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Abstract

The paper presents a hierarchical modeling approach of
the N version programming in a real – time environment.
The model is constructed in three layers. At the first layer we
distinguish the NVP structure from its operational environ-
ment. The NVP structure submodel considers both failures
of functionality and failures of performance. The opera-
tional environment submodel is based on the concept of the
operational profile. The second layer consists of a per run
reliability and performance submodels. The first considers
per run failure probabilities, while the second is responsible
for modeling the series of successive runs over a mission.
The information contributed by the second layer constitutes
third layer models which support the evaluation of a per-
formability and reliability over mission. The work presented
here generalizes our previous work as it considers general
distributions of the versions time to failure and execution
time. Also, in addition to the performability model, the third
layer includes a model aimed at reliability assessment over
a mission period.

1. Introduction

In this paper we analyze the software fault tolerance tech-
nique based on N version programming,first proposed in [2].
It relies on the application of design diversity: program ver-
sions are independently designed to meet the same system
requirements [1], [21]. A consistent set of inputs is supplied
to all N versions that are executed in parallel. A decision
mechanism must gather the available results from the ver-
sions and determine the result to be delivered to the user.
If a decision mechanism requires all N versions to produce
a result, a slow or fail stop version will delay this process
indefinitely. In a real – time environment such a delay is
unacceptable, so a timing constraint is used to ensure that
results are delivered in a timely manner.

The experimental studies of NVP have introduced di-

versity in the form of different specifications [1], [26], [21],
different programming languages [26], and for different dis-
tributions of test values over the input space [26]. All ver-
sions were developed independently, by different teams, in
some studies even by geographically distinct participants
[26], [7], [17], [24]. These experiments reveal several char-
acteristics of NVP. First, they show that the assumption of
independence of failures between independently developed
programs does not hold. Next, coincident failures were ob-
served in every experiment conducted thus far. Also, the
failure behavior is very sensitive to the distribution of test
values over the input space [26].

Dependability models of software fault tolerance may
conveniently grouped into two classes. On one side, the
major goal for the first class is the modeling of the depend-
ability measures of the particular fault tolerant structure.
Methods of specifying the system structure include combi-
national [3], [28], discrete time Markov chain [15], contin-
uous time Markov process [10], [12], [11], fault trees and
Markov reward models [16], extended stochastic Petri net
and simulation [27], and generalized stochastic Petri nets
[22] model types. On the other side, the major goal of
second class models that are based on the ground breaking
work of Eckhardt and Lee’s [8], is the precise meaning of
the independence referred to the failure behavior of the di-
verse program versions. The key idea is that the intensity
of coincident errors

�������
will generally take different val-

ues for different inputs
�

. The situation when
�

vary not
only from one input to another, but from one development
methodology to another is presented in [5]. Other contribu-
tions in this class examine several methods for determining
the intensity distribution [29], [23].

In order to place certain constraints on how properties
affecting performance interact with those affecting depend-
ability, a unified measure called performability has been
introduced [20]. Until the recently proposed performability
models of the NVP in [13] and [4] model based evaluation
of software fault tolerance techniques has been focused on
either separate evaluation of performance and dependability



[3],[25], or strict measures of dependability.

2. NVP model

With the benefit of this background, we have developed
a hierarchical modeling approach aimed at performability
and reliability assessment of the NVP. The model presented
in this paper generalizes our previous work reported in [13]
and [14] by considering general distributions of the time
to failure and execution time, by introducing two different
performability measures and by developing a new model
aimed at reliability assessment over a mission.

The fault tolerant software system investigated here is for
the real – time mission – critical applications. We consider
the systems for which it is not possible to perform a repair
during their mission. These systems are characterized by
high reliability requirements and stringent deadlines. The
acceptable probability of failure is very small, typically in
the range of 10 � 5 to 10 � 10 per hour. The real – time perfor-
mance requirements are also very demanding. For example,
advanced variable – cycle jet engines can blow up if correct
control outcomes are not applied every 20 – 50 millisec-
onds. The success of such a system depends not only on its
logical correctness, but also on its timing correctness, that
is it must make correct responses to environmental changes
within specified time intervals or deadlines.

In the real –time mission critical systems the software pe-
riodically gets the inputs from the environment, updates its
internal states based on those inputs, and generates control
output. It means that a mission is composed of a series of
runs of fault tolerant software. If the run lasts beyond a pre –
set maximum duration, it is aborted by a watchdog timer.
The control stimulii are generated either by completing the
execution or by timers, that is the software periodically
checks to see if an event of the required type has occurred,
instead of passively waiting to be triggered by an event.

