The Effects of Failure Correlation on Software
Reliability and Performability *

Katerina Goseva — Popstojanova, Kishor Trivedi
Center for Advanced Computing and Communication
Department of FElectrical and Computer Engineering

Duke University, Durham, NC 27708 — 0291, USA
E-mail: {katerina, kst} @ee.duke.edu

1. Introduction

The assumption of independence among successive
software failures is common to the most of software re-
liability models (see [1] for recent surveys). Its validity
can be affected by a variety of operational conditions,
such as whether the input sequences exhibit indepen-
dence, the extent to which internal state of a software
has been affected, whether or not operations under-
taken for execution resumption involve state cleaning.

Motivated by the fact that independence as-
sumption can be easily violated in many practical
applications we have recently developed a modeling
framework, based on Markov renewal processes, which
accounts for the correlation among successive failures.
In this short paper we demonstrate its use for software
operational life. The operation of software is divided
into a sequence of runs by subdivision of time associ-
ated with some user — oriented tasks. A sequence of
dependent software runs, when the outcome of each
run depends on the outcome of the previous run, will
result in a correlation of successive failures.

2. Markov renewal modeling framework

The flexibility of Markov renewal processes allows us
to construct the model in two steps. First, we consider
the outcomes of a sequence of possibly dependent soft-
ware runs to build the model in discrete time. Next,
we construct the model in continuous time considering
the execution times of software runs.

We view the sequence of software runs in discrete
time as a sequence of dependent Bernoulli trials in
which the probability of success or failure at each trial
depends on the outcome of the previous trial. It can
be described by a discrete time Markov chain (DTMC)

*Supported in part by the National Science Foundation, by
Bellcore and by the Lord Foundation as a core project in the
Center for Advanced Computing and Communication

© 1999, Katerina Goseva — Popstojanova

with two states. One of the states, denoted by 0, is
regarded as success and the other, denoted by 1, as
failure. DTMC transition probability matrix

_| p 1-»p 0<pqg<l
P_[l—q g] pro—1<1 U
describes the probabilities of success (p and 1 — ¢) and
failure (1 — p and ¢) conditioned on the outcome of the
previous run (success and failure respectively). !

It can be shown that the unconditional per run fail-
ure probability is § = (1 —p)/(2 —p — q) and the serial
correlation coefficient is p = p+ ¢ — 1.

If Pr{(i+1)-st run fails | i-th run has failed} #
Pr{(i+1)-st run fails}, that is, ¢ # 6 (p + ¢ # 1) then
the assumption of independence is violated. The model
admits as special cases the following:

1. Failures are independent (p + q = 1). Each run
has probabilities p and ¢ = 1 — p of being a success and
failure independently of the outcome of previous run.
2. A lack of clustering (p + q < 1). Successive soft-
ware runs are negatively correlated, that is, if a failure
occurs in i-th run, there would be an increased chance
that a success will occur in (¢ + 1)-st run.

3. Failures occur in clusters (p +q > 1). Succes-
sive runs are positively correlated, that is, if a failure
occurs in i-th run, there would be an increased chance
that another failure will occur in the next (i+1)-st run.

The next step in the model construction is to obtain
a process in continuous time by considering the distri-
bution Fj;(t) of the time spent in a transition from state
i to state j of the DTMC. In our case Fj;(t) are the
distributions of the time that takes software runs to be
executed. It is assumed that software execution time
Te, has the same distribution F,,(t) = P{T., < t}
regardless of the outcome, that is, Fj;j(t) = Fe,(t)
for 0 < 4,57 < 1. With the addition of F,,(t) to the

IThe boundary cases p = ¢ = 0 and p = ¢ = 1 are excluded
from the analysis since they are somewhat trivial.

DTMC, we obtain the model in continuous time, that
is, a Markov renewal process (MRP). The total number
of software runs {N(¢),¢ > 0} is a superposition of two
dependent renewal processes Ng(t) and Np(t) which
refer to the number of times states 0 (success) and 1
(failure) of the DTMC have been visited in (0, ¢].

The following analysis is aimed at determinating
the effects of correlation among successive failures on
software reliability and performability measures. Note
that, the presented model allows many other measures
that are not considered in this paper to be derived.

