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Abstract

Traditionally, reliability models of component-based
software systems compute the point estimate of system reli-
ability by plugging point estimates of unknown parameters
into the model. These models discard the uncertainty of the
parameters, that is, do not attempt to answer the question
how parameters uncertainties affect the estimates of system
reliability. In this paper we focus on uncertainty analysis
in software reliability based on method of moments. In par-
ticular, we present a generalization of our earlier work that
allows us to consider the uncertainty in the operational pro-
file (i.e., the way software is used) in addition to the uncer-
tainty in components failure behavior (i.e., component re-
liabilities) considered earlier. The method of moments is
an approximate analytical method that allows us to gener-
ate system reliability moments based on (1) the knowledge
of software architecture reflected in the expression of sys-
tem reliability as a function of component reliabilities and
frequencies of control transfer between components, (2) es-
timates of the moments of components reliabilities, and (3)
estimates of the moments of probabilities of control transfer
between components. Further, we apply the method of mo-
ments on two case studies and discuss its advantages and
disadvantages.

1 Introduction

Many analytical models for quantification of software
reliability have been proposed in the past. One group of
models is focused on modeling reliability growth during
testing phase [4], [20]. These so called black–box models
treat the software as monolithic whole, considering only its
interactions with external environment. Black–box models
do not consider the internal software structure and therefore
are inappropriate for modeling component–based systems.
For these systems, we need to use a white–box approach that
takes into account the information about the architecture of
the software made out of components. An extensive survey

on architecture–based software reliability models, including
their assumptions, usefulness, and limitations is presented
in [6], [7].

Two important questions arise with respect to predica-
tions of software reliability based on models. The first
question addresses the appropriateness of the model, that is,
whether the model assumptions hold in practice. The sec-
ond question addresses the accuracy of parameters values.
Parameters can be estimated using the field data obtained
during testing or operational usage of the software, histor-
ical data for products with similar functionality, or reason-
able guesses based on the specification and design docu-
mentation. In practice, there is a lot of uncertainty around
parameters because they rarely can be estimated accurately.
However, in most cases the research work on software reli-
ability discards the uncertainty of the parameters and does
not attempt to answer the question how parameters uncer-
tainties affect the estimates of software reliability.

The most common method for uncertainty analysis used
in software reliability is conducting sensitivity studies.
Thus, sensitivity of software reliability estimates to errors in
the operational profile has been investigated in the context
of black–box reliability growth models in [2], [17], [19].
Sensitivity studies of software reliability estimates obtained
using architecture–based models have been presented in [3],
[22]. In these studies the authors assumed fixed known val-
ues for the transition probabilities and derived the sensitiv-
ity of the system reliability with respect to the reliability
of each component. However, any inaccuracy in the op-
erational profile directly will affect transition probabilities
among components. The sensitivity studies of software reli-
ability with respect to the operational profile (i.e., transition
probabilities) and component reliabilities are presented in
[5], [8], [27].

In addition to sensitivity studies, there have been sev-
eral attempts to quantify the variability of software reliabil-
ity. In [15] authors used black–box approach and assumed
that the failure probability has prior Beta distribution. Us-
ing Bayesian approach they derived the mean and the vari-
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ance of the failure probability for a software system that,
in its current version, has not failed. The same problem
was considered in [1] for the software with partitioned in-
put domain. However, in this work it was recognized that
there is uncertainty in the estimations of the reliability for
each partition, as well as uncertainty in the probability of
using each partition. In [24] the mean, variance, and con-
fidence intervals for the probability of failure per demand
were obtained using Bayesian approach with different types
of prior information. In [23] the mean and the variance of
software failure probability were estimated using Bayesian
approach and assuming Beta prior distributions for compo-
nent failure probabilities. In [21] the mean and the variance
of software reliability were estimated for the sample gen-
erated by simulation of execution sequences from the us-
age model. In another related work [13] three optimization
models for software reliability allocation under an uncertain
operational profile were formulated and solved.

From the above it is obvious that uncertainty analysis
was not used systematically and extensively in software re-
liability. However, it has been applied in other engineering
disciplines. Thus, several methods for uncertainty analysis
of system characteristics from uncertainties in component
characteristics are presented in [11], [28].

Recently, we proposed a methodology for uncertainty
analysis of architecture–based software reliability mod-
els suitable for large complex component–based applica-
tions and applicable throughout the software life cycle [9].
Within this methodology, we developed two methods for
uncertainty analysis: method of moments and Monte Carlo
simulation. In [9] we used the method of moments to quan-
tify the uncertainty in software reliability due to uncertainty
in components reliabilities. Expressions derived in [9] are
valid for independent random variables and did not allow us
to study the uncertainty in software reliability due to uncer-
tainty in the operational profile.

