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Abstract

World Wide Web, the biggest distributed system ever built,
experiences tremendous growth and change in Web sites, users,
and technology. A realistic and accurate characterization of Web
workload is the first, fundamental step in areas such as per-
formance analysis and prediction, capacity planning, and ad-
mission control. Compared to the previous work, in this pa-
per we present more detailed and rigorous statistical analysis of
both request and session level characteristics of Web workload
based on empirical data extracted from actual logs of four Web
servers. Our analysis is focused on exploring phenomena such as
self-similarity, long-range dependence, and heavy-tailed distri-
butions. Identification of these phenomena in real data is a chal-
lenging task since the existing methods may perform erratically
in practice and produce misleading results. We provide more ac-
curate analysis of long-range dependence of the request and ses-
sion arrival processes by removing the trend and periodicity. In
addition to the session arrival process (i.e., inter-session char-
acteristics), we study several intra-session characteristics using
several different methods to test the existence of heavy-tailed be-
havior and cross validate the results. Finally, we point out spe-
cific problems associated with the methods used for establishing
long-range dependence and heavy-tailed behavior of Web work-
loads. We believe that the comprehensive model presented in this
paper is a step towards solving the Web workload puzzle.

1 Introduction

The growing availability of Internet access has led to enor-
mous increase in the use of World Wide Web which has become
the biggest distributed system ever built. Users increasingly see
large–scale Web services as essential to the world’s communi-
cation infrastructure and demand 24/7 availability and response
time within seconds. With the tremendous growth and change in
Web sites, users, and technology, expanding usage in different ap-
plication domains, and high consequences of failures and unsat-
isfactory performance, a comprehensive analysis and prediction
of Web quality attributes is essential.

Understanding the nature and characteristics of Web workload
is a precondition for proper design, implementation, and tuning
of Web–based systems which lead to improved quality of ser-
vice offered to users. Therefore, in the last decade a considerable
amount of research work was focused on studying the network
traffic in general, and Web traffic in particular. In their pioneer-

ing work, Leland, Taqqu, Willinger and Wilson [18] established
that Ethernet LAN traffic is self–similar in nature and showed that
the degree of self–similarity increases with the traffic intensity.
Following these breakthrough results, the WAN traffic was stud-
ied in [22]. In this study, the authors presented a complete model
for TELNET traffic (FULL-TEL), which uses Poisson connection
arrivals, log–normal connection sizes, and Tcplib packet inter–
arrivals. In [28] the authors suggested that the superposition of
many ON/OFF sources whose ON and OFF periods are modelled
with heavy–tailed distributions produce aggregate network traffic
which is self–similar or long–range dependant in nature.

The analysis of the Web traffic at request level presented in
in [7] showed that the busiest hours are well described as self–
similar, while many less busy hours do not show self–similar
characteristics. Another study of Web traffic at request level [2],
based on the access logs from six Web servers, showed that the
file size and transfer size distributions are heavy–tailed.

A unique characteristic of Web workload is the concept of
session which is defined as a sequence of requests from the same
user during a single visit to the Web site; session boundaries are
delimited by a period of inactivity by a user. In [5] authors pro-
posed a session–based admission control aimed at increasing the
chances that longer sessions will be completed. In [3] authors
studied how the threshold value affects the number of sessions
and focused on other session characteristics such as the num-
ber of requests per session, session length, and inter–session ar-
rival times. The work presented in [19] used Customer Behavior
Model Graph (CBMG) to represent Web sessions. As a continua-
tion of this work, priority–based resource management policies
based on CBMG representation and simulated workload were
proposed in [20]. The work presented in [21] studied the request,
function, and session characteristics of two weeks of data from
two actual e–commerce sites.

Next, we summarize a few papers which raised interesting
questions about the methods used to establish the existence of
self–similarity, long–range dependence, and heavy–tailed distri-
butions applied to Web and other types of network traffic. In
[13] it was shown that the methods for estimating self–similarity
and long–range dependence could give conflicting results. Fur-
thermore, it was shown that the trend, periodicity, and noise may
affect the accuracy and consistency of the Hurst exponent esti-
mations. In a closely related papers [15], [16], the study of a
network backbone traffic showed that the packet arrivals appear
to be Poisson at sub-second time scales, non–stationary at multi–
second time scales, and exhibit long–range dependence at scales
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of seconds and above. In [9] it was suggested that the methods
employed for estimating the index of heavy–tailed distributions
could produce misleading results. Thus, it was shown that the
lognormal distribution, which is not heavy–tailed, may result in
a log-log complimentary distribution (LLCD) plot which appears
to be heavy–tailed.

In our earlier work [11], [12] we introduced several inter–
session and intra–session characteristics which collectively de-
scribe Web workload in terms of sessions. In this paper we
present more detailed and rigorous statistical analysis of Web
workloads based on empirical data extracted from the actual logs
of four Web servers. Similarly to the work presented in [22],
which proposed so called FULL-TEL model for describing the
TELNET traffic, we conduct statistical analysis of the request–
based and session–based attributes of Web traffic aimed at build-
ing FULL-Web model. Specifically, for typical intervals with low,
medium, and high workload and for one week, we analyze the
following characteristics of the Web workloads:

• request–based analysis: number of requests per unit of time
and request inter–arrival time

• session–based analysis:

– inter–session characteristics: sessions initiated per
unit of time and time between sessions initiated

– intra–session characteristics: session length in time,
number of request per session, and number of bytes
transferred per session.

