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Abstract

Uncertainty analysis through sensitivity studies and quan-
tification of the variance of the reliability estimate has become
more common in architecture-based software reliability stud-
ies. However, up to this point no attempts have been made to
explicate the results of such analysis. Our earlier work based
on several medium to large scale empirical studies showed
that a very few parameters have a significant impact on the
variability of system reliability. This paper explains the rea-
sons behind this phenomenon. Unlike related work that con-
sidered the impact of the parameters on software reliability
either through their model sensitivity or through uncertainty
of their estimates, we consider both. Furthermore, we look
at all parameters, i.e., components reliabilities and probabili-
ties of transfer of control between components. Based on the-
oretical and empirical arguments, we justify why a few pa-
rameters contribute most of the variance of the reliability es-
timate. Comparing our results with those obtained through
simple model sensitivity studies shows that such studies are
not always sufficient to accurately quantify the impact of crit-
ical components on variability of system reliability.

1. Introduction

Architecture–based software reliability models provide re-
liability estimates that take into account components failure
behavior (expressed for example by components reliabilities
Ri) and the way these components interact (usually expressed
through probabilities pij of control transfer from component i
to component j). There are many open questions surrounding
the estimates of software reliability, especially when concern-
ing the parameters used as input to the models. Parameters can
be estimated based on field data collected during testing and/or
operational usage, historical data from similar software, or the
specifications and design documentation. In practice, there
is a lot of uncertainty around parameters because they rarely
can be estimated accurately. Although, uncertainty analysis
through sensitivity studies and quantification of the variability
of reliability has become more common in software reliability,
up to this point no attempts have been made to explicate the
results of such analysis.

In [8], [9], and [11] we presented uncertainty analysis
based on the method of moments and Monte Carlo simula-
tions using several medium to large scale real case studies. As

a part of the Monte Carlo simulations, the contribution of each
parameter to the variability of the system reliability estimates
was measured by estimating the Pearson’s correlation coeffi-
cients between the ranks of the sampled values of that param-
eter and the ranks of the corresponding estimated values of the
system reliability. The results showed that very few parame-
ters are responsible for most of the variability of the system
reliability estimates. In particular, in the study of the Euro-
pean Space Agency (ESA) software, which consists of about
10,000 lines of code, 2 out of 6 parameters were responsible
for 93.2% of the variability in the reliability estimate [8]. Sim-
ilar trend was noticed for the open source application Indent
which has about 11,000 lines of code [11]; 4 out of 43 pa-
rameters in the reliability model were responsible for 76.4%
of the variance in the system reliability estimate. Even more,
the top 10 parameters (out of 43) have contributed 99.6% of
the variance in the system reliability estimate.

The work presented in this paper is motivated by these ob-
servations. Our goal is to explain, based on theoretical and
empirical analysis, why only a few parameters contribute to
the most of the variability in the system reliability estimate.
The rest of the paper is organized as follows. Section 2 dis-
cusses the related work and our contributions. In Section 3 we
provide the theoretical approach used in this paper. Descrip-
tions of the case studies and the values of the considered mea-
sures are presented in section 4. The summary of the empiri-
cal results that support the theoretical arguments and provide
explanation of the observed phenomena is given in section 5.
Finally, the concluding remarks are given in section 6.

2. Related work and our contributions

An extensive survey of architecture-based software relia-
bility models was presented in [6]. Although numerous papers
were devoted to such models, only a few have actually applied
the models on real case studies [13], [3], [8], [9], [10], [11],
and even fewer have conducted detailed uncertainty analysis
on real data (for example see [8], [9], [11]).