In this paper we generalize our earlier research work on
the method of moments presented in [9]; we derive expres-
sions for the mean and the variance of system reliability that
consider both sources of uncertainty in software reliability:
the way software is used (i.e., the operational profile) and
the components failure behavior (i.e., components reliabili-
ties). The presented results can be used for keeping track of
software evolution throughout the life cycle. Further, they
can be used for certification of component–based software
systems. This is an important aspect of our work, because
with the growing emphasis on reuse developers cannot af-
ford to stay away from reliability certification.

It is important to emphasize that method of moments can
be used for assessing the uncertainty of software reliability
in cases when the software testing does not reveal any fail-
ures. Note that the traditional point estimate of system re-
liability for the software that in its current version has not

failed will result in system reliability equal to 1. Of course,
unless we do exhaustive testing without replacement, we
can never be sure that software reliability is 1. Providing
the mean and the variance of the reliability, instead of the
point estimate equal to 1, is particularly important for high
consequence and high assurance systems.

The rest of the paper is organized as follows. The basic
concepts of the architecture–based software reliability and
the motivation for using uncertainty analysis are discussed
in Section 2. In Sections 3 we present the method of mo-
ments as an approach for uncertainty analysis in software
reliability and in Section 4 we illustrate its application on
two case studies. The concluding remarks are presented in
Section 5.

2 Basic concepts of the architecture–based
software reliability

In order to estimate the reliability of a component–based
software system we need information on software architec-
ture (structure of component interactions), software usage
described by the operational profile (relative frequencies of
component interactions determined by transition probabili-
ties), and software failure behavior (component reliabilities
or failure rates).

Software behavior with respect to the manner in which
different components interact is defined through the soft-
ware architecture. We use state–based approach to build
the architecture–based software reliability model [6], [8].
This approach uses the control flow graph to represent
software architecture. The states represent active compo-
nents and the arcs represent the transfer of control. Based
on the assumption that the transfer of control between
components has a Markov property, the architecture is
modeled with a discrete time Markov chain (DTMC) with
a transition probability matrix P = [pij ], where pij =
Pr {control is transferred from component i to component j}.
We construct the Markov chain in two phases. The struc-
tural phase involves the establishment of the static software
architecture. The dynamic statistical phase involves the
estimation of the relative frequencies of components
interactions (i.e., transition probabilities) which define the
software usage (i.e., operational profile). Depending on
the phase of the software life cycle, different sources of
information can be used to build the DTMC that describes
the dynamic software architecture. These include historical
data from similar products, high level information about
software architecture obtained from specification and
design documents (such as for example UML use cases
and sequence diagrams [10]), or component traces obtained
using profilers and test coverage tools [8], [9].

Dynamic information in software architecture repre-
sented by transition probabilities clearly depends on the
software usage, that is, the operational profile. In general,
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operational profile is a quantitative characterization of how
a system will be used [16]. In many cases, the estimation
of a trustworthy operational profile is difficult because it
requires anticipating the field usage of the software and a
priori knowledge about the application and system environ-
ments. A typical example would be process control applica-
tions in which various software components are activated by
complex sequences of events whose frequencies can hardly
be estimated a priori. In other cases, a single operational
profile is not sufficient to describe the use of a product by
different users. Further problems could arise when func-
tions are added or modified as software systems evolve. As
a consequence, the way in which the software is used also
evolves, and the operational profile changes. These reasons
can easily lead to erroneous estimates of the operational pro-
file which will directly affect the reliability estimate. There-
fore, it is important to conduct uncertainty analysis due to
uncertainty in the operational profile estimation.

In this work we use a discrete time Markov chain
(DTMC) as a model for software architectures and opera-
tional profiles. DTMC proves to be a good model for soft-
ware architectures and operational profiles for several rea-
sons. From the software engineering point of view, the
model can be build both in early [10] and late phases [8],
[9] of the software life cycle. Once the model has been
built, any number of statistically typical test cases can be
generated from the model. From the analytical point of
view, discrete time Markov chain is a tractable stochastic
process with well developed theory, analytical results, and
computational algorithms. Furthermore, the model provides
basis for building several different architecture–based soft-
ware reliability models [6], [7].

