
them to metrics. Inconsistency and imprecision of terminology are significant threats to validity
in software quality assurance which can complicate comparisons of results across studies. We were
careful to provide the definitions of all terms and metrics used in this paper and to avoid ambigu-
ous or inconsistently used terms, such as defects, that are often used differently throughout the
literature.

Mono-operation bias to construct validity occurs when the cause-construct is under-represented.
Many empirical studies use limited data, that is, are missing types of data that could help ex-
plain the cause-effect relationships better. For example, many fault prediction studies were based
on using only static code metrics. Throughout this study we used both static code and change
metrics, allowing our feature selection method to choose the features that are the best predictors.

Typically, a common step in creating regression models is to filter the data to remove outliers.
We did not remove outliers in order to maintain the relevance of this study to actual software
development. In software quality assurance, it is often the case that some files and packages have
significantly more post-release faults than others, which was confirmed in this study as well. The
distributions of many of the metrics we gathered are also skewed. For instance, in the Helios release
the largest package, org.eclipse.jdt.core, has 431 KLOC, which is significantly higher than the mean
value of 20 KLOC over the entire release. In addition, this is the second faultiest package in that
release and therefore is one of the main targets of our search. In general, for skewed distributions
such as the distribution of the number of post-release faults across software packages, it is most
important to identify the packages at the tail of the distribution. Therefore, even though excluding
outliers might have led to better predictions, no data were excluded from our datasets.
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Internal validity threats concern influences that, without researchers’ knowledge, can affect
the independent variables and measurements. The biggest threat to internal validity is data quality.
In total, for the named releases (i.e., Europa to Helios) we were able to retrieve archived source
code for 91.6% of the 136,567 total files for which CVS data was retrieved. This is important
because these are the four releases for which Eclipse followed the SPL approach, and thus are our
main focus. For the source code of the older releases 2.0, 2.1, and 3.0 of Classic we were able to
download the source code for only 18,111 of the 41,416 files. While this number seems low, it is
comparable to the amount of data collected by Zimmermann et al (2007). In particular, based
on the data for the 2.0, 2.1, and 3.0 releases available from the repository given by Zimmermann
et al (2007), their dataset consisted of 15,395 files.

We built our dataset by combining static code metrics with change metrics collected by Kr-
ishnan et al (2012). As described briefly in Section 4.1, there were several obstacles to collecting
a complete set of change logs for all files in every release of Eclipse, including ‘dead’ files moved
to the CVS repository Attic. These difficulties, as well as how they were overcome and how the
data set was validated, are detailed by Krishnan et al (2012), and we are confident in the quality
of the data.

Conclusion validity concerns the ability to draw correct conclusions. Using statistical tests in
cases where their assumptions are violated is the most obvious threat to conclusion validity. As our
data did not conform to the normal distribution, we analyzed our results using nonparametric tests
(such as the Kruskal-Wallis test and the post-hoc Jonckheere-Terpstra test, Friedman test and
post-hoc multiple comparison test, and Page test) to explore the trend of post-release faults across
releases. Due to the skewness of the feature distributions and the response variable distribution,
we used the Spearman rank correlation coefficient to assess the correlation of individual features
with the response variable (i.e., number of post-release faults). In addition, for the association
of the ranked lists ordered by predicted and actual number of post-release faults we used the
Spearman and Kendall’s 7, correlation coefficients, which have minimal assumptions. We also
used appropriate versions of these statistics for datasets with many ties.

Validation of the results is an important and necessary part of any empirical study. One way
to validate the results could be to present them to the software development team and use their
feedback as validation. This feedback was unattainable despite our attempts to contact Eclipse
developers. However, our empirical predictions were validated by the real, reported post-release
faults in the bug tracking system. By building our models on one release and then using them to
make predictions of the post-release faults in the following release, we were able to compare our
predictions to the real number of reported post-release faults.

External validity concerns the generalizability of results. It is impossible for research based
on one case study to claim that its results would be valid for other studies. Therefore, whenever
possible, we compared the observations made in this paper with the relevant results in the previ-
ously published works that were based on Eclipse and other software systems. We also synthesized
the findings of this study with the findings from our previous work based on an industrial case
study (Devine et al, 2012) to contribute towards identification of characteristics that are invariant
across multiple SPLs. In addition, in this paper we presented the complete details of how our
study was performed so that it may be replicated in the future. Finally, we provided definitions
of the features and performance metrics used in this paper, which support objective comparison
of our results with the results of future case studies.

10 Conclusion

Software product line engineering is a paradigm for reuse which is widely used to develop high-
quality software product families faster and with less cost than traditional development methods.
Real world case studies of SPLs are necessary both to empirically evaluate the benefit of product



34 Thomas Devine et al.

line engineering and to improve the development and maintenance process by supplying actionable
insights into how SPLs behave in practice.

The main goals of this paper are to explore how the two dimensions of software reuse, i.e.,
cross-product reuse and cross-release reuse, affect the quality of SPL and our ability to accurately
predict fault proneness. The results are based on an empirical study of Eclipse, a mature and
well documented open-source SPL with a wide and diverse user base. Our examination included
both static code metrics derived from the source code and change metrics extracted from the CVS
repository logs. The data, collected over the course of seven releases for four products, included
over 135,000 files containing 20 million lines of code, aggregated into packages and described by
112 different features based on the static code and change metrics.

Our main findings are summarized in Table 6. The top part of the table summarizes the quality
assessment results, and the bottom part summarizes the prediction results. The first column
reports the findings; the second column provides the location in the paper of the evidence backing
up each finding; and the final column shows how each finding compares to results reported in
related works, if any.

