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Abstract

This paper presents an unified approach aimed at mod-
eling the joint behavior of the N version system and its
operational environment. Our objective is to develop relia-
bility model that considers both functional and performance
requirements which is particularly important for real – time
applications. The model is constructed in two steps. First,
the Markov model of N version failure and execution be-
havior is developed. Next, we develop the user – oriented
model of the operational environment. In accounting for
dependence we use the idea that the influence of the opera-
tional environment on versions failures and execution times
induces correlation. The model addresses a number of ba-
sic issues and yet yields closed – form solutions that provide
considerable insight into how reliability is affected by both
versions characteristics and the operational environment.

1. Introduction

Software fault tolerance relies on the application of de-
sign diversity: program versions are independently designed
to meet the same system requirements [3],[14]. In this pa-
per we analyze the software fault tolerance technique based
on N version programming (NVP), first proposed in [2]. A
consistent set of inputs is supplied to all versions and all
N versions are executed in parallel. A decision mechanism
must gather the available results from the N versions, form
a decision vector from the results and determine the result
to be delivered to the user. In some instances, the ver-
sions may deliver their results to the decision mechanism
at markedly different times due to external events, internal
events or differences in the normal execution time of the
versions themselves. If a decision mechanism required all
N versions to produce a result, a slow or fail stop version
would delay this process indefinitely. In a real time environ-
ment, such a delay is unacceptable, so a timing constraint is
used to ensure that results are delivered in a timely manner.
The timing constraint defines a time interval within which

the result corresponding to a decision must arrive.
The main reason for the NVP modeling and evaluation is

to investigate how effective this particular approach is in im-
proving reliability. The analysis of software fault tolerance
has been performed either by empirical studies of multiple
versions of software modules or by modeling techniques.
We present an overview of the current state of the art of the
software fault tolerance analysis, and through this evalua-
tion, lay the groundwork for future research directions.

The several experimental studies investigate the key as-
sumption that design diversity will result in software ver-
sions that have sufficiently different failure characteristics
such that fault tolerant system can provide continued ser-
vice in the presence of failures of the component versions.
Diversity has been introduced in the form of different speci-
fications [3], [4], [14], different programming languages [4],
and for different input space distributions [4]. All versions
were developed independently by different teams, in some
studies even by geographical distinct participants [4], [6],
[15], [17].

Examining the results obtained by the previous exper-
iments reveals several characteristics of NVP. First, they
show that the assumption of independence of failures be-
tween independently developed programs does not hold.
Next, the coincident failures (failures of the two or more
versions on the same input), observed in every experiment
conducted thus far, reduce the effectiveness of NVP in deal-
ing with faults. Related design faults are only part of the
problem that must be solved because coincident failures do
not necessarily result from related design faults. Indepen-
dent faults causing coincident failures were also observed.
Also, the failure behavior is very sensitive to the distribution
of test values over input domain. Input domain related faults
may prove to be much more difficult to prevent since there
is not logical relationship between these faults. Moreover, it
was indicated [21] that the faults that were tolerated were not
the same as the faults that were detected by fault elimination
techniques and that the faults that reduce the effectiveness
of the NVP are among the most difficult to detect.

So far, modeling work of the software fault tolerance



techniques has been concentrated mainly on the depend-
ability. It is obvious that there are two disjoin modeling
approaches. On one side, the major goal for the first ap-
proach is the modeling and evaluation of the dependability
measures of the particular fault tolerant structure. Methods
of specifying the system structure include combinational
[12], [20], discrete time Markov chain [1], continuous time
Markov process [9], [10], [11], fault trees and Markov re-
ward models [5], extended stochastic Petri net and simu-
lation [8], and generalized stochastic Petri nets [13] model
types. On the other side, the second approach based on the
ground – breaking work of Eckhardt and Lee [7], consid-
ers the precise meaning of the independence referred to the
failure behavior of the diverse program versions [16], [19].

Recently in [11], [22] have been proposed NVP models
that combine performance and dependability measures via
the concept of performability.

2. Modeling approach: basic concepts

Our approach to model NVP reliability is more general
than previous ones as it combines information on the soft-
ware structure and on the operational environment, taking
into account the correlation among versions failures and
execution times. Furthermore, the model parameters have
clear physical interpretation and can be related to informa-
tion about characteristics of the software and its operational
environment.

