
Characterizing Intrusion Tolerant Systems Using
a State Transition Model

�

Katerina Goseva-Popstojanova
�
, Feiyi Wang

�
, Rong Wang

�
,

Fengmin Gong
�
, Kalyanaraman Vaidyanathan

�
, Kishor Trivedi

�
, Balamurugan Muthusamy

���

�
Department of ECE, Duke University, Box 90294, Durham, NC 27708

�
Advanced Networking Research Group, MCNC, Research Triangle Park, NC 27709

�
Vitesse Corp., Camarillo, CA 93012

Abstract

Intrusion detection and response research has so far
mostly concentrated on known and well-defined attacks. We
believe that this narrow focus of attacks accounts for both
the successes and limitation of commercial intrusion detec-
tion systems (IDS). Intrusion tolerance, on the other hand,
is inherently tied to functions and services that require pro-
tection. This paper presents a state transition model to de-
scribe the dynamic behavior of intrusion tolerant systems.
This model provides a framework from which we can define
the vulnerability and the threat set to be addressed. We also
show how this model helps us to describe both known and
unknown security exploits by focusing on impacts rather
than specific attack procedures. By going through the ex-
ercise of mapping known vulnerabilities to this transition
model, we identify a reasonably complete fault space that
should be considered in a general intrusion tolerant system.

1. Introduction

Most of the intrusion detection and response approaches
to date have focused on the specific manifestation of attacks
[2, 3, 5, 10]. Just by focusing our attention on the intru-
sion attacks themselves, we cannot expect to develop a gen-
eral protection mechanism because all attacks are not well-
defined and there are always unknown attacks. Intrusion

�
This work is sponsored by the U.S. Department of Defense Ad-

vanced Research Projects Agency (DARPA) under contract N66001-00-
C-8057 from the Space and Naval Warfare Systems Center - San Diego
(SPAWARSYSCEN). The views, opinions and findings contained in this
paper are those of the authors and should not be construed as official
DARPA or SPAWARSYSCEN’s positions, policy or decision.�

This work was done while the author was with MCNC.

tolerance, on the other hand, is inherently tied to the func-
tions and services that require protection (i.e. to be made
intrusion tolerant). It is this focus that makes intrusion tol-
erance a promising approach to build our defense from.

Intrusion tolerance research should leverage results from
the fault tolerance community to the fullest extent possible.
Fault tolerant designs are built-in in almost every aspect of
our critical modern infrastructure, e.g. air traffic control and
power grid control systems. However, as described below,
there are significant challenges in applying fault tolerance
approaches to intrusion tolerance.

� Fault tolerance techniques have mostly been focused
on accidental faults and malicious faults planted at the
design or implementation stages. This focus allows us
to make some reasonable assumptions regarding pre-
dictable fault behaviors. Active intrusions, manifested
as compromised system components whose behavior
is under complete malicious control, make the fault be-
havior very unpredictable.

� Active intrusions also introduce attacks from outside
the system, which have not been considered in the tra-
ditional fault tolerance systems.

� Existing fault tolerance work has mostly focused on
well-defined hardware or software modules whose
fault modes are relatively easy to define. In large dis-
tributed service infrastructures (e.g. a database-driven
web server), each of the components has complex
functions which makes the definition of fault modes
more difficult.

� There is a wealth of fault tolerance techniques aimed
at building fault tolerance systems from scratch. Some
more recent efforts have also begun to consider the
protection of COTS systems. While striving to make
our new systems intrusion-tolerant, it is critical to



make the existing information infrastructure built from
COTS components more intrusion tolerant at the sys-
tem level. Therefore, it is highly desirable to de-
velop technologies for intrusion tolerance that are use-
ful both for hardening existing infrastructures and for
building better new ones.

The DARPA-funded research project, named SITAR, is
developing a scalable intrusion tolerance architecture for
distributed services. As a first step in this research, we have
developed a state transition model for describing a general
intrusion tolerant system.