Typically, studies of the model sensitivity to the parame-
ters in the context of architecture–based models are conducted
by measuring the change in the overall reliability as a single
component reliability varies. Thus, in [2] and [16] the au-
thors assumed fixed known values for the transition probabil-
ities and derived the sensitivity of the system reliability with
respect to the reliability of each component. The results were
illustrated on simple made-up models. The fact that any inac-
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curacy in the operational profile directly affects the transition
probabilities between components was not considered in these
papers. Several architecture–based software reliability models
were compared theoretically in [7]. In addition to the empir-
ical comparison and validation of the models, the sensitivity
study with respect to the operational profile (i.e. transition
probabilities) and component reliabilities was conducted on a
real application which consists of 10,000 lines of code. The
work presented in [4] studied the sensitivity of the reliability
of a software application to changes in components reliabil-
ities and transition probabilities. The results were illustrated
on the same made-up example from [2] and included sensi-
tivity study of two component reliabilities and two transition
probabilities chosen arbitrarily.

Another approach to uncertainty analysis is to study how
the uncertainty in the estimates of parameters affects the vari-
ability in the reliability estimate. In [14] the authors used
a Bayesian approach to estimate the moments of the failure
probability for software that has not yet exhibited any failures.
The work presented in [1] also considered software that has
not failed; the input domain was partitioned and it was recog-
nized that the uncertainty also exists in the probability of using
each partition. In [15], the mean and variance of software fail-
ure probability were estimated using simulation and assuming
Beta prior distributions for components failure probabilities.
The analytical expressions for the mean and variance of the
application reliability based on the hierarchical architecture–
based software reliability model were derived in [5] and the
results were illustrated on the example from [2]. Neither [15]
nor [5] considered the uncertainties in the estimates of transi-
tion probabilities.

A methodology for uncertainty analysis of architecture-
based software reliability models suitable for large complex
component-based system was presented in [8]. Within this
methodology, we proposed several methods such as entropy,
Monte Carlo simulations, and methods of moments [12], [8],
and [9]. These methods were illustrated on several medium to
large scale case studies, including a case study from the Eu-
ropean Space Agency which consists of about 10,000 lines of
code [8], and two open source applications, Indent which con-
sists of about 11,000 lines of code and GNU GCC C compiler
which consists of over 300,000 lines of code [11]. One of the
main observations that holds for all three case studies was that
a very few parameters have a significant impact on the vari-
ability of system reliability. However, the reasons behind this
phenomenon were not explored in these papers.

Unlike most related studies that considered the impact of
the parameters on architecture–based software reliability ei-
ther through their model sensitivity or through their uncer-
tainty, in this paper we consider both. This is important since
the overall sensitivity of the reliability estimate is a combina-
tion of these two factors. Thus, as it is shown in this paper,
considering only one factor is not sufficient to explain and ac-
curately quantify the impact of some parameters on the vari-
ability of the system reliability. Furthermore, we consider the
effect of all parameters (i.e., component reliabilities and prob-
abilities of the transfer of control between components) in a
systematic way, rather than arbitrarily choosing a few param-

eters to illustrate the concept.
Our main goal is to explain based on theoretical arguments

and empirical data from real case studies the phenomena we
observed in [8], [9], [11]: (1) small number of parameters
contribute to the most of the variation in system reliability
and (2) given an operational profile, components’ reliabilities
have more significant impact on system reliability than tran-
sition probabilities. It should be emphasized that although in
this paper we use the architecture–based software reliability
model first proposed in [2], our main results are valid for any
software reliability model based on the same assumptions as
[2].

3. Theoretical approach

The architecture–based software reliability model pre-
sented in [2] represents the software executions with a dis-
crete time Markov chain (DTMC) where states represent ac-
tive components and arcs represent the transfer of control be-
tween components. Two absorbing states, end and F, are
added to the DTMC to represent the end of the execution with
correct output and failure, respectively. Assuming that compo-
nents fail independently and that each component failure leads
to a system failure, the transition probability matrix P = [pij ]
is modified to P̂ by multiplying each transition probability pij

by the corresponding component reliability Ri. This repre-
sents the probability that component i produces the correct
output and transfers control to component j. Then, from the
final state n a directed edge with transition probability Rn is
drawn to the end state, representing correct execution of the
entire program. It is assumed that each component fails inde-
pendently and the failure probability is represented by draw-
ing a directed edge from i to F with a transition probability
of 1 − Ri. The system reliability is then equal to the proba-
bility of reaching state end in the absorbing DTMC. Let Q̂ be
the matrix obtained by removing the rows and columns corre-
sponding to states end and F from the edited transition prob-
ability matrix P̂ . Q̂k