The N version fault tolerance structure, as it operates in
its use environment will be referred to as total system

�������� �	��

�
�
, where informally, N version system

��� �
and

operational environment

��

can be described as follows.��� �
consists of � independently designed program ver-

sions which are executed in parallel on a common given
input. Since software faults can manifest only when it is
executed, the execution time is the basic dimension of re-
liability measurement. We define software failure as the
event which occurs when the software is subjected to an in-
put condition such that, due to the presence of one or more
faults in code, the resultant output will be different from the
required output (in time or value) according to design spec-
ifications. Such a general definition enable us to consider
both functional and timing failures. It is very important for
real – time applications since failing to meet hard deadline
has an adverse effect on system reliability. This issue has
been addressed only in simulation based method presented
in [8].

The detailed view of the operational environment


�

is
reviewed next. The operation of a software is broken down
into series of runs. Each run performs mapping between
a set of input variables and a set of output variables and
consumes a certain amount of execution time. Usually a
run is a quantity of work or a set of tasks initiated by some

intervention or input. Runs that are identical repetitions of
each other are said to form a run type. Note that run type
represents a transformation between an input state and an
output state. Thus, the input state uniquely determines the
particular instructions that will be executed and the value
of their operands. A run type should ordinarily be associ-
ated with the accomplishment of a user function. Therefore,
the variations in the environment can usually be character-
ized by variations in the relative probabilities of demand for
different user functions. Since the probabilities of occur-
rence of input states are the natural way of representing the
program usage the operational profile is defined as a set of
relative frequencies of occurrence of the run types. If the rel-
ative frequencies of the run types occurrence have changed,
then the operational profile has changed which affects the
reliability.

3. N version system model

This model represents the NVS failure and execution
behavior per run, that is on given input state. For this study
we do not distinguish between similar and distinct coincident
failures of the versions. The view point taken here is that if
there is a requirement for fault tolerance, then there is also
a requirement for the system to provide a continuation of
service in the presence of software failures.

The model of the N version system is based on the fol-
lowing assumptions:

1. Corresponding to the different development pro-
cesses, the version failures and execution times are
conditionally independent, given a particular input
state.

2. For each input state, times to failure of program ver-
sions are identically distributed random variables, as
well as the execution times. Further, we take both of
them to be exponentially distributed. The particular
values of the failure rate and execution rate, given an
input state, are � and � respectively.

The basic assumptions guarantee that a finite state con-
tinuous time Markov process can be used for the reliability
modeling of the

��� �
. A state is defined as a vector

��� ���������
,

0 � � ������� ��� ,
��� � � � ��� , where�

is the number of versions that have not completed the
execution, and functional failure has been occurred
during the execution�
is the number of versions that have completed the
execution producing functionally incorrect result�
is the number of versions that have completed the
execution producing correct result.
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Figure 1. Markov model of the NVS

The Markov model for the particular case of three version
system, as well as the transitions and associated rates for the
case of

3
versions are presented in Fig. 1.

Due to the real – time constraint, we define the determin-
istic parameter characterized as a fixed bound G A 0 on the
time to complete a run. Note that all probabilities in this
section are conditional on particular values of failure rate9

and execution time rate
?

which correspond to the given
input state. To simplify notation, we write HJILK7MNGPO 9Q$%?	R
as H5ISG R .

Analytic processing of the Markov process leads to:HPT4UWV " G *YX Z !T ! U ! V ! [ Z�\ T \ U \ VW] ! H i^`_�a " G * H j^`_ Zcb " G *d H k_ Zeb " G * H n-i-j-k_'a " G * (1)

whereH ^`_�a " G *fX
e
\hg`ikj

1
,

e
\=l`iWm

(2)

H ^`_ Zcb " G *fX 99�1�? , e
\=g`i 1 ?951n? e

\ [ g`ohl ] i (3)

H _ Zeb " G *fX ?9p1q?sr 1 , e
\ [ l`ohg ] iCt (4)

H _�a " G *fX
e
\ [ l`ohg ] i+u (5)

Since the decision algorithm does not distinguish the
versions that have not ended execution (with or without oc-
currence of functional failure) we can rewrite the expression
(1) as:H�UvV " G *-X 3

!&
!
(

!
"�3<,�wc*

!
H j^`_ Zcb " G * H k_ Zeb " G * H n-dZcx _ Zeb " G * (6)

where
wyXz&{16(

is the number of versions that have com-
pleted the execution until G andH Zex _ Zeb " G *-X H ^S_'a " G *Q1 H _�a " G *-X e

\hg`i�u
(7)