We focus on a generic class of services (network-
distributed services built from COTS components) as the
target for protection. This target presents us with enough
challenging problems to solve while remaining concrete
enough for us to explore specific intrusion-tolerance issues
associated with it. The emphasis of the proposed architec-
ture and solution is on continuity of operation since the se-
curity precautions cannot guarantee that the system will not
be penetrated and compromised. Thus, our goal is to design
a survivable system whose components collectively accom-
plish their mission even under attack and despite active in-
trusions. With respect to system survivability, distinctions
among attacks, failures, and accidents are less important
than the event’s impact. Effects are more important than
causes because a system will have to deal with and survive
an adverse effect long before a determination is made as to
whether the cause was an attack, a failure, or an accident.

This paper presents the model we have developed so far
and discusses how some of the known security exploits fit
into this model, and how this model helps us to deal with
unknown attacks. The rest of the paper is organized as fol-
lows. Section 2 presents the state transition model in detail.
Section 3 describes several known exploits, how the target
system maps to the state transition model, and how differ-
ent categories of exploits manifest in terms of the model.
We summarize the paper and discuss future research steps
in Section 4.

2. Basic model

Figure 1 depicts the state transition model which we pro-
pose as a framework for describing dynamic behavior of an
intrusion tolerant system. The system enables multiple in-
trusion tolerance strategies to exist and supports different
levels of security requirements. State transition model rep-
resents the system behavior for a specific attack and given
system configuration that depends on the actual security re-
quirements.

The system is in the vulnerable state � if it enables a user
to read information without authorization, modify informa-
tion without authorization, or grant or deny an entity access

to a resource without authorization. Here “without autho-
rization” means in violation of the system’s security policy.
A vulnerability (also called a flaw or a hole) is the property
of the system, its attendant software and/or hardware, or its
administrative procedures, that causes it to enter a vulner-
able state. Exploiting a vulnerability means that a system
is in a vulnerable state and a user (called an attacker) reads
or writes the information without authorization, or compro-
mises the system to grant or deny service without autho-
rization. The system enters an active attack state � when a
vulnerability is successfully exploited.

Traditional computer security leads to the design of sys-
tems that rely on resistance to attacks, that is, hardening for
protection. Thus, the system typically oscillates between
good � and vulnerable � states [13]. System management
seeks to prevent the system from becoming vulnerable or to
reduce the time it remains in the vulnerable state. Current
strategies for resistance include the use of authentication,
access control, encryption, firewalls, proxy servers, strong
configuration management, dispersion of data and applica-
tion of system upgrades for known vulnerabilities.

If the strategies for resistance fail, the system is brought
into the vulnerable state during the penetration and explo-
ration phases of an attack. If the vulnerability is exploited
successfully, the system enters the active attack state and
damage may follow. Thus, the ability of a system to re-
act during an active intrusion is central to its capacity to
survive an attack that cannot be completely repelled. It
means that intrusion tolerance picks up where intrusion re-
sistance leaves off. The four phases that form the basis for
all fault tolerance techniques are error detection, damage
assessment, error recovery, and fault treatment and contin-
ued service [11]. These can and should be the basis for the
design and implementation of an intrusion tolerant system.

Strategies for detecting attacks and assessment of dam-
age include intrusion detection (i.e. anomaly based and sig-
nature based detection), logging, and auditing. If the prob-
ing that precedes the attack is detected, the system will stay
in the good state. The other possibility is to detect the pen-
etration and exploration phases of an attack and bring the
system from the vulnerable state back to the good state.
Otherwise, the system might enter the active attack state.
Traditionally, the resistance and detection of attacks receive
most of the attention, and once active attack state is entered
damage may follow with little to stand in the way. Thus,
during the exploitation phase of intrusion it is critical to as-
sess the damage and try the recovery. The strategies for
recovery include the use of redundancy for critical informa-
tion and services, incorporation of backup systems in iso-
lation from network, isolation of damage, ability to operate
with reduced services or reduced user community.