Our analysis is focused on exploring important phenomena,
such as self–similarity, long–range dependence, and heavy–tailed
distributions. As it has been observed recently [9], [13], [16],
despite almost ten years of history of using these phenomena to
model the Internet traffic, their identification in real data is a chal-
lenging task since the existing methods may perform erratically
in practice and produce misleading results. Therefore,

• For establishing self–similarity and long–range dependence
on request and session level we test the stationarity of the
request and session-based time series and remove the trend
and periodicity. Then, we use several methods for estimating
the Hurst exponent.

• For intra–session characteristics we use several different
methods to test the existence of heavy–tailed behavior and
cross validate the results.

• We point out specific problems associated with the methods
used for establishing long–range dependence and heavy–
tailed behavior of Web workload.

It should be emphasized that the previous research on statis-
tical characterization of Web workloads was focused only on re-
quest level [7] or very limited non-rigorous analysis of only one
session characteristic - session length in number of requests [21].
We believe that the comprehensive model presented in this paper
contributes towards better understanding and more formal statis-
tical description of the Web workloads, which is a fundamental
step necessary for performance modelling and prediction, capac-
ity planning, and admission control.

The rest of the paper is organized as follows. The data extrac-
tion and analysis process is briefly described in section 2, while
the background on self–similarity, long–range dependence, and
heavy–tailed distributions is summarized in section 3. We present
the analysis of Web workload at request and session level in sec-
tions 4 and 5, respectively. Finally, the concluding remarks are
given in section 6.

2 Data extraction and analysis process

The Web logs used in this paper were obtained from four Web
servers: university wide Web server at West Virginia University
(WVU), Web server of the Lane Department of Computer Sci-
ence and Electrical Engineering (CSEE), Web server of the com-
mercial Internet provider ClarkNet, and Web server at the NASA
Independent Verification and Validation Facility (NASA-Pub2)1.

In this paper, for practical reasons, we define a session as a
sequence of requests issued from the same IP address with the
time between requests less than some threshold value. As in all
other research papers that considered sessions, we consider each
unique IP address in the access log to be a distinct user. Clearly,
this is not always true [3]. However, in spite of the inaccuracies,
we believe that using the IP address provides a reasonable ap-
proximation of the number of distinct users. Based on the study
of the effect of different threshold values on the total number of
session presented in [12], we adopt a 30 minute time interval as
the threshold value.

The data collection and analysis process is summarized in
Figure 1. (For more detailed information, the reader is referred
to [11], [12].) After merging the access and error logs for ar-
chitectures that employ redundant Web servers (i.e., WVU and
CSEE), we include the log entries from the access and error
logs as records in the corresponding database tables, which al-
lows more flexible and customized analysis. In our earlier work
[11], [12] we presented detailed error and reliability analysis
and introduced several intra–session and inter–session attributes
which collectively describe Web server sessions. In this paper
we provide more detailed and statistically rigorous analysis of
both request–based and session–based workload characteristics
(the bottom right part in Figure 1).

Table 1 summarizes the raw data for one week period for the
Web servers analyzed in this paper. It should be noted that the
workload on different servers varies by three orders of magni-
tude. Also, the servers are from different domains: two from
educational institutions, one from research institution, and one
from a commercial Web site. In addition to the analysis of one
week of data, our goal is to study the effect of the workload in-
tensity on the request–based and session–based characteristics.
For this purpose, we divided the one week period into 42 inter-
vals of 4 hours and for each data set selected typical low (Low),
medium (Med), and high (High) intervals using the total num-
ber of requests as a criterium. Although we select the intervals
accordingly to the total number of requests, the total number of
sessions and total number of bytes transferred within these inter-
vals adhere the same trend.

1The Web logs of the NASA IV&V server were sanitized, that is, IP addresses
were replaced with unique identifiers.
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Figure 1. Data extraction and analysis process
Data set Start date Requests Sessions MB

transf.
WVU 12-Jan-04 15,785,164 188,213 34,485

ClarkNet 28-Aug-95 1,654,882 139,745 13,785
CSEE 12-Apr-04 396,743 34,343 10,138

NASA-Pub2 12-Apr-04 39,137 3,723 311

Table 1. Summary of the raw data
3 Background on used statistical methods

3.1 Self–similarity and long–range dependence

Since in Web workload context we deal with time series, the
self–similarity is defined as follows. Let X = {Xi, i ≥ 1} be a
stationary sequence. Let

X
(m)
k =

1
m

km∑

i=(k−1)m+1

Xi, k = 1, 2, . . . (1)

be the corresponding aggregated sequence with level of aggrega-
tion m obtained by averaging non-overlapping blocks of size m.
Then, for all integers m, the following holds for a self–similar
process

