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Software rejuvenation is a preventive maintenance technique that has been exten-
sively studied in the recent literature. In this paper, we extend the classical result
by Huang, Kintala, Kolettis and Fulton (1995), and in addition propose a modified
stochastic model to generate the software rejuvenation schedule. More precisely,
the software rejuvenation models are formulated via the semi-Markov reward pro-
cess, and the optimal software rejuvenation schedules are derived analytically in
terms of the reward rate. In particular, we consider the two special cases; steady-
state availability and expected cost per unit time in the steady state. Further,
we develop non-parametric algorithms to estimate the optimal software rejuvena-
tion schedules, provided that the statistically complete (unsensored) sample data
of failure time is given. In numerical examples, we compare two models from
both view points of system availability and economic justification, and examine
asymptotic properties for the statistical estimation algorithms.

INTRODUCTION

tions billing applications where over time the applica-

Demands on software reliability and availability have
increased tremendously due to the nature of present
day applications. They impose stringent requirements
in terms of cumulative downtime and failure free opera-
tion of software, since in many cases, the consequences
of software failure can lead to huge economic losses or
risk to human life. The disastrous consequences of such
failures and an ever increasing dependence on computer
systems fosters an urgent need for high-assurance sys-
tems. To achieve high assurance, developers must use
congistent, rigorous methods throughout the develop-
ment process, from requirements specification and de-
sign to implementation and assessment.

Recently, the phenomenon of software aging, one in
which the state of the software system degrades with
time, has been reported [17]. Actually, when software
application executes continuously for long periods of
time it ages as a result of the error conditions that
accrue with time and/or load. Software aging will af-
fect the performance of the application and eventually
cause it to fail. In high-assurance systems, software ag-
ing can cause outages that result in high cost. Huang
et al. [17] report this phenomenon in telecommunica-

tion experiences a crash or a hang failure. Avritzer and
Weyuker [2] discuss aging in telecommunication switch-
ing software where the effect manifests as gradual per-
formance degradation. Software aging has also been
observed in widely-used software like Netscape and xrn.
Perhaps the most vivid example of aging in safety crit-
ical systems is the Patriot’s software [18], where the
accumulated errors led to a failure that resulted in loss
of human life.

Resource leaking and other problems causing soft-
ware to age are due to the software faults whose fixing
is not always possible because, for example, applica-
tion user may not have the access to the source code.
Furthermore, it is almost impossible to fully test and
verify if a piece of software is fault-free. Testing soft-
ware becomes harder if it is complex, and furthermore
testing cycle times are often reduced due to smaller re-
lease time requirements. Common experience suggests
that most software failures are transient in nature [15].
Since transient failures will disappear if the operation
is retried later in slightly different context, it is difficult
to characterize their root origin. Therefore, the resid-
ual faults (sometimes called Heisenbugs [14]) have to
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be tolerated in the operational phase. Usual strategies
to deal with failures in operational phase are reactive
in nature; they consist of action taken after failure. A
complementary approach to handle transient software
failures, called software rejuvenation, was proposed re-
cently [17]. Software rejuvenation is a preventive and
proactive (as opposite to being reactive) solution that
is particularly useful for counteracting the phenomenon
of software aging. It involves stopping the running soft-
ware occasionally, cleaning its internal state and restart-
ing it. Cleaning the internal state of a software might in-
volve garbage collection, flushing operating system ker-
nel tables, reinitializing internal data structures, etc.
An extreme, but well known example of rejuvenation is
a hardware reboot.

Apart from being used in an ad-hoc manner by al-
most all computer users, rejuvenation has been used in
high assurance systems as well. For example, it has
been used to avoid unplanned outages in continuously
available systems, such as telecommunication systems
[2, 17], where the cost of downtime is extremely high.
Among typical applications of high-consequence sys-
tems, periodic software and system rejuvenation have
been implemented for long-life deep-space missions [23].
Although the fault in the software still remains, per-
forming rejuvenation periodically removes or minimizes
potential error conditions due to that fault, thus pre-
venting failures that might have unacceptable conse-
quences.

Rejuvenation has the same motivation and advan-
tages/disadvantages as preventive maintenance policies
in hardware systems. Any rejuvenation typically in-
volves an overhead, but, on the other hand, prevents
more severe failures to occur. The application will of
course be unavailable during rejuvenation, but since this
is a scheduled downtime the cost is expected to be much
lower than the cost of an unscheduled downtime caused
by failure. Hence, an important issue is to determine
the optimal schedule to perform software rejuvenation
in terms of availability and cost.

In this paper, we extend the classical result by Huang
et al. [17]. More precisely, the software rejuvenation
models are formulated via the semi-Markov reward pro-
cesses, and the optimal software rejuvenation sched-
ules are derived analytically in terms of reward rate
[13, 16, 19, 22]. As the important special cases, we con-
sider both the availability model and the cost model. In
the former, the optimal software rejuvenation schedule
which maximizes the steady-state availability is derived.
We also derive the cost optimal rejuvenation schedule
which minimizes the expected cost per unit time in the
steady state. Further, since the failure time distribu-
tion can not be easily estimated from a few data sam-
ples, we develop non-parametric statistical algorithms
to estimate the optimal software rejuvenation sched-
ules, provided that the statistically complete (unsen-
sored) sample data of failure times is given. These can
be useful in determining optimal rejuvenation schedule

in the early segment of the operational phase. In nu-
merical examples, we examine asymptotic properties of
the statistical estimation algorithms.