The best possible case is when there is enough redun-
dancy to enable the delivery of error-free service and bring



degradation
graceful

FS      fail-secure state

F        failed state
GD    graceful degradation state

                                        TR     triage state 

   UC    undetected compromised state
   MC   masked compromised state 
   A      active attack state
   V      vulnerable state
   G      good state

reconfiguration/

evolution
reconfiguration/
restoration/

reconfiguration/
evolution

restoration/

evolution

restoration/

recovery
without
degradation

vulnerability

fail-secure
measure

begins

tolerance triggered

recovery

entered V state

pre-attack actions)
(by accident or

attack
before
detected

fail with alarm

intrusion

non-maskable
undetected

exploit

system free of

transparent

GD

F

UC

G

V

A

TRFS

MC

Figure 1. A state transition diagram for intrusion tolerant system

the system back to the good state by masking the attack’s
impact ( ��� ). This is known as error compensation or er-
ror masking in fault tolerance systems. The worst possible
case is when the intrusion tolerance strategies fail to recog-
nize the active attack state and limit the damage, leading to
an undetected compromised state ��� , without any service
assurance.

When an active attack in exploitation phase is detected,
the system will enter the triage state ��� attempting to re-
cover or limit the damage. Ideally, of course, the system
should have in place some measures for eliminating the im-
pacts produced by an attack, providing successful restora-
tion of a good state. However, restoration of the good state
may not necessarily be an appropriate, cost-effective, or
even a feasible recovery technique. In this case, the system
could attempt to limit the extent of damage while maintain-
ing the essential services. Essential services are defined as
the functions of the system that must be maintained to meet
the system requirements even when the environment is hos-
tile, or when failures or accidents occur that threaten the

system [12]. Of course, there is no “one size fits all” solu-
tion. In intrusion tolerance the impacts are more important
than the causes. If the aim is to protect the system from
denial of service attack from external entities, the system
should enter the graceful degradation state ��� , maintain-
ing only essential services. However, if the aim is to protect
confidentiality or data integrity the system must be made to
stop functioning. This is called fail-secure state 	�
 , analo-
gous to fail-safe state in fault tolerance. If all of the above
strategies fail then the system enters the failed state, 	 , and
signals an alarm.

Recovering the full services after an attack and returning
to the good state by manual intervention is represented by
transitions denoted with dashed lines. Although the system
may have returned to a good state, techniques such as recon-
figuration or evolution of the system may still be required
to reduce the effectiveness of future attacks. This phase can
be considered analogous to fault treatment and continued
service phase in fault tolerance.



3. Case studies

In this section, we discuss several vulnerability case
studies and map them to our previously-discussed state tran-
sition model. There has been extensive work reported on
categorization of software vulnerabilities, system errors and
flaws, and intrusions [4, 7, 8]. These studies cover many
attributes of vulnerabilities, though each with a different
emphasis. For the development of intrusion tolerance ca-
pabilities, we need to focus on the impact of the intrusions
exploiting these vulnerabilities. Most importantly, we con-
centrate on observable impact that affords us opportunities
for detection and providing tolerance. We consider the fol-
lowing classes of vulnerabilities based on their impact:

Compromise of confidentiality: These attacks violate the
confidentiality requirement for sensitive data.

Compromise of data integrity: These attacks mainly re-
sult in corruption of sensitive data.

Compromise of user/client authentication: These at-
tacks cause breach in the normal authentication
process between the client and the server.

DoS from external entities: These attacks are mainly
aimed at disrupting normal services by directly con-
suming large amount of service resources such as net-
work access bandwidth and CPU cycles.

DoS by compromising internal entities: These attacks
achieve the disruption of service through a secondary
effect of a compromise in the commercial-off-the-shelf
(COTS) servers.

It should be pointed out that, while we present a set
of known vulnerabilities and exploits in this section, the
study of these known vulnerabilities only serve the purpose
of developing understanding towards a general intrusion
tolerance system. The intrusion tolerance system emerg-
ing from this study will be able to deal with previously-
unknown attacks as long as these attacks produce similar
impact on our services. Through the exercise of mapping
the currently-known vulnerabilities to the proposed state
transition model, we have succeeded in identifying a fairly
complete state space for an intrusion tolerant system. We
are able to delineate transitions among these states that rep-
resent a variety of opportunities for detecting, recovering
from, and tolerating an attack. These transitions afford in-
trusion protections ranging from prevention, to detection
with graceful service degradation, and to fail-secure mea-
sures. These transitions also suggest viable functionality
mappings to different modules of the SITAR architecture
[9]. The following case presentations help to illustrate these
points.