The marginal pmf’s of (6) are binomial and they are char-
acterized in terms of the probabilities H _ Zcb " G * (individual
version produces correct result before G ), H ^`_ Zeb " G * (indi-
vidual version produces functionally incorrect result beforeG ), and H Zcx _ Zcb " G * (individual version has not completed the



execution until | ). Using the marginal pmf’s we obtain the
probabilities that characterize the }�~{� behavior. Thus, we
define timing failure of N version system ( �<� 2 ��� 1), on
given input state, to be the event that majority of versions
do not produce output in time �E|�P�:��� |+��� ���4����� � �h� � l�c�%�'�e� � |���� 1 � � �e�B���c� � |��'� n-l �

(8)

If the majority of versions have completed the execution
before | it is possible that there is:
a majority of correct results (success)� �B� � |���� ��� ��� � � � � � k�'�e� � |�� � 1 � � �'�e� � |�� � n-k �

(9)

a majority of incorrect results (functional failure)�P�W��� |��-� �� v��� � � ¡ � � j� �'�e� � |�� � 1 � �Q� �'�e� � |�� � n-j �
(10)

or there is no majority of either correct or incorrect results� � � � |��	� 1 � � �:� � |+�	� � �B� � |+�Q� � �v� � |�� � (11)

The reader is referred to [11] for the method that could
be used to relax the assumptions that time to failure and
the execution time are exponentially distributed, which is
omitted here due to space limitations.

3.1. Influence of NVS parameters

We desire a condition such that the NVS processing a
given input improves the probability of success, and reduces
the probabilities of functional and timing failure. Note that,
the probabilities of success, functional failure and timing
failure are functions of a form¢ ��£ � �h�-� ��¤@��� � � ¥h� £ i � 1 � £ � n-i � 0 � £ � 1

where
£

is either
� ���e� � |+� , �Q� �'�e� � |�� or

� �e�B���c� � |�� . Rather
than examine the series of parameters it is desirable to ex-
amine the function Φ

��£ � �h�-� ¢ ��£ � �h�	� £ .
A sufficient condition under which }�~{� has a greater

probability of producing the correct result on time than do
single version is¦¨§�© and | § 1¦«ª¬© ln

2 ¦¦ � © � (12)

NVS reduces the timing failure probability whenever¦�­� 0 and | § ln 2¦ �
(13)

NVS reduces the probability of functional failure if¦¨®�© and | § 0, or (14)¦¨¯�© and | ¯ | 1 (15)

where | 1 is the numerical value obtained by solving�Q� �'�e� � | 1 �	� 0
�
5.

The condition (15) is highly undesirable since such values
of the model parameters certainly degrade the probability of
success. It follows that the NVS effectiveness on particular
input is improved with increasing � if the condition (12) is
satisfied.

The following numerical examples illustrate the obtained
analytical results. The value assigned to the timing con-
straint is |y� 30 msec.

First, Fig. 2 shows the timing failure probability. The
NVS has smaller timing failure probability then single ver-
sion since the condition (13) is satisfied. However, if ¦ de-
creases (the average execution time of component versions
increases) it takes significantly more versions to produce the
same level of timing failure probability.

°L±³²³°W´°L±³²'´¶µ°L±³²'´¶·°L±³²'´¶¸°L±³²'´¶¹°L±³²'´¶º´�»4´�´¶´�°´�»4´¶´�°´+»4´�°´+»¼°
°
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Figure 2. Timing failure probability on given
input

In Fig. 3a and 3b we consider the functional failure prob-
ability when the condition (14) is satisfied. If ¦�Á�© then
only the functional failure probability of single version is
greater then 10 Â 10, as plotted in Fig. 3a. Functional fail-
ure probability increases for higher failure rate © , as well
as for the smaller execution rate ¦ . The increase of failure
rate results in substantial increase of the functional failure
probability. In Fig. 3c we consider the functional failure
probability for ¦ � © , or even ¦�¯Ã© . Since the condi-
tion (15) is not satisfied the }�~k� actually increases the
functional failure probability.
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Figure 3. Functional failure probability on given input

At last, Fig. 4 shows the total failure probability. It is clear
that an increase in average execution time of component
versions (decrease in Ñ ) results in a substantial increase
in total failure probability. Also, increasing failure rate Ú
results in an increase of total failure probability, although
the effect is extremely small when Ñ�Ü Ú . Note that the
total failure probability is approximately equal to the timing
failure probability if Ñ6Ü Ú . The total failure probability
when the condition (12) is satisfied is considered in Fig. 4a
and 4b. Notice that the benefit of increasing the number of
versions on the total failure probability is less significant in
the case when Ú is smaller by approximately several orders
of magnitude than Ñ . As shown in Fig. 4c Ý�Þ
ß is more
prone to failures than a single version when Ñáà Ú and
increasing Ð degrades the probability of success. In this
case the major contribution to the total failure probability
comes from the functional failure probability.