2. RELATED WORK

In recent years, considerable attention has been de-
voted to the phenomenon of software aging. For an
extensive survey, the reader is referred to [24]. The
studies of aging-related failures are based on two ap-
proaches: measurement-based and model-based. The
measurement-based approach deals with the detection
and validation of the existence of software aging and
estimating its effects on system resources [12, 25]. The
model-based approach is aimed at evaluating the effec-
tiveness of software rejuvenation and determining the
optimal schedules to perform rejuvenation. Next, we
present the brief overview of the previous work related
to model-based approaches.

A great deal of research effort on modeling software
aging and rejuvenation considers continuously running
software systems. Huang et al. [17] used a continu-
ous time Markov chain to model software rejuvenation.
They considered the two-step failure model where the
application goes from the initial robust (clean) state to
a failure probable (degraded) state from which two ac-
tions are possible: rejuvenation or transition to failure
state. Both rejuvenation and recovery from failure re-
turn the software system to the robust state. Garg et al.
[11] introduced into the model the idea of periodic reju-
venation. To deal with deterministic interval between
successive rejuvenations the system behaviour was rep-
resented through a Markov regenerative stochastic Petri
net model. The subsequent work [8] involves arrival and
queueing of jobs in the system and computes load and
time dependent rejuvenation policy. The above models
consider the effect of aging as crash/hang failure, re-
ferred to as hard failures, which result in unavailability
of the software. However, due to the aging the software
system can exhibit soft failures, that is, performance
degradation. In [21] the performance degradation is
modeled by the gradual decrease of the service rate.
Both effects of aging, hard failures that result in an un-
availability and soft failures that result in performance
degradation, are considered in the model of transaction
based software system presented in [10]. This model
was recently generalized in [20] by considering multiple
servers.

The fine grained software rejuvenation model pre-
sented in [4] takes a different approach to characterize
the effect of software aging. It assumes that the degra-
dation process consists of a sequence of additive random
shocks; the system is considered to be out of service as
soon as the appropriate parameter reaches an assigned
threshold level.

Several studies considered software with a finite mis-
sion time. The work in [9] analyzes the effects of
checkpointing and rejuvenation used together on the
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expected completion time of a software program. The
use of preventive on-board maintenance that includes
periodic software and system rejuvenation is proposed
and analyzed in [23].

This paper results from an elaboration and extension
of our earlier work [5, 6]. Of particular interest is how
to determine the optimal schedule to perform software
rejuvenation in terms of different criteria. The rejuve-
nation models considered in this paper have similar but
somewhat generalized mathematical structure to that
in Huang et al. [17]. However, the approaches taken
to estimate the optimal software rejuvenation schedules
are quite different. Note that in the above literature,
the failure time distribution needs to be specified to de-
rive the optimal rejuvenation schedule. This seems to
be restrictive, since the determination of the theoretical
distribution from the real data is rather troublesome,
and needs both the goodness-of-fit test and the param-
eter estimation based on several candidate distribution
functions. Although in the existing model-based ap-
proaches, the failure time distribution is fixed (e.g., the
Weibull distribution or hypoexponential distribution),
these have not yet been validated for software aging.
By contrast, our approach does not depend on the kind
of distribution function and can provide non-parametric
estimators of the optimal software rejuvenation sched-
ules. Thus we provide a very powerful approach for the
application of the rejuvenation to a real system opera-
tion.

3. MODEL DESCRIPTION

First, we introduce the basic software rejuvenation
model proposed by Huang et. al [17]. Although they
formulated it as a simple continuous-time Markov chain,
we extend their result in the more general mathematical
framework. In particular, we regard the software rejuve-
nation models as continuous-time semi-Markov reward
processes. Define the following four states:

State 0: highly robust state (normal operation state)
State 1: failure probable state

State 2: failure state

State 3: software rejuvenation state.

Suppose that all the states mentioned above are re-
generation points. More specifically, let Z be the ran-
dom time interval when the highly robust state changes
to the failure probable state, having the common dis-
tribution function Pr{Z < t} = Fy(t) with finite mean

o (> 0). Just after the state becomes the failure prob-
able state, a system failure may occur with a positive
probability. Without loss of generality, we assume that
the random variable Z is observable during the system
operation [11, 17]. The transition diagram for the semi-
Markov model is depicted in Fig. 1.

Define the failure time X (from State 1) and the re-
pair time Y, having the distribution functions Pr{X <
t} = Ff(t) and Pr{Y < ¢} = F,(t) with finite means
Ay (> 0) and p, (> 0), respectively. If the system
failure occurs before triggering a software rejuvenation,
then the repair is started immediately at that time and
is completed after the random time Y elapses. Other-
wise, the software rejuvenation is started. Note that the
software rejuvenation cycle is measured from the time
instant just after the system enters State 1 from State 0.
Denote the distribution functions of the time to software
rejuvenation trigger and its system overhead by F.(t)
and F,(t) (with mean u, (> 0)), respectively. After
completing the repair or the rejuvenation, the software
system becomes as good as new, and the software age
is initiated at the beginning of the next highly robust
state. Consequently, we define the time interval from
the beginning of the system operation to the next one
as one cycle, and the same cycle is repeated again and
again. If we consider the time to software rejuvenation
trigger as a constant ¢, then it follows that

1 ift>to

F(t)=U(t—to) = {0 otherwise. (1)

We call to (> 0) as the software rejuvenation sched-
ule in this paper and U(-) is the unit step function.
Underlying stochastic process is a semi-Markov process
with four regeneration states. If we assume that the so-
journ times in all states are exponentially distributed,
the semi-Markov model under consideration is reduced
to the one in Huang et al. [17].