1,n represents the probability of reaching
state n from 1 through k transitions. From initial state 1 to
final state n, the number of transitions k may vary from 0 to
∞. It can be shown that S =

∑∞
k=0 Q̂k = (I − Q̂)−1, so

it follows that the overall system reliability is R = S1,nRn

where S1,n is the (1, n) element of the matrix S. It should
be noted that the closed form expression for the system relia-
bility is a function of transition probabilities and components
reliabilities R = f(pij , Ri).

Regardless of the model used, the uncertainty involved
with the values of the corresponding parameters affects the
estimate of the system reliability. Therefore, the way to deal
with the uncertainty of the parameters is presented next.

3.1. Uncertainty of the parameters

The point estimate of the reliability of component i is ob-
tained using Ri = 1 − fi/ni where fi is the number of
failures of component i, and ni is the number of executions
of component i. Using point estimates does not account for
the uncertainty. In addition, it would mean that any compo-
nent that does not fail during testing has a reliability equal
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to one. Unless exhaustive testing without replacement has
been conducted, we cannot claim reliability to be equal to one.
Therefore, to more appropriately estimate the component reli-
abilities of failure-free executions and account for the uncer-
tainty, we follow the Bayesian framework [14]. The number
of successes ri in ni executions, given component reliability
Ri(0 ≤ Ri ≤ 1), follows the binomial distribution

(
ni

ri

)
Rri

i (1 − Ri)ni−ri . (1)

Within the Bayesian framework a priori knowledge about the
parameter of interest, here Ri, is represented by the prior dis-
tribution. In this case we use as a prior distribution the conju-
gate distribution Beta(ai, bi) given with equation

f(Ri) =
Γ(ai + bi)
Γ(ai)Γ(bi)

Rai−1
i (1 − Ri)bi−1 (2)

where ai > 0 and bi > 0. We concentrate on the case when
no prior information is available and use the ”ignorance” uni-
form prior Beta(1, 1) in which case the posterior distribution
reduces to Beta(ri + 1, ni − ri + 1).

The point estimates of the transition probabilities are ob-
tained using pij = nij/ni where nij is the number of times
control transfers from component i to component j and ni =∑

j nij . Obviously not all operational profiles execute all pos-
sible transitions. We use a static code analysis tool to de-
termine which transitions are not possible (i.e., the transition
count will always be zero nij = 0) and therefore pij = 0.
When the static code analysis shows that the transition is pos-
sible, but no transitions were observed during specific number
of executions, the transition probability is likely to be close
to 0, but is not improbable. To account for this case, as in
the case of components reliability when no failures were ob-
served, the Bayesian framework is used [11]. Let rij denote
the number of times the control was passed from component
i to component j in ni executions. Then, the data follows the
multinomial distribution(

ni

ri1ri2 . . . rin

)
pri1

i1 pri2
i2 . . . prin

in (3)

for rij = 0, 1, 2, . . . , ni and
∑n

j=1 rij = ni. The number of
categories in the multinomial distribution will typically be less
than n because, as described earlier, some of the transitions
are improbable. It is assumed that the rows in the transition
probability matrix are independent and distributed accordingly
to Dirichlet distribution, that is, for the ith row in the transi-
tion probability matrix we choose Dirichlet prior distribution
Dirichlet(αi1, αi2, . . . , αin) given by

f(pi1, . . . , pin) =
Γ(αi1 + . . . + αin)
Γ(αi1) . . . Γ(αin)

n∏
j=1

p
αij−1
ij (4)

where αi1, . . . , αin > 0, pij ≥ 0, and
∑n

j=1 pij = 1. As
in case of components reliabilities, we use the “ignorance”
uniform prior Dirichlet(1, 1, . . . , 1), which leads to posterior
distribution Dirichlet(ri1 + 1, ri2 + 1, . . . , rin + 1).