3.1. Active Server Page (ASP) vulnerability in IIS
4.0 (Bugtraq ID 167)

One of the sample files shipped with Internet Infor-
mation Server (IIS) 4.0, showcode.asp, is meant
for viewing the source code of the sample applica-
tions through a web browser. The showcode.asp
file does not perform adequate security checking and
anyone with a web browser can view the contents of
any text file on the web server by using the URL:
http://target/msadc/Samples/SELECTOR/
showcode.asp?source=/path/filename. The
files that can be viewed this way also include files that are
outside of the document root of the web server.

The ASP file is supposed to have a security check which
only allows the viewing of the sample files which were
in the /msadc directory on the system. But the security
check does not test for the “..” characters within the URL.
The only checking done is if the URL contains the string
/msadc/. This allows URLs to be created that view, not
only files outside of the samples directory, but files any-
where on the entire file system that the web server’s docu-
ment root is on.

For production servers, sample files should never be in-
stalled and hence the entire /msadc/samples directory
should be deleted. However, if showcode.asp capability
is required on development servers, the file should be mod-
ified to also test for URLs with “..” in them and deny those
requests.

This vulnerability poses a high security risk, specifi-
cally, compromise of confidentiality. Many e-commerce
web servers store transaction logs and other customer in-
formation such as credit card numbers, shipping addresses,
and purchase information in text files on the web server. All
these types of data could be accessed by exploiting this vul-
nerability. Hence the immediate impact is compromise of
confidentiality.

The mapping of this vulnerability to the state diagram is
shown in Figure 2.

� The system is initially in the good state � . If show-
code.asp is not present, the system stays in state � .

� If showcode.asp is present, the attacker brings
the system into the vulnerable state � by submitting
the URL http://target/msadc/Samples/
SELECTOR/showcode.asp?source=/path/
filename.

� If URL filtering is done to test for “..”, then the system
goes back to the good state � , from state � . If not,
transition “exploit begin” is activated and the attack
actually happens in state � .



1

2

2

22

2

1

FS TR

A

V

G

UC

GD

intrusion

gracefulfail-secure
measure

fail with alarm

URL filtering
accident or pre-

F

restoration/reconfiguation/evolution
(disable/remove showcode.asp or restrict 
access only to /msadc/) 

http://target/msadc/Samples/SELECTOR/
showcode.asp?source=/path/filename

non-maskable

degradation

undetected

tolerance triggered

attack actions)

V state (by
entered 

showcode.asp
not present 

recovery
without degradation 
(no access to other directories)

Figure 2. State transition diagram for ASP vulnerability

� If the attack is successful and goes undetected, the sys-
tem goes to the undetected compromised state ��� .

� If there are intrusion tolerance measures, they are trig-
gered from state � and the system now reaches the
state ��� . If the fix for the exploit (restriction to all
directories except /msadc) is present, the system can
recover without degradation and can go back to the
good state � .

� The system can be taken to the fail-secure state 	�

(where the system is shut down securely) to limit the
damage if the damage was unavoidable.

� If possible, the system can also be taken to the grace-
fully degraded state ��� , where only some services are
maintained.

� If the tolerance measures fail in spite of the trigger, the
system enters the state 	 .

� The system is returned to the good state �
from states ��� , 	 , 	�
 or ��� after restora-
tion/reconfiguration/evolution which includes dis-
abling/removing showcode.asp or restricting ac-
cess only to /msadc directory. The next time the
same attack happens, the system remains in state �
(indicated by a self-loop).