4. SEMI-MARKOVIAN REWARD ANALY-
SIS

For the semi-Markov process described in Section 3, de-
fine the transition probability Q;;(t) (¢,5 =0,---,3,i #
j).  Also, we define the Laplace Stieltjes trans-
form (LST) of the transition probability by g¢;;(s) =

J5” exp{—st}dQ;(t). It is straightforward to obtain

go1(s) /OOO exp{—st}dFy(t), (2)

ms) = [ " exp{ost)F, (0dF5 (), (3)

qi3(s) = /000 exp{—st}F(t)dF,(t), (4)
ga0(s) = /000 exp{—st}dF,(t), (5)
gso(s) = /00O exp{—st}dF,(t), (6)

where in general ¢)(-) = 1 — ¢)(-). Define the recur-
rence time distribution from State 0 to State 0 again by
Hyo(t). Then the LST of the recurrence time distribu-
tion is

hoo(s) = /O ” exp{—sthdHoo(t)
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= qo1(8)q12(8)q20(s) + ‘101(5)4113(5)(130(3)(7)

Of our concern is the derivation of the transient prob-
ability to stay in State j (j = 0,---,3) at arbitrary
time ¢t (> 0), provided that the initial state at time
t = 0 is State 0. Define the transient probability from
State 0 to j (j = 0,---,3) and its LST by Fo;(t) and
poj(s) = [y exp{—st}dPy;(t), respectively. After some
manipulations, we have

Poo(s) = Toi(3)/Foos), ®)
Poa(s) = aou(s)(@2(s) = a1s(9)) fFoo(s),  (9)
Poa(s) = do1(q2()0(9)/Fools),  (10)
pos(s) = qo1(8)q3(s)30(s)/hoo(s)- (11)

Next, we assign reward rate §; € (—o0,0) to each
state 7 (= 0,1,2,3) of the semi-Markov process. Fol-
lowing [19], we define the expected instantaneous re-
ward rate:

3
PP(t) =y &Po(t), (12)
j=0

Also, the expected steady-state reward rate is

PP = lim PP(t)

t—o0

3
= [lim ZO € Fo;(t)
]:

3
= lim > &p0;(s). (13)
7=0

From the familiar probabilistic argument, we can derive
the expected steady-state reward rate as the function of
to for Model 1 as follows.

PP(to) =
Sopo + &1 f(f" Fy(t)dt + EopaFr(to) + E3pucF g (to)

Ho + paFy (to) + peF s (to) + fo* Fr(t)dt
= K (to)/T (to)- (14)

To derive the optimal software rejuvenation sched-
ule which maximizes the expected steady-state reward
rate in Eq.(14), we examine the properties for the func-
tions PP(tg). Suppose that the failure rate ry(t) =
(dFy(t)/dt)/F¢(to) exists and is differentiable. Differ-
entiating PP(to) with respect to to and setting equal to
zero implies the non-linear equation gp(tp) = 0, where

ap(to) = {& + (Ena—Enrs(to) }T(to)
~{ (1 = oIy (to) + 1} K (to).  (15)

Hence, if the first derivative of the function ¢p(to) is
negative, then the expected steady-state reward rate

PP(ty) is quasi-concave in to [1]. The following result is
useful to characterize the optimal software rejuvenation
schedule maximizing the expected steady-state reward
rate.

Theorem 4.1: Suppose that the lower limit of the ex-
pected steady-state reward rate info<i,<oo PP(to) for
all to is less than (§2pq — Espic)/ (e — ). If the fail-
ure time distribution is strictly IFR (increasing failure
rate), then PP(tq) is strictly quasi-concave, otherwise,
quasi-convex in tg.

In order to characterize the unique optimal software
rejuvenation schedule, we have to examine the relation-
ship between the lower limits info<4,<c0 PP(to) and the
parameter value (&aptq — Espie) /(o — pc). Although it is
straightforward to maximize the expected steady-state
reward rate directly, giving the physical meaning to the
necessary and sufficient conditions for the existence of
the finite and non-zero software rejuvenation schedule
is not so easy, because the expected steady-state reward
rate is a rather general measure, but is an abstract con-
cept. In other words, when the rejuvenation schedule is
designed for the software system, the resulting schedul-
ing policy must be checked whether it can be fitted to
the actual operational circumstance. Then the prob-
lem is how to determine the reward rate or the weight
é-j (.7 =0, 17273)

In the following sections, we discuss the two special
cases of the expected steady-state reward rate: steady-
state availability and the expected cost per unit time
in the steady state. These measures belong to the sub-
class of the expected reward rate, but can give the phys-
ical or economical meanings to the resulting optimal
schedules.