The next step in building an architecture–based software
reliability model is to consider components failure behav-
ior, i.e., estimate the reliability of each component. The re-
liability of the component i is the probability Ri that the
component performs its function correctly. Assessing the
reliability of software components clearly depends on the
factors such as whether or not component code is avail-
able, how well the component has been tested, and whether
it is a reused or a new component. In the early phases of
software life cycle components reliabilities can be “guesti-
mated” based on expert knowledge or estimated based on
historical data [25]. During the testing and operational us-
age several techniques for estimating components reliabili-
ties can be used. Software reliability growth models can be
applied to each software component exploiting component’s
failure data obtained during testing [4], [12]. However, due
to the scarcity of failure data it is not always possible to use
software reliability growth models. Another possibility is
to estimate component’s reliability from explicit considera-
tion of non-failed executions, possibly together with failures
[14], [15], [18]. In this context, testing is not an activity

for discovering faults, but an independent validation activ-
ity. The problem that arises with these models is the large
number of executions necessary to establish a reasonable
statistical confidence in the reliability estimate. Finally, one
can use fault injection techniques to estimate component’s
reliability [8], [26]. Fault–based techniques, however, are
only as powerful as the range of fault classes that they sim-
ulate. From the above it is obvious that, regardless of the
technique used, the estimates of component reliabilities may
be inaccurate which further motivates the use of uncertainty
analysis.

The last step in building an architecture–based software
reliability model is to combine the software architecture
with components failure behavior. The method of moments
can be applied to any architecture–based software reliability
model that provides a closed form solution for the software
reliability. In this paper we use the model first presented
in [3] which uses composite method to combine software
architecture with failure behavior. Two absorbing states C
and F , representing the correct output and failure respec-
tively, are added to the DTMC that describes the software
architecture. The transition probability matrix P is modified
to P̄ as follows. The original transition probability pij be-
tween the components i and j is modified into Ripij , which
represents the probability that the component i produces the
correct result and the control is transferred to component
j. The failure of a component i is considered by creating
a directed edge to failure state F with transition probability
(1 − Ri). The reliability of the program is the probability
of reaching the absorbing state C of the DTMC. Let Q be
the matrix obtained from P̄ by deleting rows and columns
corresponding to the absorbing states C and F . The (1, n)
entry of the matrix Qk represents the probability of reaching
state n from 1 through k transitions. From initial state 1 to
final state n, the number of transitions k may vary from 0 to
infinity. It can be shown that S =

∑∞
k=0 Qk = (I − Q)−1,

which means that the (1, n)th element of matrix S denotes
the probability of reaching state n from state 1. It follows
that the overall system reliability is given by R = s1,nRn.

3 Uncertainty analysis based on method of
moments

For a given software architecture, there are two sources
of uncertainty in software reliability: the way software is
used (i.e., the operational profile) and the components fail-
ure behavior (i.e., components reliabilities). Thus, tran-
sition probabilities pij and component reliabilities Ri are
input parameters for software reliability model described
in Section 2 which are required to have numerical values
so that the software reliability can be computed from the
model. Regardless of the appropriateness of the mathemat-
ical model used to model software reliability, if consider-
able uncertainty exists in estimation of the operational pro-
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file and component reliabilities (as it usually does) then a
significant uncertainty exists in calculated system reliabil-
ity. Therefore, the traditional approach of computing the
point estimate of software reliability by plugging the point
estimates of parameters into the model is not appropriate. In
order to answer the question how parameters uncertainties
propagate into overall system reliability, uncertainty analy-
sis is necessary.

In [9] we used the method of moments to quantify the
uncertainty in software reliability due to the uncertainty of
components reliabilities. The expressions for the mean and
the variance of system reliability derived in [9] are valid for
independent random variables and did not allow us to study
the uncertainty in software reliability due to the uncertainty
in the operational profile. In this paper we generalize our
earlier work, that is, we consider the uncertainty of the op-
erational profile, in addition to the uncertainty of compo-
nent reliabilities. Since transition probabilities pij out of
each state i must sum to 1 (i.e.,

∑
j pij = 1) they are not

independent random variables. Therefore, in this paper we
derive the expressions for the mean and the variance of sys-
tem reliability considering that the transition probabilities
out each state i are correlated random variables.1

The method of moments is an approximate analytical
approach that allows us to generate the moments of sys-
tem reliability from the moments of transition probabilities
and component reliabilities. The method of moments can be
applied to any architecture-based software reliability model
that has a close form solution for the system reliability. In
this paper we use the model presented in Section 2 to derive
the expression for system reliability