Our approach keeps the solution efficient by using hierar-
chical decomposition wherein submodels represent different
parts of an object system and time scale distinctions. The
model is constructed in three layers as shown in Fig. 1. The
arrows indicate the interaction between submodels and the
flow of information.

The first layer consists of NVP structure submodel and
operational environment submodel. Since the effects of de-
sign faults are typically quite sensitive to just how a system is
utilized, it is helpful to distinguish an object system (NVP)
from its environment (other systems, physical or human
which interact with the object system during its use).

The per run reliability submodel and performance sub-
model, that constitute the second layer, integrate the first
layer submodels. At this layer we made time and behav-
ior distinctions. The per run reliability submodel represents
failure and execution behavior of NVP and the time is treated

Per run reliability
submodel� Performance

submodel�
NVP  structure

submodel� Operatinal environment
	

submodel�

Reliability
model

Performability
model

Figure 1. Hierarchical model

locally measured from the beginning of a run. The perfor-
mance submodel This submodel is responsible for modeling
the series of runs over a mission duration. It considers only
the execution behavior of NVP and treats time globally.

The information contributed by the second layer con-
stitutes the third layer which supports the assessment of a
performability and reliability over a mission. The performa-
bility model considers the collective effect of reliability and
performance attributes on the ability of NVP to complete a
certain amount of useful work over a mission. The relia-
bility model accounts for performance requirements which
is particularly relevant for real – time applications because
failing to meet deadline have an adverse effect on system
reliability.

2.1. NVP structure submodel

The NVP structure submodel incorporates the basic con-
cepts of software reliability theory, so a precise though infor-
mal definitions for a set of terms relating to software relia-
bility are given next. A fault is the defect in the program that
executed under particular conditions causes failure. Thus,
a software failure is the event which occurs when the soft-
ware is subjected to an input condition such that, due to the
presence of one or more faults in code, the resultant output
will be different (in time or value) from the required output
according to design specifications [19]. Such a general def-
inition of failures enables us to combine functional failures,
where the output is incorrect, and timing failures, where the
output is not produced on time. To the best of our knowledge
our approach is the only one allowing analytical modeling
of reliability that depends not only on the conventional con-
cept of reliability, based on failures of functionality, but also
reliability based on failures of performance. So far, this is-



sue has been addressed only in the simulation based method
presented in [27].

For this study we do not distinguish between detected and
undetected coincident failures, that is we do not investigate
the error detection capabilities of NVP1.

In the NVP structure submodel the time is treated locally
measured from the beginning of a run. This submodel is
based on the following assumptions:
 The versions behavior are conditionally independent

given a particular input state.
 Times to failure of program versions for given input
state are identically distributed random variables with
pdf �
����� ; ��� depending on � dimensional parameter
vector ������� 1 �
�
����� ���
� .
 Execution times of program versions for given input
state are identically distributed random variables with
pdf �
 !��� ; "#� depending on $ dimensional parameter
vector "%����" 1 �
���
��� "'&(� .
 Execution time of the voting algorithm is negligible
compared to the execution time of each version.
 Due to a real – time constraint the system must make
correct responses within a time interval )�* 0.

Due to the first assumption the first step is to model single
version behavior. If the version produces output within
specified time ) with its contents corrupted then a functional
failure occurs. If the output (either correct or incorrect) is
produced later than specified deadline ) then the version is
said to have suffered a performance (timing) failure. In other
words, a potential failure of functionality could be masked
by a performance failure.

The distribution function + � ��� ; ��� gives the probability
that a single version will fail before � and it considers the
failures of functionality. Since the duration of the execution
time � is a random variable with density �  �,� ; "#� we use the
method that in [9] is described probabilistically as random-
ized time. It follows that the probability that single version
produces functionally incorrect result before ) becomes-/. ��) ; � � "#�#� 021

0
+ � ��� ; ���3�
 4�,� ; "#�3�5� (1)

and the probability that a single version produces correct
result before ) is given by-76 ��) ; � � "#�8� 091

0 : 1 ;<+ � �,� ; ����=>�
 ���� ; "#�(�5� � (2)

1The distinction between detected and undetected failures has already
been considered in dependability models of software fault tolerant tech-
niques [12] and [11] that consider only the failures of functionality.