X(t) d= m1−HX(m). (2)

A stationary sequence is said to be exactly second–order self–
similar if m1−HX(m) has the same variance and autocorrelation
as X for all m. A stationary sequence is said to be asymptotically
second–order self–similar if m1−HX(m) has the same variance
and autocorrelation as X as m → ∞. Asymptotically second–
order self–similar processes are also called long–range depen-
dant processes. Long–range dependent processes are character-
ized by hyperbolically decaying autocorrelation function, that is,
r(k) ∼ k−β as k → ∞, where 0 < β < 1. Since β < 1, the sum
of the absolute values of the autocorrelation function approaches
infinity, that is, the autocorrelation function is non-summable.
Simply put, long–range dependence describes the property that
the correlation structure of a time series is preserved irrespective
of time aggregation, that is, the autocorrelation function (ACF) is
the same in either course or fine time scales.

A predominant way to quantify the self–similarity and long–
range dependence is through the Hurst exponent H . For a self–
similar process 0.5 < H < 1.0; as H increases from 0.5 to 1.0,

the degree of self–similarity increases. Calculating this exponent,
however, is not straightforward due to following reasons [13],
[16]. (1) It cannot be calculated definitely, only estimated. (2)
No estimator is robust in every case and it is not clear which esti-
mator provides the most accurate estimation; estimators can hide
long–range dependence or report it erroneously. (3) Long–range
dependence may exists, even if the estimators have different esti-
mates in value, provided that the estimates show 0.5 < H < 1.
(4) For accurate characterization it may be necessary to process
and decompose the signal since the trend and periodicity can ob-
scure the analysis.

In general, Hurst exponent estimators can be classified into
two categories [27]: those operating in time–domain and those
operating in frequency– or wavelet–domain. In this paper we use
the Variance and R/S from the time–domain estimators, and Peri-
odogram, Whittle and Abry-Veitch from frequency- and wavelet–
domain estimators. Whittle and Abry-Veitch methods, in addition
to the estimate of H , provide confidence intervals. For detailed
description of the Hurst exponent estimators the reader is referred
to [1], [18], and [27].

3.2 Heavy–tailed distributions

The random variable X , with cumulative distribution function
F (x), is said to be heavy–tailed if

1 − F (x) = P [X > x] = x−αL(x) (3)

where L(x) is slowly varying as x → ∞, i.e.,
limx→∞ L(ax)/L(x) = 1 for a > 0 [24]. That is, regard-
less of the behavior for small values of the random variable,
if the asymptotic shape of the distribution is hyperbolic, it is
heavy–tailed. The simplest heavy–tailed distribution is the
Pareto distribution which is hyperbolic over its entire range. The
classical Pareto distribution with shape parameter α and location
parameter k has the cumulative distribution function

F (x) = P [X ≤ x] = 1 − (k/x)α. (4)

There is an important qualitative property of the moments of
heavy–tailed distributions. If X is heavy–tailed with parameter
α then its first m < α moments E[Xm] are finite and its all
higher moments are infinite. Thus, if 1 < α ≤ 2 the distribution
has a finite mean and infinite variance; if α ≤ 1 the distribution
has infinite mean and variance. As α decreases an arbitrary large
portion of the probability mass may be present in the tail of the
distribution. In practical terms, a random variable that follows a
heavy–tailed distribution can give rise to extremely large values
with non–negligible probability.

To estimate the tail index α of a Pareto distribution we em-
ploy the log-log complementary distribution (LLCD) plots [2],
[3], [7]. These are plots of the complementary cumulative dis-
tribution function (CCDF) P [X > x] = 1 − F (x) = F̄ (x) on
log-log axes. Plotted this way, heavy–tailed distributions have the
property that

d log F̄ (x)
d log x

= −α, x > θ

for some θ. In practice, we select a value for θ from the LLCD
plot above which the plot appears to be linear. Then, we estimate
the slope, which is equal to −α, using least–square regression.
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Hill estimator [24] is an alternative approach for estimating
the tail index α of a semiparametric Pareto type model given by
(3). For the discussion that follows, let X1,X2, . . . , Xn denote
observed values of the random variable X and let X(1) ≥ X(2) ≥
. . . ≥ X(n) be the ordered statistics of the data set. The idea
behind the Hill estimator is to use only k upper-order statistics,
that is, to sample from the part of the distribution which looks
most Pareto-like. Therefore, we pick k < n and compute the Hill
estimator

Hk,n =
1
k

k∑

i=1

log X(i) − log X(k+1). (5)

Thus, for each value of k we obtain an estimate of the tail index
parameter αk,n = 1/Hk,n. In practice, the estimates of the tail
index αk,n are plotted as a function of k, for the range of k-values.
A typical Hill plot varies considerably for small values of k, but
becomes more stable as more and more data points in the tail of
the distribution are included (often up to a cut-off value, to the left
of which (3) no longer holds). If the plot stabilizes to a constant
value one can infer the value of the tail index α. The absence of
such straight line behavior is a strong indication that the data are
not consistent with the heavy–tailed distribution (3).