5. SPECIAL CASE: AVAILABILITY MODEL

If we assign a reward rate 1 to operational states and
zero to non-operational states the expected steady-state
reward rate becomes the steady-state availability. In
particular, putting £ = & = 1 and & = £ = 0 in
Eq.(14), the steady-state availability becomes

Alto)

Pr{software system is operative
in the steady state}

= tgﬂolo{Poo(t) + P01(t)}
lim { poo (s) + pos (5) }
s—0 o
Mo + foo Ff(t)dt

Ho + 1aFy (to) + uF 5 (to) + [1° Fs(t)dt

= S(to)/T(to)- (16)
The problem is to derive the optimal software rejuvena-
tion schedule t§ which maximizes the steady-state avail-

ability A(tg).
We make the following assumption:
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(A-1) pg > fic.

The assumption (A-1) states that the mean time to re-
pair is strictly larger than the mean time to complete
the software rejuvenation. This assumption is quite rea-
sonable and intuitive. The following result gives the
optimal software rejuvenation schedule.

Theorem 5.1: (1) Suppose that the failure time dis-
tribution is strictly IFR and that the assumption (A-1)
holds. Define the following non-linear function:

aalte) = T(to) = {(a — pe)rslto) +1}S(to).
(17)
(i) If g4(0) > 0 and ga(o0) < 0, then there exists
a finite and unique optimal software rejuvenation
schedule t§ (0 < t§ < oo) satisfying qa(t5) = 0,
and the maximum steady-state availability is
1
(o — Nc)Tf (tS) +1

Alto) = (18)

(ii) If g4(0) < 0, then the optimal software rejuvena-
tion schedule is t§ = 0, ¢.e. it is optimal to start the
rejuvenation immediately after entering the fail-
ure probable state, and the maximum steady-state
availability is A(0) = po /(o + pc)-

(iii) If ga(oco) > 0, then the optimal rejuvenation
schedule is t§ — oo, i.e. it is optimal not to carry
out any rejuvenation, and the maximum steady-
state availability is A(c0) = (uo + Af)/(po + e +
Af).

(2) Suppose that the failure time distribution is DFR
(decreasing failure rate) and that the assumption (A-1)
holds. Then, the system availability A(ty) is a quasi-
convex function of ¢y, and the optimal rejuvenation
schedule is 5 = 0 or t§ — oo.

Proof: Differentiating A(to) with respect to to and set-
ting it equal to 0 implies g4 (to) = 0. Further differen-
tiation yields

dqa(to)

d?"f (to )
dtg '

dto

= —(pta — pc)S(to) (19)
If r¢(to) is strictly increasing, then the function ga(to)
is strictly decreasing and the steady-state availability
A(tp) is strictly quasi-concave in tg under the assump-
tion (A-1). Further, if g4(0) > 0 and ga(o0) < 0,
then there exists a unique optimal software rejuvena-
tion schedule ¢ (0 < t§ < oo) satisfying ga(t$) = 0. If
ga(0) < 0 or ga(oo) > 0, then the steady-state avail-
ability is monotonically increasing or decreasing in ¢y,
and the optimal policy becomes t; = 0 or t§ — co. On
the other hand, if r¢(¢g) is a decreasing function of ¢,
then A(tp) is a quasi-convex function of ¢g, and the opti-
mal software rejuvenation schedule is t5 = 0 or ¢t — oo.
The proof is thus completed. ]

It is easy to check that the above result implies the re-
sult in Huang et. al [17], although they used the system
downtime and its associated cost as criteria of optimal-
ity. Asis clear from Theorem 5.1, when the failure time
obeys the exponential distribution, the optimal software
rejuvenation schedule becomes t§ = 0 or t§ — oco. It
means that the rejuvenation should be performed as
soon as the software enters the failure probable state
(to = 0) or should not be performed at all (g — 00).
Therefore, the determination of the optimal rejuvena-
tion schedule based on the the steady-state availability
is never motivated in such a situation. Since for a soft-
ware system which ages it is more realistic to assume
that failure time distribution is strictly IFR, our general
setting is plausible and the result satisfies our intuition.

In this section, we derived the optimal software re-
juvenation schedule that maximizes the steady-state
availability. Note that the steady-state availability is
the simplest case with §g =& =1 and & = & =0 in
the expected steady-state reward rate. In the following
section, we consider the cost model. Actually, it is well
known that the unplanned downtime for the running
software system is more expensive than the planned
downtime with preventive maintenance. In other words,
the cost model is the more plausible reward model from
the economic justification.

6. SPECIAL CASE: COST MODEL
Define the following cost components:

¢s (> 0): repair cost per unit time

¢p (> 0): rejuvenation cost per unit time.
Further, we make the following assumption:
(A-2) ¢5 > cp.

Assumption (A-2) says that the cost of repair is larger
than the cost of software rejuvenation. From the prac-
tical point of view, this assumption is also quite reason-
able.

For the cost model we assign reward rates in terms
of respective costs. Thus, putting £, = & =0, & = ¢;
and & = ¢, in Eq.(14), the expected cost per unit time
in the steady state becomes

E[total cost during (0, ¢]]

C(to) = lim

t—oo t
= tli{glo{cspog (S) + cpP03 (S)}
= lim {cspOQ(s) + cppo3(8)} B
CsﬂaFf(tO) + CPMCFf(tO)
po + paFr(to) + peF g (to) + f;o Fy(t)dt
= V(to)/T(to)- (20)

The problem is to derive the optimal software rejuve-
nation schedule t§ which minimizes the expected cost
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per unit time in the steady state C(tp). The following
result gives the optimal software rejuvenation schedule
for the cost model.