The failure of performance (timing failure) occurs if a single
version do not complete the execution until deadline )-@?�6 ��) ; "#�#� 1 ; 0A1

0
�
 ��,� ; "#�3�5�8� 1 ;<+@ ���) ; "#� (3)

Next, consider the system with B versions. Since there
are three distinct outcomes and due to the first assumption,
the probability that B 1 versions produce functionally correct
result before ) , B 2 versions produce functionally incorrect
result before ) , and B 3 �CBD;EB 1 ;EB 2 versions do not
complete the execution until ) is given byB !B 1! B 2! B 3!

- ?
16 ��) ; � � "#� - ? 2. ��) ; � � "#� - ? 3?�6 ��) ; "#� (4)

which is multinomial pmf. Using the marginal pmf’s of the
distribution (4) we obtain the probabilities which charac-
terize NVP failure and execution behavior for given input
state. Thus, we define timing failure of N version system
( B�� 2 FG; 1) for given input state to be the event that
majority of versions do not produce output in time HI)-@J�. ��) ; "#�K� ?L?

3 M�N4O BB 3 P - ? 3?Q6 ��) ; "#�SR 1; -@?Q6 ��) ; "#�UT ?�VW? 3 (5)

If the majority of versions have completed the execution
before ) it is possible that there is:
a majority of incorrect results (functional failure)-@.�. ��) ; � � "8�K� ?L?

2 M�N O BB 2 P - ? 2. ��) ; � � "#�QR 1; -/. ��) ; � � "#��T ?XVW? 2 (6)

a majority of correct results (success)-'Y(Z ��) ; � � "8�K� ?L?
1 M�N4O BB 1 P - ? 16 ��) ; � � "#�SR 1; -'6 ��) ; � � "8��T ?XVW? 1 (7)

or there is no majority of either correct or incorrect results- ? N ��) ; � � "#�#� 1 ; - J,. ��) ; "8�
; - Y3Z ��) ; � � "#�
; - .�. ��) ; � � "#� �
2.2. Operational environment submodel

The concept of the operational environment is reviewed
next. We use the same notion as Musa did in [19] and
[18]. The operation of a software is broken down into series
of runs and each run performs mapping between a set of
input variables and a set of output variables and consumes
a certain amount of execution time. Usually a run is a
quantity of work initiated by some input. Runs that are
identical repetitions of each other are said to form a run
type. Because the probabilities of occurrence of input states
are the natural way of representing the program usage in its
operational environment the operational profile is defined as
a set of relative frequencies of occurrence of the run types. If
the relative frequencies of run types selection have changed,
then the operational profile has changed and that will affect
the NVP behavior.



Developing this submodel we make the following addi-
tional assumptions:[ The environment is homogeneous (time invariant).[ The operational period is sufficiently long so the input

state selection probabilities can be characterized by a
steady state.[ The input states occur randomly and independently
according to the operational profile.

Since the failure and execution behavior are quite sen-
sitive to just how a system is utilized we need to take
into consideration the change of the parameter vectors \
and ] for different run types (input states). Therefore,
the parameter vectors \ and ] appear as random vec-
tors ϒand Ψ respectively. The pair of random vectors^
ϒ_ Ψ `'a ^ ϒ 1 _�b
b
bc_ ϒ d5_ Ψ1 _�b
b
bc_ Ψ e3` may be thought of as an

event defined on a sample space f d�ghe with i�jlk dimensional
distribution function m ϒΨ

^ \h_�]#`n_ while k variate distributionm Ψ
^ ]#` can be viewed as being marginal distribution of ihj�k

variate distribution m ϒΨ
^ \h_�]#` .

In order to obtain numerical results it is possible to make
assumptions and to use some theoretical distribution func-
tions. Instead, we choose to develop the user – oriented
model of operational environment. Therefore, we partition
the input space Ω by grouping run types that exhibit as
nearly as possible homogeneous failure and execution be-
havior into run categories2. Suppose that input space Ω is
partitioned into run categories oqp3rQ_ 1 sutvsIw 1 _ 1 s2xysIw 2

such that z p z r o p3r a Ω. Each run category o p(r is

defined by parameter vectors ϒa{\ p and Ψ aC] r . In
the case the operational profile | gives the probabilities}y~