4 Request–based analysis

In this section we first examine whether the long–range de-
pendence (i.e., asymptotically second–order self–similarity) ap-
plies to the request arrival process and then formally test the as-
sumption for Poisson arrivals.

4.1 Number of requests per unit of time

Figure 2 shows the time series plot of the number of requests
per second for one week period for the WVU data set. As it can
be seen from Figure 3, the autocorrelation function is slowly de-
caying which indicates long–range dependence. Next, we esti-
mate the values of the Hurst exponent using the SELFIS tool [14].
These values are presented in Figure 4, with Web sites sorted by
the total number of requests in descending order.

Figure 2. Number of requests per second - WVU
As described in section 3.1, all Hurst exponent estimators as-

sume stationary time series, that is, the trend and periodicity can
obscure the analysis based on Hurst exponent. However, related
papers that studied self–similarity and long–range dependence of
Web traffic either avoided dealing with non–stationarity of the
time series or ignored it. Thus, in [7] the authors concentrated
on individual hours from the request–based time series in order
to provide as nearly a stationary dataset as possible, thus avoid-
ing to deal with non-stationarity of the traffic. A period of two

Figure 3. ACF for number of requests per second
- WVU

Figure 4. Hurst exponent for request per second
based on the raw data

weeks for two e–commerce sites was considered for the request–
based analysis presented in [21]. The existence of long–range
dependence was suggested based on the variance time plot, with-
out testing the stationarity of the time series, that is, ignoring the
trend and periodicity of the signal.

One of our goals is to study how non–stationarity of the traf-
fic affects the estimates of the Hurst exponent, and consequently
the conclusions drawn about long–range dependence. We use the
Kwiatkowski-Phillips-Schmidt-Shin test [17] to test the null hy-
pothesis of stationarity against an alternative of a unit root which
means that time series is non-stationarity. According to this test
the request arrival processes (i.e., number of requests per second)
for all Web servers considered in this paper are non–stationary.
Therefore, we estimate and eliminate the trend and periodicity
from the request–based time series using the least square esti-
mation of trend, peridogram for finding the periodicity, and dif-
ferencing method for removing the seasonal component [4]. All
datasets considered in this paper had a slight trend component
and a 24 hour period corresponding to day/night change of traf-
fic intensity. After removal of the trend and the seasonal com-
ponent, the Kwiatkowski-Phillips-Schmidt-Shin test [17] proved
that the time series is stationary. The autocorrelation function
of the stationary time series shown in Figure 5 still seams to
be non–summable, which is an indication of long–range depen-
dence. However, its value is lower than for the original (non-
stationary) time series, which indicates that not accounting for
the trend and periodicity leads to overestimating the long–range
dependence. To confirm these findings formally, we estimate the
Hurst exponent for the stationary request–based time series. The
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results are presented in Figure 6. The following observations can
be drawn from the estimates of the Hurst exponent based on the
raw data and stationary data: (1) The values of the Hurst expo-
nent based on the raw data, with a few exceptions, are higher
than the values based on the stationary time series. This proves
the fact that for accurate estimates of self–similarity and long–
range dependence the analysis must account for phenomena such
as trend and periodicity. (2) The values of the Hurst exponent
for all Web sites are higher than 0.5, which indicates that the
request arrival processes on a second time scale is asymptoti-
cally second–order self–similar (i.e., long–range dependent); the
degree of self–similarity increases with the workload intensity,
which is consistent with the observations made for the LAN traf-
fic in [18] and for the Web traffic in [7]. (3) The Hurst estimators
provide consistent estimates for all four Web servers, which is not
necessarily always the case [13]. (4) In most cases Abry-Veitch
method provides slightly higher value of H than Whittle method
which is consistent with the results presented in [13].

Figure 5. ACF for number of requests per second
after removing the trend and periodicity - WVU

Figure 6. Hurst exponent for request per second
based on the stationary data

Since the mathematical definition of the long–range depen-
dence is asymptotic in nature, we next employ the Hurst exponent
estimators on aggregated time series [7], [18]. Each one week
dataset is aggregated at increasing levels m as described with
equation (1), and the estimators are applied to each m–aggregated
dataset2. As m increases, short–range dependencies are averaged
out of the dataset; if the value of H remains relatively constant,
we can be confident that it measures a true underlying level of
(asymptotic second–order) self–similarity. Figures 7 and 8 show

2As the aggregation level m increases the confidence intervals tend to widen
since for larger m there are fewer observations in X(m).

the estimates Ĥ(m) of the Hurst exponent obtained from the ag-
gregated series X(m) using Whittle and Abry-Veitch methods for
the stationary request–based time series of the WVU server. The
upper and lower dotted lines are the limits of the 95% confidence
intervals on H . These Figures show that for WVU dataset, the
values of Ĥ(m) are relatively consistent as the aggregation level
is increased (i.e., Ĥ(m) ∈ [0.768, 0.986] for Whittle method, and
Ĥ(m) ∈ [0.748, 0.925] for Abry-Veitch method). The same holds
for the 95% confidence interval bands, indicating a statistical ev-
idence for long–range dependence of the request arrival process.
The estimates of H for other sites, such as for example NASA-
Pub2, are even more stable and fluctuate only slightly throughout
the aggregation levels (i.e., Ĥ(m) ∈ [0.534, 0.606] for Whittle
method, and Ĥ(m) ∈ [0.533, 0.688] for Abry-Veitch method).