3.2. Model sensitivity to the parameters

The model sensitivity of the system reliability R to com-
ponent reliability Ri is defined as the partial derivative of R
with respect to Ri

sRi
=

∂R

∂Ri
. (5)

We compute a similar metric with respect to transition proba-
bilities

spij
=

∂R

∂pij
. (6)

These measures of sensitivity represent the impact of changing
a specific component reliability or transition probability on the
system reliability. Thus, the larger the sensitivity number the
greater the impact. The impact of changing a parameter can
also be assessed by substituting the means into R for all but
one parameter, and then graphing R as a function of only that
parameter. Graphing R as a function of any Ri is easy since
each Ri can change independently. However, to graph R as
a function of pij we must maintain

∑
j pij = 1 for each i.

In other words, in order to consider the effect of varying one
transition probability, at least one other transition probability
in that row has to be varied.

The upper bound on the model sensitivity to each compo-
nent reliability (5), obtained when ∂R/∂Ri is estimated as-
suming Rj = 1 for 1 ≤ j ≤ n and j �= i, is equal to
vi = (I − Q)−1

1i where Q is the restriction of the transition
probability matrix P to the transient states [16]. It is well
known that vi represents the expected number of visits to state
i (i.e., expected number of executions of component i). The
true sensitivity of component i will be very close to the up-
per bound vi when the component reliabilities are sufficiently
close to one.

Based on the above discussion, it follows that if only the
model sensitivity is considered, the more often a component is
executed the more influence its reliability has on the system re-
liability. It is important to emphasize that this will not always
be the case, since the uncertainty of the parameters also con-
tributes towards the variability of the reliability estimate, and
in some cases it may overcome the model sensitivity. Con-
sequently, considering either the model sensitivity or the un-
certainty of the parameters in an isolation will not provide a
satisfactory explanation of the observed influence of differ-
ent parameters on the system reliability. The empirical results
presented in this paper confirm this theoretical observation.

3.3. Component entropy

We use the approach presented in [12] for uncertainty anal-
ysis based on the concept of entropy. Thus, the entropy of
component i is defined as the conditional entropy given by

Hi = −
n∑

j=1

pij log pij . (7)

In general, the entropy of component i will be higher if it
transfers the control to more components (i.e. more states are
directly reachable from state i) and the transition probabili-
ties are (close to) equiprobable. Therefore, components with
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higher entropy may be considered critical because they affect
larger part of the system.

3.4. Variance of system reliability

One of the main goals of this paper is to explain why
(given an operational profile) components reliabilities have
more significant impact on the variability of the system re-
liability estimate than the transition probabilities, an inter-
esting observation made in our earlier work [8], [9], [11].
For this purpose we analyze the equation for the variance of
the system reliability derived in [9] using the method of mo-
ments. This method consists of expanding R = f(Ri, pij)
about (E[R1], . . . , E[Rn], E[p11], . . . , E[pnn]), the point at
which each of component reliabilities and transition probabil-
ities takes its expected value, by a multivariable Taylor series.
The method of moments is an approximate, rather than an ex-
act, method because of the omission of higher order terms in
the Taylor series expansion. Thus, the first order Taylor series
expansion of the system reliability R is given by

R ∼ s0 +
n∑

i=1

sRi
(Ri−E[Ri])+

n∑
i=1

n∑
j=1

spij
(pij−E[pij ]) (8)

where

s0 = f(E[R1], . . . , E[Rn], E[p11], . . . , E[pnn]) (9)

sRi
=

∂R

∂Ri

∣∣∣∣
Ri=E[Ri], pij=E[pij ] for i,j=1,2,...n.

(10)

spij
=

∂R

∂pij

∣∣∣∣
Ri=E[Ri], pij=E[pij ] for i,j=1,2,...n.