4. Operational environment model

As indicated above, the objective of this model is to
highlight the influence of the operational environment on
the NVP reliability. We make the additional assumptions:

1. The environment is homogeneous or time invariant.

2. The operational period is sufficiently long so the input
state selection probabilities can be characterized by a
steady state.

3. Input states occur randomly and independently ac-
cording to the operational profile.1

In order to obtain the probabilities of program failing on
randomly chosen input the particular input defined by failure
rate Λ Ò Ú and execution rate â ÒãÑ must be uncondi-
tioned from the probabilities obtained in previous section.
Therefore, we model the failure rate and the execution rate
as random variables, Λ and â respectively. Given a pairä
Λ å�â�æ of random variables their joint distribution function

is given byç ä ÚQå Ñ æ Ò ç Λ è ä ÚPå Ñ æ Òêé5ë Λ à ÚPå�â à6Ñ	ì Ó (16)

The probability of success, timing failure and functional
failure for randomly chosen input state are:é	í%î ä�ï æ Òñð¬ò

0

ðEò
0

é	í%î ä�ïPóΛ Ò ÚQå�â ÒzÑ æhô ç ä ÚQå Ñ æ (17)

éQõ@ö ä�ï æ Òñð6ò
0

ð�ò
0

éQõ@ö ä�ïPóΛ Ò ÚQå)â Ò�Ñ æQô ç ä ÚQå Ñ æ (18)

é övö ä�ï æ Ò ð ò
0

ð ò
0

é övö ä�ïQóΛ Ò ÚPå�â ÒzÑ æhô ç ä ÚQå Ñ æ (19)

where é	í%î ä�ïPóΛ Ò ÚPå�â Ò÷Ñ æ , éQõ@ö ä�ïPóΛ Ò ÚQå)â Ò÷Ñ æ ,éQövö ä�ïQóΛ Ò ÚPå�â ÒzÑ æ are given in (9),(8),(10). In general,
we use the Lebesgue – Stieltjes integral, thus covering both
the discrete and continuous distribution functions

ç ä ÚQå Ñ æ .
1The last assumption, although usual in most software models [7], [16],

[19] and software testing experiments is a simplification of real life, as it
does not explicitly model the phenomena of failure clustering, that is the
correlation of successive input states.
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Figure 4. Total failure probability on given input

Instead of making assumptions about the independence
of random variables Λ and � and using some theoreti-
cal distribution functions we develop the user – oriented
model of operational environment. First, we partition the
input space by grouping run types that exhibit (as nearly
as possible) homogeneous failure and execution behavior
into run category.2 Suppose that input space Ω is parti-
tioned in run categories � 1 � � 2 � ����� � ��� . Each run category� � is defined by failure rate Λ 
 ��! and execution rate� 
"	�# . The operational profile $ gives the probabilities%'&

Λ 
 � ! � � 
(	 #*) 
,+ ! # 
�+ � 
 $'-.� ��/ that successive
input states are chosen at random in subset � � of the input
space Ω. In this case Λ and � are discrete random variables
and the relations (17),(18) and (19) signify the following:%10 ��-32 / 
54 !76 1

4# 6 1

%80 �*-32:9Λ 
 ��! � � 
;	�# / + ! # (20)

%=<?> -32 / 
 4 !@6 1

4# 6 1

%=<?> -32=9Λ 
 � ! � � 
(	 # / + ! # (21)

%=>�> -A2 / 
 4 !76 1

4# 6 1

%:>�> -A2=9Λ 
 � ! � � 
B	 # / + ! # (22)

4.1. Analysis of the correlation

Consider for the moment only two versions process-
ing a randomly selected input. Let denote the probabil-
ity that the single version fails on a given input CBD"� �

2It is reasonable to expect that failure behavior and execution time relate
to the function implemented, the development methodology employed, or
the capability of designer.

as EF� 
 1 G %8HAI*J -A2=9Λ 
 ��! � � 
K	�# / and define the
indicator random variable L�M� taking value 0 if the N th
version produces correct output on time for given input,
and value 1 otherwise. Its expectation OQP�LRM�TS 
 E*� is
the probability that version fails on given input CUDU� � .
The probability that version fails on the randomly selected
input is OQP�V � ��6 1 LRM� + � S 
 V � ��6 1 EF� + � while the proba-
bility that both versions fail on randomly selected input isOQP�V � ��6 1 L 1� L 2� + � S 
 V � ��6 1 E 2� + � . It follows that a nec-
essary and sufficient condition for uncorrelated failures and
execution times of the component versions is

V � ��6 1 E 2� + �WG"X V � ��6 1 EF� + ��Y 2 

VUZ + !7[ 1 \ + !7[ 2 \^] E !7[ 1 \ G�E !@[ 2 \7_ 2 
 0 (23)

where the sum is over the set ` of all distinct subsets&Ta - 1 / � a - 2 / ) chosen without replacement from
&
1 � 2 � ����� �cb ) .