Figure 7. Whittle estimates for stationary request–
based time series - WVU

Figure 8. Abry-Veitch estimates for stationary
request–based time series - WVU

4.2 Testing for Poisson arrivals at request level

In this subsection, we formally test whether the request ar-
rivals can be modelled with Poisson process for each of the Low,
Med, and High intervals. To test the two main characteristics of
the Poisson process – request inter–arrival times are independent
random variables which follow the exponential distribution - we
use the method proposed in [22].

Before the test for Poisson arrivals can be applied, the origi-
nal signal has to be processed due to the following reasons. (1)
The Web servers considered in this study have timestamps with
granularity of one second, which leads to multiple requests with
the same timestamp. Assumptions about how these requests are
distributed within a one second interval have to be made before
we can apply the test for Poisson arrivals. Since different assump-
tions may lead to different results [29], we use two distributions
for the request arrivals over the one second interval: uniform and
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deterministic (i.e., requests evenly spread out over the one second
interval). (2) Since the request arrival rate varies during the four
hours intervals, testing for homogeneous Poisson model with a
fixed rate is not appropriate. Therefore, we divide each of the
Low, Med and High four hour intervals into four 1-hour intervals
with approximately constant arrival rate. Then, we test each 1-
hour interval for independent and exponentially distributed inter–
arrival times.

Test for independent request inter–arrival times
For each 1-hour interval i (i = 1, 2, 3, 4), we compute its lag one
autocorrelation ρi. Let S be the random variable of number of
intervals having ρi less than 1.96/

√
ni, where ni is number of

samples in the ith interval. Then S follows the binomial distri-
bution B(4, 0.95). Suppose s is the observed value of S, then if
P (S = s) < 0.05, we conclude with 95% confidence that the
inter-arrivals are not independent. We also apply one further test
for independent request inter–arrivals. If the inter–arrivals are
truly independent, then their autocorrelation would be negative
with probability 0.5 and positive with probability 0.5. Let X be
the random variable of number of positive ρi’s, then X follows
the binomial distribution B(4, 0.95). Suppose x is the observed
value of X , then if P (X = x) < 2.5%, the inter–arrivals are
significantly positively correlated. Similarly, let Y be the random
variable of number of negative ρi’s, and y is the observed value of
Y . Then if P (Y = y) < 2.5%, the inter–arrivals are significantly
negatively correlated.

Test for exponentially distributed request inter–arrival times
Let the null hypothesis be H0 : F (x) = 1−e−λ̂x where λ̂ = 1/X̄
is estimated from the sample. To test the goodness of fit for each
1-hour interval, we use the Anderson–Darling (A2) test [26] be-
cause it is generally much more powerful than either of better
known Kolmogorov–Smirnov or χ2 tests. A2 is an empirical dis-
tribution test which looks at the entire observed distribution and
it is particularly good for detecting deviations in the tail of a dis-
tribution.

The null hypothesis is rejected on an interval if the modified
test statistic A2(1+0.6/n) is greater than the critical value 1.341.
Let Z be the random variable of total number of intervals having
test statistic less than 1.341, then Z follows the binomial distri-
bution B(4, 0.95). Suppose z is the observed value of Z, then if
P (Z = z) < 0.05, we conclude with 95% confidence that the
inter–arrivals are not exponential.

We repeat the same methods to test for independent and expo-
nentially distributed request inter–arrival times by dividing each
four hour period in 10-minute intervals. The results show that
the request arrivals do not follow the Poisson process with fixed
1-hour or 10-minute rates for any of the considered Web sites.
These results are valid regardless of the assumption made about
the distribution of the request arrivals over one second (i.e., uni-
form and deterministic). Our results are in agreement with the
recent study which showed that the backbone Internet traffic ex-
hibits long–range dependence at scales of seconds and above
[15]. The same study showed that the Internet traffic can be well
represented by the Poisson model for sub–seconds time scales.
The granularity of the measurements in our datasets is one sec-
ond, which does not allow testing the Poisson assumption on the
finer time scales.

In summary, the results presented in this section show that
Web workload at request level, similarly to LAN and WAN work-
load, is long–range dependant. These results are consistent with
earlier result for Web traffic presented in [7]. In addition, we have
explicitly shown that the assumption that the request arrivals can
be modelled with Poisson process is not valid. This means that
several Web performance models which used queuing networks
[23], [25], [30] or layered queuing networks [8] are based on in-
correct assumptions and most likely provide misleading results.

5 Session–based analysis

In this section we study, in a rigorous statistical manner,
the session arrival process (i.e, inter–session characteristics) and
intra–session characteristics introduced in our earlier work [11].
It should be emphasized that the empirical studies which ad-
dressed Web sessions in the past were mainly focused on sim-
ple analysis and did not explore the long–range dependence and
heavy–tailed behavior.