3.2. Common Gateway Interface (CGI) vulnerabil-
ity in Sambar server (Bugtraq ID 1002)

The Sambar Web/FTP/Proxy Server for Windows NT
and 2000 includes the ability to use DOS-style batch
programs as CGI scripts. Any batch file used by the server
in the cgi-bin directory can be used by a remote attacker
to run any valid command-line program with Administrator
privileges, for example, by providing a URL like http:
//target/cgi-bin/hello.bat?&dir+c:\ or



2

2

2

2

1

1

2

MC

FS

A

V

G

UC

GD
graceful

degradation
fail-secure
measure

fail with alarm

intrusion

TR

non-maskable

undetected

masked

undetected

attack actions)
accident or pre-
V state (by
entered 

batch files
not present 

F

tolerance triggered

(disable/remove batch files)

http://target/cgi-bin/hello.bat?&dir+c:\  OR

transparent
recovery

recovery without 

(no aceess to other 
degradation 

directories)

restoration/reconfiguration/evolution

http://target/cgi-bin/echo.bat?&dir+c:\

Figure 3. State transition diagram for CGI vulnerability

http://target/cgi-bin/echo.bat?&dir+c:\.
This provides the ability to read, modify, create or delete

any file or directory on the system, the ability to create,
delete or modify user accounts, etc. Even if the user has not
enabled or created any batch files, the software is shipped
with two files by default - hello.bat and echo.bat.
The immediate and direct impact of this vulnerability is
compromise of confidentiality and data integrity. Fur-
ther indirect impacts could include DoS.

Ideally, the web server should not be shipped with any
batch files. However, batch file execution can still be sup-
ported and therefore the server can still be vulnerable if
batch files are uploaded to the cgi-bin directory by any
means.

Figure 3 shows the mapping of this vulnerability to the
state transition diagram.

� The system is initially in the good state, � . If the batch

files are not present, the system stays in state � .

� The attacker brings the system into the vulnerable
state � by submitting the URL http://target/
cgi-bin/hello.bat?&dir+c:\. URL filtering
is very difficult in this case, since any batch file can
be uploaded even in the absence of hello.bat and
echo.bat. Hence transition “exploit begin” is acti-
vated and the attack actually happens in state A.

� If no fix for the exploit is present, the attack can be suc-
cessful and the system can go to the undetected com-
promised state ��� .

� In some instances (eg. compromise of data integrity),
even while a fix is not present, the impact of the attack
can be masked (by redundancy) and the system recov-
ers perfectly through the state ��� .



� Intrusion tolerance triggers are activated before enter-
ing state ��� and if fool-proof mechanisms are in place
(no access to other directories), the system can go back
to the good state � without experiencing degradation.

� The system can be taken to the fail secure state 	�

(where the system is shut down securely) to limit the
damage if the damage was unavoidable.

� If possible, the system can also be taken to the grace-
fully degraded state ��� , where only some services are
maintained.

� If the tolerance measures fail in spite of the trigger, the
system enters the state 	 .

� The system is returned to the good state �
from states ��� , 	 , 	�
 or ��� after restora-
tion/reconfiguration/evolution and for future attacks
of this kind, the system is hardened (no batch files
present) and hence always remains in the good state,

� (indicated by the self loop).

3.3. Sun Java web server bulletin board vulnerabil-
ity (Bugtraq ID 1600)

The Sun Java Web Server includes two features which
when used together can be made to execute arbitrary
code at the privilege level of the server. The Web Ad-
ministration module listens on port 9090 for adminis-
trative commands via http. By using the /servlet/
prefix, it is possible for a remote user to point
the servlet com.sun.server.http.pagecompile.
jsp92.JspServlet to any file in or below the adminis-
tration web root for compilation and execution.

The server also includes a sample application that pro-
vides bulletin board functionality. This application uses the
file board.html in the web root to store all posted mes-
sages. Code can be entered as a posted message through the
file /examples/applications/bboard/bboard_
frames.html and will then be stored as part of
board.html.

Therefore, it is possible for a remote user to inject JSP
code into board.html, and then have the server execute it
via the Administration module, using the URLs like http:
//target:9090/servlet/com.sun.server
and http.pagecompile.jsp92.JspServlet/
board.html.

The immediate impact of this vulnerability is compro-
mise of user/client authentication and confidentiality.
Further indirect impacts could include compromise of data
integrity and authenticity and DoS.