(11)

Then, the mean and the variance of the system reliability are
given by

E[R] ∼ s0 (12)

Var[R] ∼
n∑

i=1

s2
Ri

Var[Ri] +
n∑

k=1

n∑
i=1

s2
pki

Var[pki]

+2
n∑

k=1

n∑
i=1

n∑
j=i+1

spki
spkj

Cov(pki, pkj). (13)

An important observation that helps our analysis is that the
coefficients (10) and (11) are equivalent to the model sensitiv-
ity parameters given with equations (5) and (6) respectively,
estimated at (E[R1], . . . , E[Rn], E[p11], . . . , E[pnn]).

Having this in mind, several important theoretical argu-
ments can be made from equation (13). First, the variabil-
ity of the system reliability estimate clearly depends on both
model sensitivity (represented with coefficients sRi

and spij
)

and the uncertainty of the parameters’ estimates (represented
by Var[Ri], Var[pki] and Cov(pki, pkj)).

The second observation provides answer to the question
why transition probabilities have significantly smaller influ-
ence on the variance of the system reliability. Observe that
the first term in the equation (13) expresses the contribution
of the component reliabilities, while the second and the third

terms express the contribution of the transition probabilities.
Note that the term with the covariance Cov(pki, pkj) appears
due to the fact that the transition probabilities are dependent
variables (that is, they must sum to 1 for each row of the transi-
tion probability matrix). Consequently, whenever a change is
made to one transition probability at least one other transition
probability has to be changed in an opposite direction. Math-
ematically, this is expressed in the fact that for the Dirichlet
distribution Cov(pki, pkj) < 0. In other words, even if the
model sensitivity and the variance of the transition probabili-
ties are comparable to the model sensitivity and the variance of
the component reliabilities, the third term in the equation (13)
is always negative and it will decrease the contribution of the
transition probabilities to the variance of the system reliability
estimate.

It is important to emphasize that the equation for the vari-
ance of the system reliability (13), although it accounts for un-
certainty of both component reliabilities and transition proba-
bilities, is much simpler and more intuitive than the equation
derived in [5] which accounts only for the uncertainty in com-
ponents reiabilities. This allows us to draw the above general
conclusions which apply for any architecture–based software
reliability model that uses DTMC to describe the software ex-
ecution behavior and assumes that components fail indepen-
dently.

4. Description of case studies and metrics values

We use two case studies: the European Space Agengy
(ESA) software which consists of about 10,000 lines of C code
and the open source application Indent which consists of about
11,000 lines of C code. Next, we briefly describe how the soft-
ware architecture and failure behavior were determined and
then combined to estimate the system reliability. For detailed
description on building the architecture–based software relia-
bility models the reader is referred to [8], [11].

For the ESA study, component traces obtained during test-
ing were used to construct the dynamic software architecture
and estimate transition probabilities pij . Component reliabil-
ities were estimated using fault injection. The faults injected
were real faults discovered during testing and operational us-
age. The DTMC has 3 states, each representing a different
subsystem and an additional state representing the end of the
execution. Using the model the system reliability estimate is
0.7601. The actual reliability is 0.7393.

To determine the dynamic software architecture of Indent,
the regression test suite from a later version was ran on an
older instrumented version. Running a later version of test
cases on older version of the code allows more failures to be
observed since tests are often added to the regression test suite
after a failure is observed and corrected. The DTMC of In-
dent has 9 states, each corresponding to one file, and an addi-
tional state representing the end of the execution. It should be
noted that in the case of Indent, the small percentage of fail-
ures that led to fixing faults in more that one component were
not considered since these failures do not fit into the model
assumptions. Using the model the system reliability estimate
is 0.8602 and the actual reliability is 0.8378. It follows that
the error of the reliability estimate is less than 3% for both
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studies.
The motivation for this work is presented in Figures 1 and

2. These figures show the contribution of parameters to the
variability of the overall system reliability with respect to the
model sensitivity and uncertainty in the parameters estimates
for the ESA and Indent case study, respectively. The charts
were made based on the results of the Monte Carlo simula-
tions. Specifically, the sampled values of each parameter were
ranked, as well as the estimated values of the system relia-
bility. Then, the Pearson’s correlation coefficients were esti-
mated for each pair of ranks of the parameter and the corre-
sponding system reliability and averaged over all simulations.
Finally, the average values of the Pearson’s correlation coef-
ficient for each parameter were squared, normalized by the
sum of all squares, and converted to percentages. In Figure 1,
two of the six parameters in the ESA study are responsible for
contributing 93.2% of the variance; both parameters are com-
ponent reliabilities. In Figure 2, ten of the 43 parameters in
the Indent model are responsible for 99.6% of the variation
in the system reliability estimate. All except one of these ten
parameters are component reliabilities.