Table 6: Summary of the main findings

Findings Location of evi- | Related results
dence

Findings related to quality assessment

Quality, measured in number of post-release faults, im- | RQI: Figures 6a & | Innon-SPL context consistent with (Khoshgoftaar and
proves as the SPL evolves across releases. 6¢c Seliya, 2004), (Ostrand et al, 2004), (Ostrand and
Weyuker, 2002), and inconsistent with (Fenton and
Ohlsson, 2000). Inconsistent with the result of a much
smaller SPL (Mohagheghi and Conradi, 2008).
Across releases, for ‘old’ packages, only single-use pack- | RQ2: Figure 7 (top | The across-releases results further the very prelimi-
ages showed decreasing change proneness; the common, | two rows) & Ta- | nary study of different levels of cross-product reuse
low-reuse variation, and single-use packages experienced | bles 4 and 5 (Krishnan et al, 2011a). Within-release findings are
improvement in quality, but high-reuse variation packages reported for the first time in this paper.

did not. Within each release, for ‘old’ packages, change
and fault proneness were not different for different levels
of cross-product reuse.

Findings related to post-release fault prediction
Pre-release data consistently predicts the top 20% of faulty | RQ3: Figures 9a, | Not explored previously in a SPL context.
packages, post-release. Best n'Top20% scores are from 76% | 9b & 9¢
to 97%, for each product across all releases. Pre-release
data accurately ranks packages based on predicted num-
bers of post-release faults.

Fault proneness predictions benefit from data available for | RQ4: Figures 9a, | Explored for the first time in this paper for cross-

other products of the SPL. Models produce better results | 9b & 9c¢ product predictions. In non-SPL context the cross-
when built from larger products and when making predic- project predictions did not show promising results
tions/rankings on smaller products. (Nagappan et al, 2006).

Briefly, the assessment results showed that the SPL quality improved as it evolved across the
seven releases considered in this paper. Furthermore, as the product line continued to evolve across
releases, previously existing (i.e., ‘old’) common packages, high-reuse variation packages and low-
reuse variation packages continued to change; only single-use packages experienced decreasing
change proneness as they matured across releases. While the previously existing high-reuse varia-
tion packages did not exhibit improvement in quality (measured by the post-release fault density),
common packages, low-reuse variation packages, and single-use packages improved in quality. The
most surprising assessment result is that common, high-reuse variation, low-reuse variation, and
single-use packages, among ‘old’ packages within each release, did not experience a statistically
significant difference in change proneness and fault proneness (measured in post-release fault den-
sity).

Ranked predictions of post-release faults were made using generalized linear regression models.
These models treated the distribution of post-release faults as an ordered multinomial distribution
and used the cumulative negative log log linking function, which is particularly well-suited for
modeling skewed distributions, such as post-release fault data. The results showed that models
built from the data of one release could accurately predict the most fault prone packages in the
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subsequent release from the pre-release data of that release. Furthermore, rankings of fault prone
packages created by our models were positively correlated to the actual rankings.

The most interesting finding, from a product line perspective, is that the best predictive models
for each product were built from pre-release data that included other products. This means that
the predictions benefited from the use of data from other products. Specifically, models built from
larger products with more variability typically produced better predictions than models built
on the smaller products, which mainly consisted of common packages. Furthermore, all models
achieved their best results when making predictions on smaller products.

Finally, as described in Section 8, several of the main findings reported in this paper are
consistent with findings from our earlier work on an industrial SPL. These data-driven investiga-
tions clearly show that the interrelationship between cross-product reuse and cross-release reuse
is more complicated and less static than SPL techniques routinely support. The results therefore
suggest that SPL development can benefit from better ways to characterize and support ongoing
change across the entire spectrum of common, high-reuse, and low-reuse components to sustain
and predict quality across the lifetime of the products and the product line.
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Appendix: Aggregation metrics

The static code and change metrics were collected at file-level and then were aggregated to the
package level, as specified in Tables 7 and 8. As a result, each package was characterized by a
vector m of 112 metrics (i.e., features), where m|i],i = 1,...,73 are static code metrics, while
m/i],i =74,...,112 are change metrics.

Table 7: Aggregations applied to each static code metric

Static code metric

Aggregation levels

LOC

Statements

Percent Branch Statements
Method Call Statements
Percent Lines with Comments
Classes and Interfaces
Methods per Class

Ave Statements per Method
Max Complexity

Ave Complezity

Max Block Depth

Awve Block Depth
Statements at Block Level 0
Statements at Block Level 1
Statements at Block Level 2
Statements at Block Level 3
Statements at Block Level 4
Statements at Block Level 5
Statements at Block Level 6
Statements at Block Level 7
Statements at Block Level 8
Statements at Block Level 9

Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max
Mean, Median, Max, Sum
Mean, Median, Max
Mean, Median, Max, Sum
Mean, Median, Max
Mean, Median

Max

Mean, Median

Max

Mean, Median

Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum

Table 8: Aggregations applied to each change metric

Change metric

Aggregation levels

Revisions
Refactorings
Bugfizes

Authors

LOC Added

Max LOC Added
Ave LOC Added
LOC Deleted
Mazx LOC Deleted
Ave LOC Deleted
Codechurn

Max Codechurn
Ave Codechurn
Max Changeset
Ave Changeset
Age

Weighted Age

Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum
Mean, Median, Max, Sum
Sum

Max

Mean, Median

Sum

Max

Mean, Median

Sum

Max

Mean, Median

Max

Mean, Median

Mean, Median, Max, Sum
Mean, Median, Max, Sum