5.1 Inter–session characteristics

The analysis of inter–session characteristics is based on the
same methods used in section 4 for analysis of request level work-
load.

5.1.1 Number of sessions initiated per unit of time

The values of the Hurst exponent for the raw data of the ses-
sions initiated per second times series are presented in Figure 9
with Web servers sorted by the total number of sessions initiated
within a week in descending order. As in case of the request–
based time series, we test whether the session–based time series
is stationarity using the Kwiatkowski-Phillips-Schmidt-Shin test
[17]. The results show that WVU, ClarkNet, and CSEE Web
servers have a slight trend and 24 hour period. The NASA-Pub2
session–based time series is stationary. Similarly to the request–
based time series, removing the trend and periodicity leads to
smaller values of the autocorrelation function.

The more formal analysis of the long–range dependence of
the stationary session–based time series, based on the estimates
of the Hurst exponent presented in Figure 10, leads to the fol-
lowing conclusions: (1) The values of the Hurst exponent based
on the raw data are higher than the values based on the station-
ary time series in most of the cases. (2) The values of the Hurst
exponent for all Web servers are higher than 0.5. These results
indicate that the session arrival process on a second time scale
is long–range dependant. (3) The long–range dependence of the
sessions initiated per second times series seems to be less influ-
enced by the workload intensity than the request–based time se-
ries. (4) The Hurst estimators provide consistent estimates, which
is not necessarily always the case [13]. (5) Abry-Veitch method
provides slightly higher value of H than Whittle method, which
is consistent with the results presented in [13].

Again, as with request arrival process, we study the estimates
Ĥ(m) of the Hurst exponent obtained from the aggregated series
X(m) for increasing level of aggregation m. The values of Ĥ(m)

for all datasets are quite stable and fluctuate slightly. The same
holds for the 95% confidence interval bands, indicating a statis-
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Figure 9. Hurst exponent for sessions initiated per
second based on raw data

Figure 10. Hurst exponent for sessions initiated
per second based on stationary data

tical evidence for a long–range dependence of the session arrival
process.

5.1.2 Testing for Poisson arrivals at session level

Next, we test whether the time series of sessions initiated per
second can be modelled with Poisson process, using the same
methods as in section 4.2. It should be noted that for NASA-
Pub2 server the number of sessions in Low, Med, and High four
hour intervals are not sufficient to conduct the test. The results
of the statistical tests for four hour intervals divided into four 1-
hour intervals show that only in CSEE Low and Med intervals
session arrivals are indistinguishable from the Poisson process.
Thus, unlike TELNET connection arrivals and FTP session ar-
rivals which were well modelled as Poisson process with fixed
hourly rates [22], Web session arrivals are Poisson only when the
workload is low (less than 1,000 sessions in a four hour period
for our datasets). As in the case of the request arrival process,
the assumption made about the distribution of sessions initiated
within a second (i.e., uniform and deterministic) does not affect
the results.

5.2 Intra–session characteristics

In this section we analyze the session length, number of re-
quest per session, and number of bytes transferred per session. In
particular, we use the statistical methods described in section 3.2
to examine whether intra–session characteristics can be modelled
with heavy–tailed distributions.

5.2.1 Session length in time units

The first intra–session characteristic is the sessions length in units
of time. The LLCD plot of the session length of WVU server for
all 10,287 sessions that occurred during the High four hour in-
terval is presented in Figure 11. For sessions longer than about
1000 seconds, the plot is nearly linear, which indicates a hyper-
bolic upper tail. The least square regression estimate of the heavy
tail index is αLLCD = 1.67 with standard error σα = 0.004. The
coefficient of determination (R2) is 0.993, which indicates a very
good fit between the empirical and mathematical distribution.

To further confirm the observation that session length of
WVU server can be described with Pareto distribution with fi-
nite mean and infinite variance, we also estimate the tail index
αHill using the Hill plot. The value of Hill estimator for varying
k restricted to the upper 14% tail is shown in Figure 12. The
Hill estimator seems to settle to a relatively constant estimate
αHill ≈ 1.58 which is consistent with the estimate obtained by
the LLCD method.

Table 2 summarizes the values of αHill estimated using the
Hill estimate, and αLLCD and R2 estimated using LLCD plot for
each Low, Med, and High four hour interval and one week period
for each Web server. As it can be seen, in most cases Hill esti-
mator provides estimates of the tail index α close to the estimates
obtained using the LLCD method. However, in a few cases Hill
plots did not stabilize, which is annotated with NS in Table 2. For
NASA-Pub2 server, which has low workload intensity, the num-
ber of sessions in the Low four hour interval were not sufficient
to estimate α with either method (annotated with NA).