Figure 1. ESA - Contribution of parameters to
the variability of the system reliability based on
both uncertainty and model sensitivity

In what follows, we address the following research ques-
tions related to the observations made from Figures 1 and 2.
(1) Why do some component reliabilities matter more than
others? (2) Why are component reliabilities more influential
than transition probabilities? (3) Do simple sensitivity stud-
ies accurately asses the impact of all parameters? First, we
present the values for the metrics of each study, and then we
provide a summary of the empirical results.

The means, variances, and the coefficients of variability
for all parameters of the ESA case study are given in Table 1.
It is obvious that these values do not explain well the observa-
tions made from Figure 1. Thus, although components 1 and 2
have close values of the moments and coefficients of variabil-
ity, R1 has significantly higher impact on the variability of the
overall reliability. Furthermore, even though the coefficients
of variability of transition probabilities are an order of mag-
nitude higher than those of the component reliabilities, less
than 7% of the variability of the reliability is due to transition
probabilities.

Figure 2. Indent - Contribution of the top ten
parameters to the variability of the system re-
liability based on both uncertainty and model
sensitivity

Table 2 shows the mean, variance and coefficient of vari-
ability for the 9 components of Indent. Notice that compo-
nent 2 has the lowest mean reliability and highest coefficient
of variability, followed by component 1 with the second low-
est mean and the second highest coefficient of variability. The
means of the other seven components are larger and the coef-
ficients of variability are significantly smaller.

Coefficient
Parameter Mean Variance of variability
R1 0.8428 0.0064 0.0949
R2 0.8346 0.0064 0.0959
R3 1.0000 0.0000 0.0000
p1,2 0.5933 0.0224 0.2521
p1,end 0.4067 0.0224 0.3678
p2,3 0.7704 0.0191 0.1795
p2,end 0.2296 0.0191 0.6024

Table 1. ESA - moments of each parameter

Coefficient
Parameter Mean Variance of variability

R1 0.968750 9.17 · 10−04 3.13 · 10−02

R2 0.888889 9.88 · 10−03 1.12 · 10−01

R3 0.998870 1.28 · 10−07 3.58 · 10−04

R4 0.999931 4.74 · 10−09 6.88 · 10−05

R5 0.999906 8.74 · 10−09 9.35 · 10−05

R6 0.999920 7.93 · 10−10 2.82 · 10−05

R7 0.999928 8.74 · 10−10 2.95 · 10−05

R8 0.999947 9.44 · 10−10 3.07 · 10−05

R9 0.999812 1.77 · 10−08 1.33 · 10−04

Table 2. Indent - moments of Ri

Moments were estimated for the transition probabilities,
but they are not included due to space limitations. The means
range from 1.48 · 10−03 to 8.89 · 10−01, the variances range
from 3.15 · 10−09 to 3.13 · 10−03, and the coefficients of vari-
ability from 2.44 ·10−03 to 9.99 ·10−01. Note that similarly to
the ESA case study, the coefficients of variability of transition
probabilities are higher than the coefficients of variability of
component reliabilities (see Table 2). Nevertheless, only one
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transition probability p6,end is among the top ten contributors
to the variability of the overall reliability.

Next, we analyze the ESA and Indent software execution
models based on the values of component entropies given in
Tables 3 and 4, respectively. For the ESA, the component 1 en-
tropy is greater than component 2 entropy since the probabil-
ities associated with each arc leaving component 1 are closer
to equiprobable than those leaving component 2 (see Table 1).
The entropy of component 3 is 0 since the control can transfer
only to the end state. For Indent, components 6 and 7 have the
highest component entropies.