ϒa{\ p _ Ψ a�] rQ� a�� p3r a�| ^ o p3r ` that successive
input states are chosen at random in run category o�p(r .
2.3. Per run reliability submodel

The per run reliability submodel treats the time locally
measured from the beginning of a run and represents failure
and execution behavior of NVP. This submodel integrates
the NVP structure submodel and operational environment
submodel using the randomization approach called stratifi-
cation [9]. Therefore, we model parameter vectors \ and] as random vectors ϒand Ψ. The unconditional per run
probabilities of success, timing failure and functional failure
for randomly chosen input state become:}7� p ^�� `8aE�Q�����K� }'� p ^��/�ϒa�\h_ Ψ a�]#`@i�m ϒΨ

^ \h_�]#` (8)

2It is reasonable to expect that failure and execution behavior relate to
the implemented function, the employed development methodology, or the
capability of designer.

}@��� ^�� `'a � � � }/�,� ^��@�Ψ au]#`@iQm Ψ
^ ]#` (9)}@��� ^�� `7a �Q� ���K� }@��� ^��@�ϒaE\�_ Ψ au]8`/iQm ϒΨ

^ \h_�]#` (10)

where
}'� p ^��/�ϒa�\�_ Ψ a�]#` , } ��� ^��/�

Ψ a�]#` , } �
� ^��/�ϒa\h_ Ψ aE]#` are given in (7), (5), (6). Note that, the Lebesgue
– Stieltjes integral covers both discrete and continuous dis-
tribution functions for m ϒΨ

^ \�_c]#` and m Ψ
^ ]#` . Distribu-

tion functions of form (8), (9), (10) are called mixtures
or compound distributions, while the distribution functionm ϒΨ

^ \�_c]#` is called mixing distribution [6], [9].
In the case of the user – oriented model of the operational

environment ϒand Ψ take finite number of values, that ism ϒΨ
^ \�_c]#` and m Ψ

^ ]8` are the discrete distribution function
and the relations (8), (9), and (10) signify the following} � p ^�� `�a � p � r } � p ^��/�ϒaE\ p _ Ψ a�] r `Q��p(r (11)}/�,� ^�� `�a � r }@��� ^��/�

Ψ au] r `���r (12)} ��� ^�� `�a � p � r } �
� ^��/�
ϒa�\ p _ Ψ a�] r `Q� p3r (13)

where �Krla }�~ Ψ a�] r � a�z p ��p(r is a marginal distribu-
tion of a distribution �Wp3rqa }y~ ϒaE\ p _ Ψ a�] r � .

Methods that have been derived and used for estimating
the mixing proportions �Wp3r , parameter vectors

^ \ p _�] r ` and
the number of components of the finite mixture w�aGw 1 w 2

could be found in [6].
The reader is referred to our previous papers [13] and [14]

for detail analysis of the correlation between versions. It is
shown that there is a correlation between versions behavior
for a single input whenever ϒand Ψ vary for different run
categories. Our approach is more general and much more
realistic then previous ones since the arguments given in [8]
and [5] for existence of correlation between failures of in-
dependently developed versions apply to versions execution
times, as well. Even more, the execution times of versions
are not likely to be independent of their producing erro-
neous or correct result. Our approach considers implicitly
this type of dependence since it is possible ϒand Ψ to be
correlated random vectors, thus reflecting the influence of
failure behavior on execution behavior.

2.4. Performance submodel

The performance submodel considers only the execution
behavior of the NVP and the events are distinguished only
by their occurrences in time, independent of outcome re-
sult. This submodel treats time globally and represents the
iterative nature of software’s execution, that is the series of
runs during the mission duration. At each run, the software



accepts an input and produces an output that is a function
only of the most recently accepted input3.

For the performance submodel it suffices to consider a
renewal process ���D���c�n��� � 0 ¡ where each run is repre-
sented by a renewal cycle. Let the time between successive
renewals be such that ¢W£ is time elapsed from ��¤�¥ 1 � st run
until the occurrence of ¤ th run. We derive the distribution
of the time between successive renewals ¢�£ integrating the
information contributed by the NVP structure submodel and
operational environment submodel.