Figure 11. LLCD plot for WVU session length, High

The results for one week show that the session length is rea-
sonably well modelled by a Pareto distribution with 1.723 ≤
αLLCD ≤ 2.329. The session length of WVU and ClarkNet
servers is heavy–tailed (with finite mean and infinite variance)
for lengths longer than 21 minutes in both cases. It also can be
observed that the session length for these two servers is heavy-
tailed (1 < α < 2) regardless of the workload intensity. The ses-
sion length for the CSEE and NASA-Pub2 servers on one week
of data has finite mean and variance (i.e., α > 2). However,
there are intervals (i.e., Med for CSEE and Med and High for
NASA-Pub2) which have session length consistent with heavy–
tailed distributions.

Since there is a group of researchers who advocate lognormal
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Figure 12. Hill plot for WVU session length, High

WVU ClarkNet CSEE NASA-Pub2
Low αHill 1.02 0.8 NS NA

αLLCD 1.044 1.03 2.172 NA
R2 0.941 0.982 0.937 NA

Med αHill 1.55 1.27 1.73 NS
αLLCD 1.609 1.273 1.888 1.840

R2 0.990 0.981 0.976 0.977
High αHill 1.58 1.5 NS 1.39

αLLCD 1.670 1.832 3.103 1.422
R2 0.993 0.966 0.981 0.857

Week αHill 1.8 1.8 2.2 2.2
αLLCD 1.803 1.723 2.329 2.286

R2 0.994 0.994 0.987 0.976

Table 2. αHill, αLLCD, and R2 for session length

rather than Pareto distribution as correct description of the data
(see for example [9]), we incorporate one more test in our analy-
sis. Thus, it is known that when the variance is large, a lognormal
CCDF is very close to a straight line in the log-log plot, that is, it
appears long–tailed, at least to a point [9], [10]. The dramatic dif-
ference between lognormal and Pareto distributions lies in the ex-
treme tail of their CCDFs. In a LLCD plot, the CCDF of a Pareto
distribution decays with constant slope, while the CCDF of a log-
normal distribution shows increasing slope in the extreme tail. To
explore how good Pareto and lognormal models match our em-
pirical data we applied the curvature test proposed in [9] on all
datasets. The p-value both under Pareto and lognormal models for
all intervals shown in Table 2 is greater than 0.05, which means
that with 95% confidence we cannot reject the hypothesis that the
sample comes from Pareto or lognormal distributions. Accord-
ing to the curvature test, for some intervals lognormal is better fit
than Pareto distribution. Although in [9] the author claimed that
the curvature test is insensitive to the estimated value of the pa-
rameter α, on our datasets different estimates of α led to different
p–values for Pareto distribution. Furthermore, the same estimates
for the tail index α with different random samples from Pareto
distribution used as a part of the test, yielded different p–values.
We believe that the reason for the sensitivity of the curvature test
to the estimated value of α and the random sample, as well as the
difficulty to distinguish Pareto and lognormal distributions, is the
fact that very often there are very few sample observations in the
extreme tail. In that case, as shown in [10], the 95% confidence
intervals of Pareto and lognormal distributions have a large over-
lap at the extreme tail, which makes it hard to distinguish them.

The following example illustrates the importance of rigorous
statistical analysis and the implications of our results. The simu-
lation of the session–based admission control used for peak load
management presented in [5], [6] was based on the assumption
that the session length is exponentially distributed, which as our
results show is an incorrect assumption.

5.2.2 Number of requests per session

Another intra–session characteristics is the number of requests
per session (i.e., session length in number of requests). The re-
sults of the curvature test [9] for the number of request per session
were similar as for the session length in time - neither Paerto nor
lognormal models can be rejected for any interval. For example,
note that although the LLCD plot of the session length in num-
ber of request for one week of data for ClarkNet server presented
in Figure 13 shows increasing slope in the extreme tail, Pareto
distribution provides better fit than the lognormal distribution.

As it can be seen from Table 3, the tail index of Pareto model
for the distribution of session length in number of requests for one
week of data is in the range 1.615 ≤ αLLCD ≤ 2.586. Under the
Pareto model, the session length in number of request shows clear
heavy–tailed behavior with tail index α significantly smaller than
2 only for NASA-Pub2 server. For this server over 84% of re-
quests belong to sessions in the 75 percentile tail. The other three
servers have tail index around 2, that is, have session length in
number of requests on the boarder line between finite and infinite
variance. It should be emphasized that for all servers many long
sessions in time units do not have many requests. That is, many
sessions in the tail of session length distribution are completely
different from the sessions in the tail of the number of request per
session distribution.

The session length in number of requests is the only intra–
session characteristic studied earlier. In [21], based on the LLCD
plot, it was suggested that the tail of the distribution for the auc-
tion site falls abruptly, while for the bookstore site it remains
close to the straight line plot of a Pareto-like distribution with
α = 1. However, the value of the tail parameter was not esti-
mated and no evidence was presented that the Pareto model fits
the data. Another important observation is that in cases when the
session length in number of request is modelled with distributions
with large variance, it does not make sense to derive and report
metrics such as average session length in number of requests, as
it was done in [19], [20].

5.2.3 Bytes transferred per session

For our last intra–session characteristic, total number of bytes
transferred per session, we count the bytes transferred for both
completed and partial transfers. Similarly to the other two intra–
session characteristics, based on the curvature test [9], neither
Pareto nor lognormal distribution can be rejected as models for
the bytes transferred per session. Again, as in the other cases,
the p–value for Pareto distribution was sensitive to the estimated
value of α and generated random sample.