Component Component entropy
1 0.9747
2 0.7773
3 0.0000

Table 3. ESA - components entropies

Component Component entropy
1 1.0415
2 0.5033
3 1.2169
4 0.7861
5 0.0000
6 1.3975
7 1.4206
8 1.2981
9 1.2679

Table 4. Indent - components entropies

The model sensitivity values and their upper bounds for
components reliabilities of the ESA are given in Table 5. As
discussed in section 3.2, the upper bounds of sRi

represent
how often components are executed. Component 1 has the
highest upper bound and the highest true sensitivity value.
Figure 3 shows how R varies as a function of each Ri when
all remaining parameters are set to their mean values. Notice
that the slope of the line for R1 is steeper leading to higher
variation of R (from 0 to 0.9). This explains the fact that the
model is more sensitive to R1 than to R2.

The values for the model sensitivity due to transition prob-
abilities for ESA are given in Table 6. Figure 4 shows how R
changes as each pij changes, while other parameters are set at
their means. Notice that the range of change of R is signifi-
cantly smaller [0.70,0.85] as transition probabilities vary than
when reliabilities vary.

Table 7 shows the model sensitivity values for the compo-
nent reliabilities in Indent. Components 6, 7, and 8 have the
highest true sensitivity and the highest upper bound on sen-
sitivity. Notice that the ranking of components is the same
whether true sensitivity or the upper bound on sensitivity is
used. Figure 5 shows how R changes as each Ri varies while
the remaining parameters are set to their means. Around the
means of each R6, R7, and R8 (see Table 1) the slopes are
steepest. On the other side, the slopes of R1 and R2 are very
small. It follows that, for this set of parameters, no matter
what the means of R1 or R2 are, their effect on the variability
of R will not be significant.

We also calculated the sensitivity of the overall reliability

Component True Upper
reliability sensitivity bound

R1 0.9019 1.0000
R2 0.5000 0.5933
R3 0.3215 0.4571

Table 5. ESA - model sensitivity to Ri

Transition True
probability sensitivity
p1,2 0.7034
p1,end 0.8428
p2,3 0.4173
p2,end 0.4173

Table 6. ESA - model sensitivity to pij

Figure 3. ESA - model sensitivity to Ri

Figure 4. ESA - model sensitivity to pij

of Indent with respect to each transition probability, but due
to space limitations they are not given here. The values range
from 0.04 to 553. The highest of all model sensitivity values,
including those for reliabilities, is the sensitivity of the transi-
tion from component 6 to end sp6,end

= 553, which explains
why p6,end is the only transition probability among the top ten
contributors to the variability of R.

For transition probabilities, due to space limitations, we
only present how system reliability R changes as the tran-
sition probability that has the most significant impact from
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Component True Upper
reliability sensitivity bound

R1 0.15 0.22
R2 0.04 0.06
R3 39.81 59.48
R4 65.41 97.74
R5 48.06 71.79
R6 452.87 676.24
R7 373.12 557.43
R8 253.38 378.47
R9 47.83 71.47

Table 7. Indent - model sensitivity to Ri

Figure 5. Indent - model sensitivity to Ri

Figure 6. Indent - model sensitivity to pij

each row varies. To ensure that the probabilities in each row
sum to 1, the changes were propagated to one other transition
probability in that row and the remaining parameters were as-
signed their mean values. To no real surprise, as it can be
seen from Figure 6, the most influential transition probabil-
ity is p6,end. Notice that the slope is steepest near the mean
p6,end = 0.0015 and the range of R is from 0 to 0.99.

5. Summary of the empirical results

In this section we summarize the empirical results, specif-
ically addressing the research questions given in Section 4.
Figure 1 for ESA case study is fairly simple to explain. Sev-
eral observations are as follows.

• R1 has more significant impact on the variability of the
system reliability than R2 (although their moments are
close) since it is executed more often (see Table 5). In
addition, the entropy of component 1 is higher than that
of component 2.