First, we derive the conditional distribution for a given
input state using the order statistics. Let ¦ 1 �(¦ 2 ��§
§�§��3¦©¨
be the random variables that represent the execution time
of each version given a particular input state, each having
a distribution function ª@«��,� ; ¬8� , as assumed in the NVP
structure submodel. The probability that at least ­ of the¦ ¨ ’s lie in the interval � 0 ����® is given byªy��� ; ¬#�'¯ ¨°±³²�´�µ�¶ ·n¸ ª ±« ��¹ ; ¬#�»º 1 ¥<ª « ��¹ ; ¬#�¼® ¨�½ ± (14)

Next, we obtain the unconditional probability distribu-
tion function of the time between successive renewals for
random input state using the randomization procedure called
stratification. As in the reliability submodel we treat the pa-
rameter vector ¬ as random vector Ψ, so (14) signifies the
conditional probability distribution ªy�,�¿¾Ψ � . It follows thatªy���c�'¯�ÀQÁÃÂ�ªy�,�¿¾Ψ ¯E¬#�@ÄQÅ Ψ ��¬#�»§ (15)

For the user oriented model of the operational environment
(15) becomesªy���c�'¯ °�Æ ª����¿¾Ψ ¯�¬ Æ ��Ç Æ § (16)

Finally, due to the real – time constraint, ¢W£ is the time
upon the completion of the NVP execution or upon reaching¹ , whichever occurs first. It means that the probability
distribution of ¢�£ isª7È��,�c�#¯�É ª����c�»� for �ËÊI¹

1 � for �Ë�I¹ (17)

with mean recurrence time ­ÌÈl¯�À È
0
º 1 ¥%ªy���c��®>Ä�� (18)

and variance Í 2È ¯ 2 À È
0
��º 1 ¥<ª����c�¼®>Ä5�/¥2­ 2È § (19)

The performance submodel is also responsible for sup-
plying the expected number of runs during the mission:Î º³�D���c��®Ï¯uÐ����c�8¯�Ñ° Ò ²

1

ª Ò
ÓÈ ���c� (20)

3Although this is a usual assumption in most software models and
software testing experiments, it is a simplification of a real life, as it does
not explicitly model the phenomena of failure clustering which typically
occurs when successive input states are related to one another.

where ª Ò�ÓÈ denotes the k-fold convolution of ª È .
We emphasize that the versions execution times are cor-

related for a single input whenever the parameter vector Ψ
is not identical for all run categories. Considering the cor-
relation between execution times much more realistic than
the assumption of independence made in [4] and [25].

2.5. Reliability model

The first of the third layer models supports the assessment
of the NVP reliability over a mission, that is the distribution
of the time to failure as a function of global time. This
is done by using the decomposition of a renewal process.
Consider a renewal process with distribution ª'ÈQ�,�c� defined
by performance submodel (17), and suppose that each event
is erased with probability ÇÔ¯ÖÕ7× Ò ��¹�� computed by the
per run reliability submodel (11). The resulting sequence
of events constitutes a renewal process � ˆ�D�,�c�»�U�q� 0 ¡ that
registers only the successive occurrences of NVP failures.
Its interval distribution is

ˆªØ���c�#¯ Ñ° Ò ²
1

Ç Ò ½ 1 � 1 ¥ÙÇW�hª Ò
ÓÈ �,�c�»§ (21)

If the Laplace transform of ª È ���c� is Úy��Û�� then the Laplace
transform of the distribution of the time to failure ˆªy�,�c� is

ˆÚy��Û
�Ë¯ Ñ°Ò ²
1

Ç Ò ½ 1 � 1 ¥ ÇW�@Ú Ò ��Û��#¯ � 1 ¥ ÇW�@Úy��Û
�
1 ¥ÙÇWÚy��Û�� § (22)

The expression ˆÚv��Û
� in s – domain (22) can be inverted
numerically to obtain the solution in time domain for ˆª����c� ,
which leads to non trivial conservative estimates.

If only a value of the mean time to failure MTTF (ex-
pected amount of time that software operates before failure)
is a desired solution, procedure is typically less complex due
to the well known property of Laplace transform:Ð�¢�¢4ªE¯ Î º ˆªØ���c��®Ï¯�¥ Ä ˆÚy��Û
�ÄQÛÝÜÜÜÜÜ Þ ² 0

¯ ­ßÈ
1 ¥�Ç § (23)

2.6. Performability model

The performability model is the second model at the third
level and it combines the information contributed by the per
run reliability and performance submodels. It is possible to
consider a variety of performability measures depending on
particular application. Similarly to the experimental study
[24] which examined two levels of granularity in counting
errors (so – called errors by time and errors by case) we
examine two performability measures:

1. number of successful runs over a mission duration �
2. number of successful runs provided there are no fail-

ures over a mission duration �



In the case of the first measure the failures are counted
only at the run in which they manifested themselves, which
means that all successful runs during the mission period
are beneficial. As for the second performability measure, if
NVP fails (either by value or by time) at any run in a mission
it is considered failed for the whole mission. In this case, no
run either prior or subsequent to such failure is beneficial.