The distribution of the time to next failure T, that
is, the unreliability is the interval distribution of the
point process Ng(t). It is determinated by considering
DTMC first in order to derive the pmf of a discrete ran-
dom variable X defined as the number of runs between
two successive visits to the failure state:

ifk=1
Pr{X=k}={ c(ll_q)pk*2 1-p) ifk>2. ®

Then, using (2) it follows that the distribution of the
time to next failure F'(t) = Pr{T < t} is given by:

Ft)=qFu(t)+ > (1-qp" > (1-p)Fir(t) (3)
k=2

where F** denotes the k-fold convolution of F,. The
Laplace — Stieltjes transform (LST) of F(¢) is

F(s): qﬁew(s)+(1_p_Q)F3w(s) (4)
1—pFE..(s)

where F,,(s) is the LST of F,,(t). Depending on the
particular distribution of the execution time F,(t),
the expression (4) can be inverted either symbolically

or numerically. In either case, mean time to failure
(MTTF) is derived by a simple differentiation of (4):

BT = 272 B = 2 -p-) BT)
where E[Te,] is the run’s mean execution time, while
E[T™] = E[T.,]/(1 — p) if the MTTF for the indepen-
dent case.

Equation (5) clearly demonstrates the effects of fail-
ure correlation on software reliability measures: if there
is a luck of clustering MTTF would be greater, while
if failures occur in clusters MTTF would be smaller
compared to the independent case.

Performability measure U(t) is defined as a number
successful runs that benefit the user during a time pe-
riod (0,t]. If a software fails at any run Ng(t) > 0 no
run either prior or subsequent to such a failure is con-
sidered beneficial U(t) = 0. If Ng(t) = 0 then all runs
during (0, t] are successful and beneficial U(t) = N ().
The moment generating function of U (t) is

E[e®V®] = E[1— (1—q) pV® ! + eV (1—¢q) pV D]

and its expectation can be expressed as
_ dE[esV)] _1—gq
ds =0 p

where E[U™(t)] = E[N (t)p™®] is the benefit that can
be expected if the successive failures were independent.

Equation (6) reveals the impact of failure correla-
tion on performability. If failures do occur in clusters
E[U(t)] is reduced by factor (1 — q)/p compared to
the independent case. On the other hand, a luck of
clustering has just an opposite effect.

E[U(®)] E[U™(®)] (6)

3. Conclusion

The presented Markov renewal approach contributes
toward more realistic modeling of software as it enables
to account for the correlation among successive failures
and to study its effects on software reliability and per-
formability. Our approach can be easily extended to
cover the following generalizations.

e In real — time applications T,, will be the time
upon the end of execution or upon reaching a dead-
line 7, whichever occurs first, that is, its CDF will
coincide with Fg;(t) for 0 < t < 7, otherwise it
will be equal to 1.

e Different execution time distributions for success-
ful and failed runs can be considered by assigning
distribution Fs(t) to state 0 and Fr(t) to state 1.

e More than one type of failures or periods of time
when the software is idle can be accounted for by
adding suitable states to the DTMC.

o This approach can be used for modeling fault toler-
ant software (FTS) systems. Per run failure prob-
ability and run’s execution time distribution for
a particular FTS structure can be derived using a
variety of existing FTS models (see [2], [3] and ref-
erences therein). Thus, in addition to the interver-
sion failure correlation on a single run considered
in related works, our approach enables to account
for the correlation among successive failures.

References

[1] M.R.Lyu (Ed.), Handbook of Software Reliability Engi-
neering, McGraw-Hill, 1996.

[2] A.T.Tai, J.F.Meyer, A.Avizienis, ”Performability En-
hancement of Fault — Tolerant Software”, IEEFE Trans.
on Reliability, Vol.42, No.2, June 1993, pp. 227 — 237.

[3] K.Goseva — Popstojanova, A.Grnarov, ”Hierarchical
Decomposition for Estimating Reliability of Fault —
Tolerant Software in Mission — Critical Systems”, Proc.
TASTED Int’l Conf. Software Engineering, Nov 1997,
pp. 141 — 146.