• Component reliabilities contribute more to the variance
of the overall reliability than the transition probabilities
due to the fact that the range of R as Ri varies is much
larger than the range of R when pi,j varies (for any i and
any j). With respect to the variance equation (13), 94%
comes from the first term (due to component reliabili-
ties) and only 6% comes from the second and third terms
(transition probabilities).

• Some transition probabilities such as p2,3 have negative
contribution to the variance since when their values in-
crease the system reliability R will decrease.

The explanation of the Indent chart given in Figure 2 is
more complex and requires more factors to be taken into ac-
count.

• R6, R7, and R8 are significant contributors to the vari-
ability of the system reliability because these components
are executed most often (see Table 7). Also, compo-
nents 6, 7, and 8 have high entropies. It follows that for
these three components the model sensitivity dominates
the overall sensitivity.

• The fact that R3 has more significant impact on the vari-
ability of the system reliability estimate than R8 cannot
be explained by the model sensitivity values. Rather,
the reason R3 is so influential is due to the fairly low
mean reliability and large coefficient of variability cou-
pled with moderate values of the upper bound on sen-
sitivity (i.e. expected number of executions) and compo-
nent entropy. Obviously, for component 3 the uncertainty
of the parameter overcomes the model sensitivity and re-
sults in greater overall sensitivity than component 8.

• On a contrary, although R1 and R2 have low means and
high coefficients of variability, these components do not
have a significant impact on the variability of the sys-
tem reliability. This can be explained by the fact that the
model is not sensitive to components 1 and 2 (see Fig-
ure 5), that is, they are executed less often (see Table 7).
Thus, in the case of R1 and R2 the model sensitivity is
more important that the uncertainty of the parameters.

• p6,end is the only transition probability that has a signif-
icant impact on the variability of the system reliability
due to the fact that it has the highest model sensitivity
than any other parameter. However, its contribution to
the variability of the system reliability is smaller than
some component reliabilities. Following the theoretical
argument given in Section 3.4, the estimated contribution
to the variance of the system reliability that comes from
all transition probabilities is only 19%, which is signifi-
cantly smaller than the contribution from the component
reliabilities.
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It should be noted that although the values of the parame-
ters estimated from the empirical studies led to consistent re-
sult across multiple case studies about significantly lower con-
tribution of the transition probabilities to the variability of the
system reliability, one can come up with hypothetical parame-
ters that will lead to increased importance of transition proba-
bilities (see for example [8]). These values will typically lead
to low mean value of the overall reliability.

6. Conclusion

This paper presents an extensive theoretical and empiri-
cal study of the variability of the architecture–based software
reliability estimates. Unlike other related studies, we consider
both the uncertainty in the parameters estimates and the model
sensitivity to the parameters to better understand the effects
different parameters have on the overall system reliability. In
particular, we provide theoretical arguments and support them
by the empirical results of two real case studies. Some im-
portant observations are as follows. (1) Reliabilities of com-
ponents that have highest model sensitivities (that is, are ex-
ecuted most often) tend to be among the most influential pa-
rameters. (2) However, considering only the model sensitivity
often is not sufficient to explain and accurately quantify the
effect of parameters. Thus, we observed cases when higher
uncertainty in component reliability estimate overcomes the
model sensitivity, thus leading to higher impact on the vari-
ability of the system reliability than other components with
significantly higher model sensitivity, but lower uncertainty
of the component reliability estimate. (3) Similarly, consider-
ing only the mean and the uncertainty in parameters estimates
is not sufficient either. There are cases when low mean and
high uncertainty of the component reliability estimate do not
lead to high impact on the variability of the system reliability
estimate due to extremely low model sensitivity (i.e., low ex-
pected number of executions). (4) We explained theoretically
the reasons why transition probabilities have smaller impact
on the variability of the system reliability than components re-
liabilities, an interesting empirical phenomenon observed ear-
lier in the related work. In our future work we will conduct
similar experiments on additional case studies which will pro-
vide basis for generalization of the empirical results.
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