For the first performability measure we associate with
the k-th renewal interval an indicator random variable à#á
which may be interpreted as reward rateà#á�â�ã 1 if the k-th run is successful

0 otherwise.
(24)

with expected value ävå à8á
æÏâuç'è3áQé�êXë#â%ì defined by (11).
The accumulated reward up to time í is defined by the

cumulative processî é�ícë#â9ï�ðòñ>ó,ô 1õ á
ö 1

à8á�÷ (25)

Conditioning on the time ø 1 âuù until the first renewal, and
examining the two possibilities ù úAí and ùßûAí , we secure
for üØé�ícë#âuävå î é,ícë¼æ the renewal equationülé�ícë8âEä�å³à 1 æSýAþ ñ

0
ülé,í#ÿ<ù�ë������Sé�ù�ë (26)

which resuls inä�å î é�ícë¼æhâuä�å³à 1 æÏå 1 ý���é,ícë¼æÏâ�ç è(á é�ê�ë#å 1 ý���é,ícë¼æ(÷ (27)

It is obvious that performability measure represents the col-
lective effect of system attributes computed from the per run
reliability submodel ç'è3á�é�ê�ë (11) and performance submodel��é�ícë (20).

Since the mission duration í is much greater then the
renewal interval times ø á the asymptotic expansion of the
renewal function for large í [9] leads to

limñ �
	 ülé�ícë8âEç'è(áSé�ê�ë � 1 ý í� ��
 (28)

where � �
The second performability measure is formulated in a

similar fashion to the "effectiveness" in [4], but it is even
more restrictive as it counts as one unit the successful runs
conditioned by the event that no run at all fails during the
period é 0 �Uí�æ . To aid formulation of �lé�ícë we define the
following intermediate lavel random variables:��� ñ – number of successful runs during é 0 �Uí�æ�
� ñ – number of runs during é 0 �Uí�æ which provide incorrect

outcome on time (functional failure)ø�� ñ – number of runs during é 0 �Uí�æ which doesn’t provide
outcome on time (timing failure).

�lé�ícë can be formulated in terms of
��� ñ , �
� ñ , and ø�� ñ as�lé�ícë8â ã ��� ñ if �
� ñ ý%ø�� ñ â 0

0 otherwise.
(29)

The moment generation function of the variable �lé,ícë isä�å������ ðòñ¼ó æÏâ�ä�å 1 ÿ ì ïÃð ñ>ó ý ì ï�ðòñ>ó ��� ïÃð ñ>ó æ (30)

and its expectation can be expressed asä�å��lé�ícë�æÏâ �Qä�å�� ��� ð ñ>ó æ��� ���� � ö 0

â ä�å� Dé�ícëQì ïÃðòñ¼ó æU÷ (31)

The asymptotic behavior is determined by the fact that for
large í the number  Dé�ícë of renewal intervals is approxi-
mately normally distributed with mean í"! � � and varianceí"# 2� ! � 3� [9]. If further, we let ˆ� â�í"! � � , ˆ# 2 â�í"# 2� ! � 3�
and $Ùâ ln ì we haveä�å��lé�ícë�æÏâ%��& ˆ' þ 	( ˆ'*) ˆ+ é ˆ#hùØý ˆ� ë,�-& ˆ+-. � Φ é�ùWë (32)

where Φ é�ù�ë7â 1 !0/ 2 132 .( 	 � (54 2

2 ��6 is the normal integral.

3. Numerical example

The presented model allows the use of general distri-
butions of the time to failure and execution time and nu-
merical solutions could be obtained using the evaluation
tools. Nevertheless, using exponential distributions (which
are the usual assumptions in most software reliability mod-
els) enable us to derive close form solutions. The numerical
example is based on assumptions that versions pdf of the
time to failure is 7-8 é,í ; 9Xëlâ;: e (=< ñ and pdf of the execu-
tion time is 7->�é,í ; ?#ëËâA@ e (�B ñ . It means that the parameter
vectors consists of one component ϒâ�éC:Wë and Ψ â éD@/ë .
This leads to the operational profile which is defined by two
variate pmf ì á�E âuçGF ϒâ%: á � Ψ âA@ E�H that gives the prob-
ability that a successive input states are chosen at random
in the run category defined by failure rate : á and execution
rate @IE . The values assigned to model parameters are shown
in Table 1.