R = f(Ri, pij)

where 0 ≤ Ri ≤ 1, pij ≥ 0, and
∑n

j=1 pij = 1. If we
treat each component reliability Ri and transition probabil-
ity pij on the right-hand side of this expression as a random
variable, then the system reliability is also a random vari-
able. Let E[Ri] be the mean value of the ith component
reliability and let µk[Ri] = E[(Ri − E[Ri])k] denote its
kth central moment (or moment about the mean). Further,
let E[pij ] and µk[pij ] = E[(pij−E[pij ])k] denote the mean
value and the kth central moment of the transition probabil-
ity (i.e.,probability of control transfer between components
i and j). The method of moments allows us to obtain the
estimates of the expected value E[R] and kth central mo-
ments µk[R] for system reliability based on (1) the knowl-
edge of the software architecture expressed by the func-
tion R = f(Ri, pij), (2) data on components failures from
which estimates of E[Ri] and µk[Ri] for i = 1, 2, . . . , n can
be obtained, and (3) data on software usage from which es-

1Note that we assume that transition probabilities out of different states
are independent random variables, that is, rows in the transition probability
matrix are independent.

timates of the E[pij ] and µk[pij ] for i, j = 1, 2, . . . , n can
be obtained.

The method of moments consists of expanding R =
f(Ri, pij) about (E[R1], . . . , E[Rn], E[p11], . . . , E[pnn]),
the point at which each of the component reliabilities and
transition probabilities takes its expected value, by a multi-
variable Taylor series. Deriving the expression for the sys-
tem reliability and the corresponding Taylor coefficients by
hand is cumbersome and can be done only for small sys-
tems. Therefore, generation of system reliability moments
using the method of moments is a natural candidate for au-
tomation. We have used Mathematica to derive the sym-
bolic expression for the system reliability R = f(Ri, pij)
and its partial derivates for the Taylor series expansion.

The method of moments is an approximate, rather than
an exact, method because of the omission of higher order
terms in the Taylor series expansion. Thus, the first order
Taylor series expansion is given by

R ∼ a0 +
n∑

i=1

aRi
(Ri−E[Ri]) +

n∑
i=1

n∑
j=1

apij
(pij−E[pij ])

(1)
where

a0 = f(E[R1], . . . , E[Rn], E[p11], . . . , E[pnn]) (2)

aRi =
∂R

∂Ri

∣∣∣∣
Ri=E[Ri], pij=E[pij ] for i,j=1,2,...n.

(3)

apij
=

∂R

∂pij

∣∣∣∣
Ri=E[Ri], pij=E[pij ] for i,j=1,2,...n.

(4)

Then, the mean and the variance of system reliability are
given by

E[R] ∼ a0 (5)

Var[R] ∼
n∑

i=1

a2
Ri

Var[Ri] +
n∑

k=1

n∑
i=1

a2
pki

Var[pki]

+2
n∑

k=1

n∑
i=1

n∑
j=i+1

apki
apkj

Cov(pki, pkj). (6)

In [9] we have only considered the uncertainty due to
component reliabilities, that is, the expression for Var[R]
had only term (the first term in equation (6)). The second
and the third term in equation (6) are due to uncertainty in
transition probabilities (i.e., operational profile). Assessing
the value of the variance of software reliability (in addition
to the mean value) is important because it is a measure of
confidence in the reliability estimate. Thus, smaller values
of the variance correspond to increased confidence.

The accuracy of the E[R] and Var[R] can be improved
by including higher order terms in the Taylor series expan-
sion. We have also derived the expression for the second
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order Taylor series expansion

R ∼ a0 +
n∑

i=1

aRi
(Ri−E[Ri]) +

1
2

n∑
i=1

aR2
i
(Ri−E[Ri])2

+
n∑

i=1

n∑
j=i+1

aRiRj
(Ri−E[Ri])(Rj−E[Rj ])

+
n∑

i=1

n∑
j=1

apij
(pij−E[pij ]) +

1
2

n∑
i=1

n∑
j=1

ap2
ij

(pij−E[pij ])2

+
n∑

i=1

n∑
j=1

n∑
k=j+1

apijpik
(pij−E[pij ])(pik−E[pik]) (7)

where a0, aRi
, and apij

are given by equations (2), (3), and
(4) respectively, and

aR2
i

=
∂2R

∂R2
i

∣∣∣∣
Ri=E[Ri], pij=E[pij ] for i,j=1,2,...n

(8)

aRiRj
=

∂2R

∂Ri∂Rj

∣∣∣∣
Ri=E[Ri], pij=E[pij ] for i,j=1,2,...n

(9)

ap2
ij

=
∂2R

∂p2
ij

∣∣∣∣∣
Ri=E[Ri], pij=E[pij ] for i,j=1,2,...n

(10)

apijpik
=

∂2R

∂pij∂pik

∣∣∣∣
Ri=E[Ri], pij=E[pij ] for i,j=1,2,...n

(11)