Theorem 6.1: (1) Suppose that the failure time distri-
bution is strictly IFR and that the assumptions (A-1)
and (A-2) hold. Define the following non-linear func-
tion:

QC(tO) = (Csua_cpﬂc)rf(to)s(to)
~{ (o = By (to) + 1}V (t0). (21)

(i) If gc(0) < 0 and gc(oo) > 0, then there exists
a finite and unique optimal software rejuvenation
schedule t§ (0 < t§ < oo) satisfying gc(t5) = 0,
and the minimum expected cost is

£\ _ (Cslffa - Cpﬂc)'rf (t*)
= G+

(ii) If go(0) > 0, then the optimal software rejuvena-
tion schedule is ¢§ = 0 and the minimum expected
cost is C'(0) = cppe/(po + pic)-

(iii) If gc(oc0) < 0, then the optimal software rejuvena-
tion schedule is ¢t — oo and the minimum expected
cost is C(s0) = (€opta) /(Ho + 1o + Ap)-

(2) Suppose that the failure time distribution is DFR
and that the assumptions (A-1) and (A-2) hold. Then,
the expected cost function C(tp) is a quasi-concave
function of ty, and the optimal software rejuvenation
schedule is t§ = 0 or t§ — oo.

Proof: Differentiating C(to) with respect to to and set-
ting it equal to 0 implies go(tg) = 0. Further differen-
tiation yields

dq;t(oto) _ drz;t(jo) [(csua — cphe)S(to)
— (o — /ch)V(to)] . (23)

If the term in the bracket on the right hand side in
Eq.(23) is negative, then c¢; + pc(cs — ¢p)/(pa — pic) <
C(to) for all ¢y € [0, 00). Since pc(cs—cp)/(pa—pc) >0
from the assumptions (A-1) and (A-2), this contradicts
the probability law even if the repair occurs in the
steady state with probability one. Hence, it follows from
the reduction argument that ¢s+ pc(cs —cp) /(o — pic) >
C(to).

If 7r¢(to) is strictly increasing, then the function
gc(to) is strictly increasing and the expected cost C'(tg)
is strictly quasi-convex in to. Further, if go(0) < 0 and
go(oco) > 0, then there exists a unique optimal soft-
ware rejuvenation schedule t§ (0 < t§ < oo) satisfying
go(ty) = 0. If go(0) > 0 or go(o0) < 0, then the ex-
pected cost is monotonically decreasing or increasing in
to, and the optimal policy becomes t; = 0 or t§ — oo.
On the other hand, if 7¢(tp) is a decreasing function

of tg, then C(tp) is a quasi-concave function of ¢g, and
the optimal software rejuvenation schedule is ¢5 = 0 or
to — 00. The proof is thus completed. [ |

In Sections 5 and 6, we derived the optimal software
rejuvenation schedules which maximizes the steady-
state availability or minimizes the expected cost per
unit time in the steady state. It should be noted, how-
ever, that the optimal software rejuvenation schedule
depends on the model parameters: pg, tic, fq, and the
failure time distribution Fy(t), as well as the reward
rates ¢; and c,. Among these parameters the failure
time distribution in the software operational phase is
the most difficult to obtain. In the following section, we
develop statistical non-parametric algorithms to esti-
mate the optimal software rejuvenation schedules, pro-
vided that the statistical complete (unsensored) sample
data of failure times is given.

7. STATISTICAL OPTIMIZATION ALGO-
RITHMS

Before developing the statistical estimation algorithms
for the optimal software rejuvenation schedules, we
translate the underlying problems to graphical ones.
Following Barlow and Campo [3], define the scaled to-
tal time on test (TTT) transform of the failure time
distribution:

F7'(p) _

6(p) = (1/7) / Fy(t)dt, (24)

where

Fl(p) = inf{to; Fy(to) > p}, (0<p<1). (25)

It is well known [3] that F(¢) is IFR (DFR) if and only
if ¢(p) is concave (convex) on p € [0,1]. After a few
algebraic manipulations, we have the following results.

Theorem 7.1: Suppose that the assumption (A-1)
holds. Obtaining the optimal software rejuvenation
schedule #;* maximizing the steady-state availability
A(tp) is equivalent to obtaining p* (0 < p* < 1) such as

max M, (26)
0<p<1 p+ f,
where
Qo = A + o, (27)
Ba = pe(fa — pe)- (28)

From Theorem 7.1 it can be seen that the opti-
mal software rejuvenation schedule to* = F Lp*) is
determined by calculating the optimal point p*(0 <
p* < 1) maximizing the tangent slope from the point
(—=Ba, —qg) € (—00,0)x(—00,0) to the curve (p, #(p)) €
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[0,1] x [0,1]. Figure 2 illustrates the determination of
the optimal software rejuvenation schedule on the two-
dimensional graph, when the underlying failure time
distribution is Weibull:

Fi(t)=1—e (" (29)

with shape parameter § = 2.34 and scale parameter § =
0.903. In Fig. 2, since p* = 0.5240 has the maximum
slope, the optimal software rejuvenation schedule is ¢t; =
Fr 1(0.5240) = 0.7950. If the failure time distribution is
the exponential, then it is seen that the optimal policy
isp*=0(tf =0) or p* =1 (t§ = 00).

Similar to the availability model, we consider the cost
model discussed in Section 6.