Fig. 2 plots the MTTF for varying number of versions
and four different operational profiles. The operational pro-
file ç 1 encounters inputs that result in the small versions
execution period compared to the time to failure ( @KJL: )
and versions are uncorrelated since there is no variation of
the failure and execution rates over the input space. It is
evident that NVP substantially increases the MTTF. The
operational profile ç 2 also encounters inputs that result in
the small versions execution period compared to the time
to failure, but in this case the varsions failures and execu-
tion times are correlated. It is obvious that increasing the
number of versions still substantially increases the MTTF.
However, seven versions would be required to achieve the
same level of MTTF as in the case of 3 version system
under the assumptions of independence. The operational
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Table 1. Parameter values
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d 1.0e-006

1.0e-002
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1.0e+006
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1.0e+018
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Figure 2. Mean time to failure

profile
Y

3 and
Y

4 assign the same probability 0 U 001 as
Y

2
to the worse program characteristics (higher failure rate and
smaller execution rate). As a result, there is a decrease in
estimated MTTF over that exhibited for operational profileY

2. Note that, this choice of parameters implies a mean
recurrence time fhg of the same order of magnitude, so the
variations of the MTTF due mostly to the variations of the
total per run failure probability 1 ikj N 1 i Y�l�mon VIp . That
is, the increased failure probability results in greater chance
to encounter unsuccessful run over a mission.

As indicated on Fig. 3 the performability related measures
are also degraded by the operational profiles that encounter
inputs associated with worse program characteristics. How-
ever, increasing the number of versions for given operational
profile results in performability gain. The first performabil-
ity measure q P�r n W pDS is less sensitive to the variations in the
operational profile because the failures are counted only at
the run in which they manifested themselves. Comparing
the two parformability measures we observe that in the case
of the operational profiles that encounter inputs associated
with moderate to high per run failure probability (

Y
3 andY

4) the reduction of s n W p is more dramatic. This is due to
the fact that in the case of the second performability measure
if NVP fails at any run in a mission it is considered failed for
the whole mission, which in turn results in no performability
gain.

Certain operational profiles, although higly unlikely, can
select inputs associated with even worse program charac-
teristics ( TKt M

) which result in highly unreliable system.
Accordingly, there will be more significant reduction of
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v P1
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1.6e+007

2.0e+007

2.4e+007
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w
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E[W(t)]
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x P3

P2
x P1

y 1.0e+004

4.0e+006
z 8.0e+006

1.2e+007

1.6e+007

2.0e+007

2.4e+007

7
{
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Versions

E[U(t)]
|

Figure 3. Performability measures

q P�r n W p}S . Evenmore, MTTF and q P s n W pDS , that are far more
sensitive to the variation of program characteristics over the
input space than q P`r n W pDS , become exceedingly low and can
not be improved by any degree of fault tolerance.

4. Conclusions and future work

This paper presents the modeling based study of the N
version fault tolerant software in a real - time environment.
Our modeling approach is systematic as opposed to the ad
hoc methods used in related works. Moreover, it is more
general and much more realistic than earlier models since it~ considers general distributions of the time to failure

and execution time~ integrates the NVP structure and system usage in its
operational environment~ considers the correlation between versions failure and
execution behavior for a single input



~ results in the mission reliability that accounts for per-
formance requirements~ considers two different performability measures that
reflect the collective effect of reliability and perfor-
mance attributes on the ability of NVP to complete a
certain amount of useful work over a mission.

The hierarchical decomposition keeps the solution effi-
cient and permits modifications to be flexibly made at a
specific level or in a specific submodel. There are several
possible extensions that could be easily handled. First of
all, the numerical evaluation for different time to failure and
execution time distributions could be made using evalua-
tion tools or simulation. Next, the correlation of successive
input states might be considered at the second layer submod-
els in order to model the phenomena of failure clustering.
Finally, the performance submodel could account for distri-
bution functions between renewals that also depend on the
outcome result, that is on the versions per run reliability.
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