The mapping of this vulnerability to the state transition
diagram is shown in Figure 4.

� Initially, system is in the good state, � .

� The attacker then brings the system to the vulnerable
state, � , by injecting code into board.html through
the URL: http://target:9090/servlet/
com.sun.server.

� The attacker exploits the vulnerability (ex-
ecuting code) by submitting the URL
http.pagecompile.jsp92.JspServlet/
board.html. Hence transition ”exploit begin” is
activated and the attack happens in state � .

� If no fix for the exploit is present, the attack can be suc-
cessful and the system can go to the undetected com-
promised state ��� .

� In some instances (eg. compromise of data integrity),
even though a fix is not present, the impact of the at-
tack can be masked (by redundancy) and the system
recovers perfectly through the state ��� .

� Intrusion tolerance triggers are activated before the
system enters state ��� and if a fix is present (execution
of the servlets is blocked), the system recovers without
any degradation and goes back to the good state � .

� The system can be taken to the fail-secure state 	�

(where the system is shut down securely) to limit the
damage if the damage was unavoidable.

� In some cases, it might also be possible to take the sys-
tem to the degraded state, ��� , gracefully and maintain
some services without bringing down the entire sys-
tem.

� If the tolerance measures fail in spite of the trigger, the
system enters the state 	 .

� The system is returned to the good state �
from states ��� , 	 , 	�
 or ��� after restora-
tion/reconfiguration/evolution. The fix for the exploit
(no execution privilege in the bboard directory) is ap-
plied during this procedure and this prevents the same
exploit from happening again.

3.4. ‘SITE EXEC’ vulnerability in wu-ftpd (Bug-
traq ID 1387)

Wu-ftpd, developed by Washington University, is a
very popular UNIX ftp server program. Recently it was
reported [1, 6] that there is an input validation hole in wu-
ftpd version 2.5.0. This hole could be exploited by using
the ‘site exec’ command and it could result in root
compromise.

The source of the wu-ftpd input validation error is due
to the fact that the program fails to check the arguments



3

3
3

3

3

2

1

2

1

MC

FS

UC

GD

F

TR graceful

degradation
fail-secure
measure

fail with alarm

non-maskable

undetected

masked

undetected

tolerance triggered

transparent
recovery

recovery without 
degradation 

A

G

V

inject code

execute code

intrusion

(no execution privelge in bboard directory)

code posted through
/examples/applications/bboard/bboard_frames.html

http://target:9090/servlet/com.sun.server.

restoration/reconfiguration/evolution

http.pagecompile.jsp92.JspServlet/board.html

(no execution  
privilege)

Figure 4. State transition diagram for BBoard vulnerability

of some function calls correctly. In particular, the program
implementing the ‘site exec’ functionality passes the
input argument directly into the stack without proper check-
ing and uses it as the character-formatting argument of a
procedure call. A malicious user can exploit this defect by
providing a deliberately crafted character-formatting argu-
ment, which is longer than its presumed size. When this
long argument is passed into the stack, it can overwrite the
existing data in the stack and by changing the return address
in the stack, the user can get the control of the server. By
analyzing available code exploiting the wu-ftpd problem,
we can outline the steps that an attacker need to perform
and the vulnerable ftp daemon’s responses as follows:

1. An attacker tries to log in to a vulnerable ftp server as
an anonymous user.

2. When the vulnerable ftp server requests the password,
the attacker enters a password attached with the mali-
cious shell code.

3. The vulnerable ftp daemon accepts the connection and
the attacker becomes a legal anonymous user.

4. To confirm that the ftp daemon has the expected
‘site exec’ problem, the attacker makes a test by
executing command ‘site exec’ with character-
format argument.

5. The vulnerable ftp server accepts the command and
generates an acceptance response to the attacker. An
acceptance response for the above requests indicates
that the ‘site exec’ problem exists.

6. The attacker begins exploiting actions against the vul-
nerable ftp daemon by entering ‘site exec’ com-
mand with carefully crafted argument that is long
enough to smash the stack and overwrite the return ad-
dress of the procedure call.