This result shows that version failures and execution
times are correlated whenever E !7[ 1 \ed
 E !7[ 2 \ , that is when
Λ and � vary for different run categories �f� for which+ � 
 $'-.� � / d
 0. The expression on the left in relation
(23) is the covariance and Cov g 0. It follows that this
approach is pessimistic as it enables us to incorporate only
positive correlation.

4.2. Influence of the operational environment

It is obvious that the degree of reliability improvement
depends both on the variation of program characteristics
(failure and execution rate) and the operational environment
(input state selection probabilities). Informally, if E*�Bh
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Figure 5. Failure probabilities on random input

0 o 5 for some run category � � of the input space Ω for
which � � � � ��� 0 it becomes increasingly more difficult
with increasing � to realize a majority of versions having
correct output on time. We have already shown that the
total failure probability   � on given input is bounded by 0.5
if the condition (12) is satisfied. It is possible, although
perhaps highly unlikely, that this condition is violated for
some subset of the input space. Even if this is the case, NVP
still have smaller probability of failure than do single version
when the operation profile assigns greater mass to intervals
of the input space

�
0 o 5 �¢¡ n 0 o 5 �¢£¤p , 0 ¥¦£¨§¦¡ than to

their symmetrically located counterparts
k
0 o 5 � £ n 0 o 5 � ¡�� ,

as shown in [7].

The objective of the numerical results shown in Fig. 5 is
to demonstrate the impact of the variation of version char-
acteristics (failure and execution rate) and the operational
environment (input state selection probabilities) on the fail-
ure probabilities. The values assigned to model parameters
are shown in Table 1.

In the case of the operational profile
v

1 which encounters
inputs that result in the small version’s execution period
compared to the time to failure ( q�© i

) increasing � does

substantially reduce the failure probabilities. For example,
3 version system will reduce the total failure probability by
approximately two orders of magnitude relative to that of a
single version. Also, it is evident that the major contribution
to the total failure probability comes from the timing failure
probability.

A slight modification to the operational profile (
v

2) leads
to the significant increase of failure probabilities. For ex-
ample, 1 � v8���ª� s��«§ 10 m 8 is achieved by 5 version system
when

v
1 is assumed, rather then 21 versions when

v
2 is

considered. Operational profile
v

2 also increases the tim-
ing failure probability since it encounters inputs that result
in smaller execution rate q .

The operational profile
v

3 assigns the same probability
0 o 001 as

v
1 to the worse program characteristics (

i �Uq ).
As a result NVP is more prone to failures than a single
software component. Furthermore, both total and functional
failure probabilities increase with increasing the number of
versions. Note that the timing failure probability in the case
of the operational profile

v
3 is the same as in the case of

v
1,

and that the major contribution to the total failure probability
comes from the functional failure probability.



In general, if the operational profile ¬U­"® ¯�°�±�² encounters
inputs that result in small duration of versions execution
period compared to the time to failure ( ³;´¶µ ) the NVP
leads to the significant reliability improvement. However,
it is clear that redundancy alone does not guarantee fault
tolerance, and that the degree of improvement depends both
on program characteristics and the operational profile.

5. Conclusion

The reliability model of NVP as its operates in its opera-
tional environment presented in this paper provides a sound
foundation for study of software fault tolerance. Represent-
ing the synchronization structure of the versions in terms of
the execution time distribution is very important for real –
time applications which are characterized by stringent dead-
lines and high reliability requirements. To the best of our
knowledge, our approach is the only one allowing to con-
sider both functional failures and timing failures. It is a
useful contribution since failing to meet deadline has an
adverse effect on system reliability. Moreover, our model-
ing approach permits the formulation of the user – oriented
model of the operational environment, thus accounting the
effects of the environment on the correlation of versions
failures and execution times. The model addresses and re-
solves a number of basic issues, and yet yields closed –
form solutions which reveal how model parameters influ-
ence the reliability measures. Furthermore, model based
evaluation provides considerable insight into the conditions
under which NVP improves the probability of producing
correct result on time.

Anticipated future work include the correlation of suc-
cessive input states (that is failure clustering), as well as the
failure severity classes into analysis.
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