Theorem 7.2: Suppose that both the assumptions
(A-1) and (A-2) hold. Obtaining the optimal software
rejuvenation schedule ¢o* minimizing the expected cost
per unit time in the steady state C(to) is equivalent to
obtaining p* (0 < p* <1) such as

0<p<l p+ B
where
Q. = (CS - Cp)/,tc(/,to + :U’a) , (31)
Ag(Cspta — Cppie)
B. = __CpHe (32)

Csfha — Cplhc

Theorem 7.2 is the dual of Theorem 6.1. From this
result, it is seen that the optimal software rejuvenation
schedule to* = F;- L(p*) is determined by calculating the
optimal point p*(0 < p* < 1) maximizing the tangent
slope from the point (—f., —a.) € (—00,0) x (—00,0)
to the curve (p,o(p)) € [0,1] x [0,1]. Figure 3 de-
picts the determination of the optimal software reju-
venation schedule on the two-dimensional graph, when
the underlying failure time distribution is Weibull as in
Eq.(29). In Fig. 3, since p* = 0.1050 has the maxi-
mum slope, the optimal software rejuvenation schedule
is t5 = F; *(0.1050) = 0.1310.

Next, suppose that the optimal software rejuvenation
schedule is to be estimated from an ordered complete
observation 0 = g < 1 < 9 < --- < x,, of the fail-
ure times from an absolutely continuous distribution
Fy, which is unknown. Then the scaled TTT statis-
tics based on this sample are defined by ¢,; = ¥, /9y,
where

J

;=Y (n=k+1)(@e—2k-1), (5=1,2,---,n;5 ¢ =0).

k=1

(33)

Since the empirical distribution function F,(x) corre-
sponding to the sample data z; (j =0,1,2,---,n) is

_fj/n for z; <z <z,
Fo(2) = { 1 for z,<z (34)

the resulting polygon by plotting the points
(Fn(z),0n;) (5 = 0,1,2,---,n) and connecting
them by line segments is called the scaled TTT plot
[3, 7. In other words, the scaled TTT plot can be
regarded as a numerical counterpart of the scaled TTT
transform.

The following results give non-parametric statistical
estimation algorithms for the optimal software rejuve-
nation schedules.

Theorem 7.3: (i) Suppose that the optimal software
rejuvenation schedule is to be estimated from n ordered
complete sample 0 = 29 < 21 < 29 < --- < 2, of the
failure times from an absolutely continuous distribution
Fy, which is unknown. Then, a non-parametric esti-
mator of the optimal software rejuvenation schedule £
which maximizes A(to) is given by z;-, where

= {31 g o)
0<j<n j/n+ Bq

(35)
and Ay in Eq. (27) is replaced by >, _; zx/n.

(ii) The estimator given in (i) is strongly consistent, i.e.
x;» converges to the optimal solution ¢* uniformly with
probability one as n — oo, if a unique optimal software
rejuvenation schedule exists.

Theorem 7.4: (i) Suppose that the optimal software
rejuvenation schedule is to be estimated from n ordered
complete sample 0 = 29 < 7 < z2 < --- < x,, of the
failure times from an absolutely continuous distribution
Fy, which is unknown. Then, a non-parametric esti-
mator of the optimal software rejuvenation schedule fs
which minimizes C(tp) is given by z;«, where

. . ¢nj + . }
= g T e 36
J {J | Ay (36)

and Ay in Eq. (31) is replaced by >_p_; zx/n.
(ii) The estimator given in (i) is strongly consistent if a
unique optimal software rejuvenation schedule exists.

It is straightforward to prove the above results (i)
in Theorem 7.3 and Theorem 7.4 from Theorem 7.1
and Theorem 7.2, respectively. The uniform conver-
gence property in (ii) follows from the Glivenko-Cantelli
lemma [3] and the strong law of large numbers. The
graphical procedure proposed here has an educational
value for better understanding of the optimization prob-
lem and it is convenient for performing sensitivity anal-
ysis of the optimal software rejuvenation policy when
different values are assigned to the model parameters.
Of special interest is to estimate the optimal schedule
without specifying the failure time distribution. Al-
though some typical theoretical distribution functions
such as the Weibull distribution and the gamma dis-
tribution are assumed in the reliability /performability
analysis, our non-parametric estimation algorithm can
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generate the optimal software rejuvenation schedule us-
ing the on-line knowledge about the observed failure
times.

Figure 4 shows the estimation results of the optimal
software rejuvenation schedule under the availability
criterion, where the failure time data is synthetically
generated by the Weibull distribution with shape pa-
rameter 5 = 4.0 and scale parameter § = 0.9. For
100 failure data points, the estimates of the optimal
rejuvenation schedule and the maximum system avail-
ability are &5 = 0.56592 and A(£;) = 0.987813, respec-
tively. In Fig. 5, we show the estimation results of the
cost model, where the failure time data is generated
by the same Weibull distribution as Fig. 4. In Fig.
5, the estimates of the optimal rejuvenation schedule
and the minimum expected cost are & = 0.401221 and
C(t5) = 0.000131508, respectively. We would like to
emphasize that the optimal rejuvenation schedule that
minimizes the expected cost per unit time in the steady
state depends on the particular values of the repair cost
¢s and rejuvenation cost c,. However, in general, it
will be different from the optimal software rejuvenation
schedule that maximizes the steady-state availability.
So, the optimal rejuvenation schedule should be cho-
sen accordingly to the most appropriate criterion for a
given application.