If the Pareto distribution is used for modelling the bytes trans-
ferred per session, as it can be seen from Table 4, 0.954 ≤
αLLCD ≤ 1.842 for one week of data. This means that all Web
servers have heavy–tails (with infinite variance) for the number of

Proceedings of the 2006 International Conference on Dependable Systems and Networks (DSN’06) 
0-7695-2607-1/06 $20.00 © 2006 IEEE 



Figure 13. LLCD plot of session length in number
of requests for ClarkNet, one week

WVU ClarkNet CSEE NASA-Pub2
Low αHill 1.7 2.32 2.0 NA

αLLCD 1.965 2.218 2.047 NA
R2 0.986 0.975 0.976 NA

Med αHill 2.0 1.8 1.93 1.9
αLLCD 2.055 1.724 1.931 1.948

R2 0.996 0.987 0.987 0.903
High αHill 1.9 1.9 2.33 1.62

αLLCD 1.965 1.928 2.167 1.437
R2 0.993 0.979 0.981 0.971

Week αHill 2.1 2.6 2.0 1.6
αLLCD 2.151 2.586 1.932 1.615

R2 0.995 0.996 0.989 0.967

Table 3. αHill, αLLCD, and R2 for session length in
number of requests

bytes transferred per session, including the Low, Med, and High
intervals. Even more, the values of α for CSEE server are around
1 or even below 1 (implying infinite mean). It is obvious that
under the Pareto model, the number of bytes transferred per ses-
sion has the heaviest tail compared to the other two intra–session
characteristics. One obvious reason for the heavy–tailed behav-
ior of the number of bytes transferred per session is due to the
fact that the distributions of files sizes and files transferred are
heavy–tailed [2], [3], [7].

6 Concluding remarks

In this paper we have presented a rigorous statistical analysis
of request level and session level Web workload based on data
extracted from four real Web servers. Our goals included devel-
opment of a FULL-Web model which provides comprehensive
view on Web workload and clear identification of the specific lim-
itations associated with methods used for establishing long–range
dependence and heavy–tailed behavior.

Our results show that all Web servers considered in this study
have long–range dependant request arrival process. Unlike the
related work on Web workload characterization which either
avoided non–stationarity by focusing on one hour intervals or ig-
nored it completely, we test the stationarity of the request–based
time series and eliminate the trend and periodicity before study-

WVU ClarkNet CSEE NASA-Pub2
Low αHill 1.1 1.7 0.8 NA

αLLCD 1.168 1.786 0.788 NA
R2 0.998 0.978 0.935 NA

Med αHill 1.32 1.89 0.84 NS
αLLCD 1.371 1.799 0.898 1.676

R2 0.996 0.991 0.974 0.949
High αHill 1.63 1.86 1.06 1.78

αLLCD 1.418 1.754 1.026 1.641
R2 0.993 0.993 0.989 0.949

Week αHill 1.4 2.0 0.95 1.1
αLLCD 1.454 1.842 0.954 1.424

R2 0.995 0.990 0.998 0.960

Table 4. αHill, αLLCD, and R2 for bytes transferred
per session

ing the long–range dependence phenomenon. We show that not
accounting for the trend and periodicity leads to overestimating
the level of long–range dependence. Furthermore, we show that
the piecewise Poisson process with fixed 1-hour or 10-minute
rates cannot be used to model the request arrival process.

In addition to the analysis of the request–based Web work-
load, we provide a comprehensive model of session–based Web
workload which has not been considered earlier. Thus, we study
the Web session arrival process and show that, unlike TELNET
and FTP traffic, it is long–range dependant for all servers consid-
ered in this paper. Even though piecewise Poisson process with
fixed hourly rates models well some four hour intervals under low
to moderate workload, it fails on longer periods (e.g., one week).

We also study several intra–session characteristics, such as
session length in time, number of request per session, and bytes
transferred per session. Since long–range dependence is usu-
ally accompanied with heavy–tailed distributions, for each intra–
session characteristic we examine whether it follows heavy–tailed
distribution. For this purpose, we use several different methods
(i.e., LLCD plot, Hill plot, and curvature test for the extreme
tail). Some highlights of this analysis include: (1) In most cases
LLCD plot and Hill estimator give consistent results. (2) Based
on the curvature test, the intra-session parameters are modelled
well with both Pareto and lognormal distributions. (3) The results
of the curvature test for Pareo distribution are somewhat sensitive
to the estimated values of the tail index and simulated sample of
Pareto distribution. (4) The reason behind the difficulty to statis-
tically distinguish between Pareto and lognormal distribution is
the small number of observations in the extreme tail. (5) Under
the Pareto model, intra–session characteristics for some intervals
exhibit heavy-tailed behavior.

In summary, in this paper we presented a comprehensive
model which contributes towards better understanding of Web
workloads. We also showed that, despite of almost ten years of
research efforts in this area, a number of challenges remain to be
addressed in the future work.
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