7. If the location of the return address in the stack has
not been found out, the attacker will try again with



remove attacker’s account from the system/ 
failed to access 

1

1
use patched ‘site exec’ service

manually reset system/

1

1
no damage in the stack
connection closed

exec’ func.
block ‘site

the damage

actions
detected exploit 

connection request

and test ‘site exec’
user, plant shell code 

to smash the stack

reject the suspicious

login as anonymous

attempts of trying

undetected
non-maskable

TR

A

V

G

UC

GD 

F

Figure 5. State transition diagram for wu-ftpd vulnerability

adjusted argument for ‘site exec’ command and
send the command with the argument to the server.

8. After several attempts at step (7), the return address
has been overwritten and pointed to the malicious shell
code that reside in the system.

9. The system runs the shell code and the attacker gets
the unauthorized privilege.

The wu-ftpd vulnerability can cause direct and indi-
rect impacts. The immediate impact for the system is that
any local/remote user can get unauthorized privilege. The
potential impact is that once intruders gain unauthorized
privilege, they can perform further malicious actions such
as installing password sniffer, changing syslog configura-
tion files and installing DDoS tools. Those actions may
threaten the service’s availability, confidentiality, authentic-
ity and integrity. Based on the previous discussion of the
state transition model and the analysis of the impact of the
wu-ftpd vulnerability, we can map the state transition di-
agram as Figure 5 and describe the system with intrusion
tolerance capability as follows:

� Before any user exploits the system, the system is in a
good state � and functioned as normal. If the system
decides to close a connection to an attacker after it de-
tected the attacker’s pre-attack actions (as described in
step 1,2,3 ), it can still stay in � state.

� If the pre-attack actions have not been detected by the
system, the system will be in a � state because the
vulnerability is exposed to the attacker.

� The system is in the � state if the attacker is exploiting
the vulnerability.

� The system goes from � state to the ��� state if the ex-
ploiting activities (as described in steps 6,7) have not
been detected and the malicious shell code runs suc-
cessfully.

� The system is in the � � state if the exploiting activities
(as described in steps 6,7) are detected.

� The system enters ��� state if it blocks the ‘site
exec’ function.

� The system enters 	 state if the attack is detected but
the damage caused by the exploiting activities is un-
known.

� The system is returned to the good state � from states
��� , 	 or ��� by manually resetting the system, re-
moving the attacker’s account or by using a patched
‘site exec’ service.



TR

A

V

UC

GD

progress

detected
attack

F

no known

block IP

system

G

create

present

address

crash

response
technique

index.html

index.html

index.html
add

add resources/

manual intervention
add index.html/

add resources/
add index.html/
manual intervention

attack in 

http request 
without index.html

Figure 6. State diagram mapping of DoS

3.5. Denial of Service (DoS) vulnerability (Bugtraq
ID 1941)

Small HTTP Server is a full service web server which
is less than 30 KB and requires minimal system resources.
Recently denial of service (DoS) attacks have been identi-
fied in these servers. Unlike the conventional type of DoS
attacks, here the attack consumes all the system resources.
This is an instance of DoS from external entities.

When making an http request without a filename speci-
fied, the server will attempt to locate index.html in that
particular directory. If index.html does not exist, the
server will utilize a large amount of system memory. If nu-
merous http requests, again structured without a filename,
are sent to the web server, an attacker could cause it to con-
sume all system memory. A restart of the application is
required to gain normal functionality.

The state transitions are captured in our model, as indi-
cated in the figure 6.

� If index.html is not present, without any prepara-
tion or previous knowledge, the attacker can start the
attack by issuing a http request of the form: http://
target/DirectoryWithoutIndex/. So, the
system moves from the good state, to the vulnerable
state � .

� With requests getting accumulated, the server moves
to the active attack state, � . In this state, it can still
respond to the legitimate requests, but with a degraded
quality, taking more time for each request.

� When the system is not equipped with detection tech-
niques, it goes to the undetected compromised state,
��� , wherein the only course of action is to have man-
ual reboot.

� On the other hand, when the system is equipped with
detection techniques, it goes to the triage state, � � ,
where it tries to recover from the attack.