In this section, we translated the underlying algebraic
problem to a geometrical one to seek the maximum tan-
gent slope. This graphical idea was used to develop a
statistical estimation algorithm to find the optimal reju-
venation schedule. In the following section, we carry out
the sensitivity analysis of model parameters and exam-
ine asymptotic properties for the statistical estimation
algorithms using the simulation data.

8. NUMERICAL EXAMPLES
8.1. Sensitivity analysis

We carry out the sensitivity analysis on the model pa-
rameters. Figure 6 shows the behaviour of the steady-
state availability, where the failure time distribution
is given by Eq.(29). Define the MTTF (Mean Time
to Failure) by Ay = 6I'(1 + 1/5), where I'(-) denotes
the standard gamma function. As the MTTF becomes
larger for a fixed shape parameter, the optimal software
rejuvenation schedule which maximizes the steady-state
availability takes a larger value for each case. Also, de-
pendences of MTTF on the optimal software rejuve-
nation time and its associated availability are investi-
gated in Figs. 7 and 8, respectively. As the MTTF gets
larger, both the rejuvenation schedule and its associated
steady-state availability become monotonically larger.
Next, consider the expected cost criterion. Figure 9 il-
lustrates the behaviour of the expected cost, where the
failure time distribution is also Weibull as in Eq.(29).
As the MTTF becomes larger for a fixed shape param-
eter, the optimal software rejuvenation schedule which
minimizes the expected cost takes larger value for each

case. Dependences of the optimal software rejuvenation
time and its associated cost value on the MTTF are also
investigated in Figs. 10 and 11, respectively. As the
MTTF gets larger, the rejuvenation schedule becomes
monotonically larger, but the minimum expected cost
becomes smaller.

Table 1 presents the dependence of the rejuvenation
schedule on the ratio p,/p. in the availability model.
As the ratio p, /. increases, the rejuvenation schedule
monotonically decreases, and the maximum availability
also decreases. Thus, higher the mean repair time rel-
ative to the mean time to perform rejuvenation more
frequently the rejuvenation should be performed. This
monotone tendency can also be observed for other pa-
rameters. In Table 2, we examine the dependence of
the rejuvenation schedule on the ratio A\y/po. If the
MTTF becomes larger for a fixed value of pg, i.e., the
system tends to be more reliable, the resulting optimal
rejuvenation schedule can take rather large value, that
is, the rejuvenation should be performed less and less
frequently.

Table 3 presents the dependence of the rejuvenation
schedule on the cost ratio ¢s/cp in the cost model. As
the cost ratio cs/c, increases, the rejuvenation time
monotonically decreases, but the cost value increases.
In Table 4, we examine the dependence of the rejuve-
nation schedule on the ratio pg /.. If the mean repair
time becomes larger for fixed time to complete rejuvena-
tion, the resulting optimal rejuvenation schedule takes
smaller values. The final example in Table 5 presents
the relationship between A /o and the optimal rejuve-
nation schedule. As Ay takes larger value with respect
to o, 4.e., the system tends to be more reliable, g be-
comes larger.

8.2. Asymptotic behaviour

Next, we examine the asymptotic properties of the es-
timators developed in Section 7. One of the most im-
portant problem in practical applications is the speed
of convergence of the estimates for the optimal soft-
ware rejuvenation schedules. In other words, since large
number of sample failure time data points are not avail-
able in the early part of the operational phase, it is
important to investigate the number of data points at
which one can estimate the optimal software rejuve-
nation schedule accurately without specifying the fail-
ure time distribution. Figures 12 and 13 illustrate the
asymptotic behaviour of the estimates for the optimal
software rejuvenation schedule and its associated max-
imum steady-state availability. The failure time data
are generated by the Weibull distribution with shape
parameter § = 2.34 and scale parameter § = 0.903. In
the figures, the horizontal lines denote the real optimal
rejuvenation schedule and the maximum system avail-
ability, respectively.

In Fig. 13, the maximum availability A(£}) is cal-
culated in accordance with the estimation algorithm in



ESTIMATING SOFTWARE REJUVENATION SCHEDULE 9

Theorem 7.3, where the sample mean \; = S7_ x1/n
changes as the failure time data is observed. From Figs.
12 and 13, it is seen that the estimate of the optimal
rejuvenation schedule fluctuates until the number of ob-
servations is about 40. These results enable us to use
the non-parametric algorithm proposed here to estimate
precisely the optimal software rejuvenation schedule un-
der the incomplete knowledge of the failure time distri-
bution.

Next, we examine the asymptotic properties of the es-
timators developed in the cost models. Figures 14 and
15 illustrate the asymptotic behaviour of the estimates
for the optimal software rejuvenation schedule and its
associated minimum expected cost, respectively, where
the failure time data are generated from the Weibull
distribution with shape parameter § = 4.0 and scale
parameter § = 0.9. In these figures, estimates of the
optimal policy f; and the corresponding minimum cost
value C(£5) are calculated in accordance with the es-
timation algorithm in Theorem 7.4. From Fig. 14 it
is seen that the estimate of the optimal rejuvenation
schedule fluctuates until the number of observations is
about 50. On the other hand, it is found that the ex-
pected cost per unit time in the steady state can be
estimated accurately after the number of observations
becomes about 20. These results will be useful to de-
sign the high assurance software system under the in-
complete knowledge of the failure phenomenon.

9. CONCLUSION

In this paper, we have analyzed a generalized soft-
ware rejuvenation model under two different criteria
and developed the statistical non-parametric algorithms
to estimate the optimal software rejuvenation sched-
ules. In particular, we have considered two special
cases: steady-state availability and expected cost per
unit time in the steady state. The resulting estima-
tors for the optimal software rejuvenation schedules
have quite nice convergence properties and are useful
to apply to a real software operation without specify-
ing the underlying failure time distribution. In fact,
the measurement-based approach [12, 25] to perform
the effective software rejuvenation requires much effort
to measure the physical characteristics for the system.
Also, the model-based approaches studied in the lit-
erature [4, 8, 10, 20, 21] can not explain the software
aging phenomenon completely, since the underlying fail-
ure time distribution is unknown in many cases. The
statistical approach developed in this paper is simple,
but can guarantee the real optimal software rejuvena-
tion schedule if the number of failure time data points
becomes large. Such an on-line estimation algorithm
should be applied to other complex software systems,
as the transaction-based software systems. In the fu-
ture, we plan to develop non-parametric estimation al-
gorithms for other high assurance software systems with

rejuvenation.
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FIGURE 2. Determination of the optimal software reju-
venation schedule maximizing the steady-state availability
on the two-dimensional graph: § = 9.03 x 107!, g = 2.34,
po =40 x 107", pg = 4.0 x 1072, pe = 3.0 x 1071,
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FIGURE 3. Determination of the optimal software re-
juvenation schedule minimizing the expected cost per unit
time in the steady state on the two-dimensional graph:
0 =20x10"2%8=52 po=2.0x10"2 pa = 5.0 x 1072,
pe =4.0%x1072% ¢, =2.0x 1072, ¢, =1.0 x 1072,
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FIGURE 4. Estimation of the optimal software rejuvena-
tion schedule maximizing the steady-state availability on the
two-dimensional graph: 6 = 9.0 x 107!, 8 = 4.0, po = 2.0,
po = 4.0 x 1072, pe = 3.0 x 1072,
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FIGURE 5. Estimation of the optimal software reju-
venation schedule minimizing the expected cost per unit
time in the steady state on the two-dimensional graph:
0 =9.0x107Y, B = 4.0, po = 2.0, pa = 4.0 x 1072,
pe =30x 1072 ¢, =2.0x 1072, ¢, = 1.0 x 1072
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FIGURE 6. Behaviour of the steady-state availability:
pa = 6.0 x 1071, pe =3.071, po = 2.4 x 10%, 8 = 2.0.
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FIGURE 7. Effect of the MTTF on the optimal software
rejuvenation time in the availability model: p, = 6.0x 1071,
pe =3.0 x 1071, po = 2.4 x 102, 8 = 2.0.
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FIGURE 8. Effect of the MTTF on the maximum steady-
state availability: prq = 6.0 x 107}, e = 3.0 x 107}, po =
2.4 x 10%, B = 2.0.
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FIGURE 9. Behaviour of the expected cost: puq = 6.0 x
1071, pe =3.0x1071, po = 2.4%x10%, B = 2.0, ¢s = 5.0x10°,
¢p = 5.0 x 10%
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FIGURE 10. Effect of the MTTF on the optimal software
rejuvenation time in the cost model: po = 6.0 x 107, e =
3.0 x 1071 po = 2.4 x 10%, 8 = 2.0, ¢s = 5.0 x 10%, ¢, =
5.0 x 10°.
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FIGURE 11. Effect of the MTTF on the minimum ex-
pected cost: po =6.0x107", pe =3.0x107%, po = 2.4x10%,
B =20, cs =50 x10% ¢, = 5.0 x 10%.
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FIGURE 12. Asymptotic behaviour of the optimal soft-
ware rejuvenation schedule under the steady-state availabil-
ity criterion: 6 = 9.03 x 1071, 8 = 2.34, po = 4.0 x 1071,
po = 4.0 x 1072, po = 3.0 x 1072
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TABLE 4. Effect of the ratio pq /g on the rejuvenation

0.982 schedule in cost model: p. = 3.0 x 1071, po = 2.4 x 102,
B =20, A\ =2.16 x 10%, ¢s = 5.0 x 10®, ¢, = 5.0 x 10°.
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FIGURE 13. Asymptotic behaviour of the maximum 3 272.29  0.3988
steady-state availability: 6 = 9.03 x 107!, 8 = 2.34, % %égé% giggg
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7 138.98 0.4843

8 124.33  0.4960

9 112.55 0.5058

10 102.86 0.5142

11 94.74 0.5215

0.8

0.6

0.4

0.2

-

0 20 40 60 80 100 n

FIGURE 14. Asymptotic behaviour of the optimal soft-
ware rejuvenation schedule under the expected cost crite-
rion: 6 = 9.0 x 1071, 8 = 4.0, po = 2.0, pa = 4.0 x 1072,
pe=3.0x1072 ¢s =2.0x 1072, ¢, = 1.0 x 1072

TABLE 5. Effect of the ratio Af/po on the rejuvenation
schedule in cost model: p, = 6.0 x 107%, pe = 3.0 x 1071,
po = 2.4 x 102, B = 2.0, ¢s = 5.0 x 103, ¢, = 5.0 x 10°.
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FIGURE 15. Asymptotic behaviour of the minimum ex-
pected cost: 0 = 9.0 x 1071, 8 = 4.0, po = 2.0, pa =
4.0x1072 e =3.0x 1072, ¢ = 2.0x 1072, ¢, = 1.0x 1072