� If possible, the system then moves to the graceful
degradation state, ��� , where it can provide essen-
tial services only. This can be done by in the follow-
ing manner. Upon detecting numerous requests with-
out index.html from the same network or IP ad-
dress, requests from the appropriate addresses could
be blocked. However, this might prevent genuine re-
quests from getting serviced.

� If recovery is not possible, the system goes to the fail
state, 	 , with an alarm and is destabilized.

� The system is brought back to the good state, � from



states ��� , ��� or 	 either by upgrading the system
with more resources or by creating an index.html
file in the directories. This would ensure that this at-
tack does not happen again, and the system does not
move from the good state to the vulnerable state.

4. Conclusion

To summarize, we have presented a state transition
model to describe the dynamic behavior of intrusion toler-
ant systems. This model provides a framework from which
we can define the vulnerability and threat set to be ad-
dressed by the SITAR architecture. We also showed how
this model helps us to describe both known security ex-
ploits and unknown attacks by focusing on attack impact
rather than specific attack procedures. By going through
the exercise of mapping from known vulnerability to this
transition model, we identified a reasonably complete fault
space that should be considered in a general intrusion tol-
erant system. Our future work includes further investiga-
tion on adaptation, reconfiguration and graceful degradation
techniques to either ensure a minimum service level or re-
cover the full system functionality. We will also conduct
analytical and quantitative assessment on operational secu-
rity, create a prototype system, and evaluate the prototype
through experimental measurements.

5. Acknowledgments

The entire SITAR project team, in addition to the au-
thors, Frank Jou and Dan Stevenson from MCNC, and Hu
(Thomas) Pan from Duke University, have contributed to
the development of the state machine model. Furthermore,
Frank, Dan and Hu have also provided very useful input
during the preparation of this paper that helped to improve
the presentation significantly.

References

[1] Auscert advisory aa-2000.02. http://ftp.auscert.
org/pub/auscert/advisory/AA-2000.02, 2000.

[2] J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and
E. Stoner. State of the practice of intrusion detection tech-
nologies. Technical Report CMU/SEI-99-TR-028, Carnegie
Mellon Software Engineering Institute, 2000.

[3] E. G. Amoroso. Intrusion Detection: An Introduction to
Internet Surveillance, Correlation, Trace Back, Traps, and
Response. Intrusion.Net Books, 1999.

[4] T. Aslam, I. Krsul, and E. H. Spafford. Use of taxonomy of
security faults. Technical Report TR-96-051, Department of
Computer Science, Purdue University, 1996.

[5] R. G. Bace. Intrusion Detection. Technology Series.
Macmillan Technical Publishing, 2000.

[6] C. C. Center. Cert advisory ca-2000-13: Two input val-
idation problems in ftpd. http://www.cert.org/
advisories/CA-2000.html, 2000.

[7] W. Du and A.P.Mathur. Vulnerability testing of software
system using fault injection. Technical Report Coast TR-
98-02, Department of Computer Science, Purdue University,
1998.

[8] I. Krsul, E. H. Spafford, and M. V. Tripunitara. Computer
vulnerability analysis. Technical Report Coast TR 98-07,
Department of Computer Science, Purdue University, 1998.

[9] MCNC and Duke University. Sitar : A scalable intrusion-
tolerant architecture for distributed services. Technical re-
port, Research Proposal to DARPA BAA-00-15, 2000.

[10] S. Northcutt and J. Novak. Network Intrusion Detection: An
Analysts’ Handbook. New Riders, September 2000.

[11] P.A.Lee and T.Anderson. Fault Tolerance: Principles and
Practice. Springer Verlag, 1990.

[12] R.J.Ellison, D.A.Fisher, R.C.Linger, H.F.Lipson,
T.A.Longstaff, and N.R.Mead. Survivability: Protect-
ing your critical systems. IEEE Internet Computing,
3(6):55–63, 1999.

[13] W.A.Arbaugh, W.L.Fithen, and J.McHugh. Windows of
vulnerability: A case study analysis. IEEE Computer,
33(12):52–59, December 2000.