Using equation (7) we derive the mean of the system re-
liability for the second order Taylor approximation, retain-
ing terms up to second order2

E[R] ∼ a0 +
1
2

[
n∑

i=1

aR2
i
Var[Ri] +

n∑
k=1

n∑
i=1

ap2
kj

Var[pki]

]

+
n∑

k=1

n∑
i=1

n∑
j=i+1

apkipkj
Cov(pki, pkj). (12)

The equation for the variance of the system reliability, re-

2“Retaining terms up to kth order” means that in the derivation all terms
whose powers of the expected value sum to k or less are retained and those
whose powers sum to more than k are dropped.

taining terms up to third order, is given by

Var[R] ∼
n∑

i=1

a2
Ri

Var[Ri] +
n∑

k=1

n∑
i=1

a2
pki

Var[pki]

+ 2
n∑

k=1

n∑
i=1

n∑
j=i+1

apki
apkj

Cov(pki, pkj)

+
n∑

i=1

aRi
aRi

2E[(Ri−E[Ri])3]

+
n∑

k=1

n∑
i=1

apki
ap2

ki
E[(pki−E[pki])3]

+
n∑

k=1

n∑
i=1

n∑
j=1

i�=j

apki
ap2

kj
E[(pki−E[pki])(pkj−E[pkj ])2]

+ 2
n∑

k=1

n∑
i=1

n∑
j=1

i�=j

apki
apkipkj

E[(pki−E[pki])2(pkj−E[pkj ])]

+ 2
n∑

k=1

n∑
i=1

n∑
j=1

n∑
l=1

i �=j �=l

apki
apkjpkl

E[(pki−E[pki])

· (pkj−E[pkj ])(pkl−E[pkl])]. (13)

Of course, equations for the mean (12) and the vari-
ance (13) of system reliability which take into account both
sources of uncertainty in software reliability (i.e., compo-
nent reliabilities and the operational profile) are far more
complex that the one we derived in [9].

Note that generating the mean and the variance of sys-
tem reliability from the second order Taylor series expan-
sion requires the knowledge of the higher order moments of
component reliabilities and transition probabilities. Thus,
the second order Taylor series approximation provides more
accurate estimates for the mean and the variance of software
reliability at the price of higher data requirements and more
costly computations.

Although the accuracy may be further increased, the
derivation of the third or higher order approximations would
constitute a formidable task and require higher number of
moments for component reliabilities and transition proba-
bilities. Even if the expressions for the third (or higher)
order approximation are derived, it might happen that the
sampling error due to limited number of observations avail-
able for estimation of the moments of the component relia-
bilities will exceed the error introduced by the omission of
higher order terms.

The method of moments has several advantages. First,
it requires only the knowledge of the moments of compo-
nents reliabilities and transition probabilities that are esti-
mated from available data, that is, no distribution function
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must be specified. Second, method of moments can be ap-
plied to software systems that do not fail during testing,
providing estimates for the mean and the variance of the
software reliability (instead of a point estimate equal to 1).
Of course, this is very valuable information for high assur-
ance systems. Finally, method of moments is an analytical
method and therefore generation of random numbers is not
required, that is, there is no sampling error.

However, the method of moments is an approximate
method and a finite error is associated with the use of only
up to first (second) order terms in the Taylor series expan-
sion. A limitation of the method of moments is that accu-
racy may be increased only by including higher order terms
in the Taylor series expansion. This is in contrast to the
Monte Carlo simulation where, in principle, the accuracy
may be arbitrary increased simply by increasing the number
of simulations [9].3

4 Numerical illustration

4.1 Case study 1

First, we illustrate the application of the method of mo-
ments on a case study from the European Space Agency
(ESA) [8]. The ESA software consists of almost 10,000
lines of C code. Its architecture is described with a DTMC
shown in Figure 1. States 1, 2, and 3 correspond to compo-
nents 1, 2, and 3, while the state E represents the completion
of execution.

p 12

 p

 1-p

23

2

1

3

E

1

 23

1-p
  12

Figure 1. Software architecture for the ESA
case study

In the experiment presented in [8], two faulty versions of
the program were constructed. Faulty version A consisted
of fault–free component 3 and faulty components 1 and 2,
while faulty version B consisted of fault–free components 1
and 3 and faulty component 2. Faults reinserted in the code

3In order to use Monte Carlo simulation probability distribution func-
tions of component reliabilities and transition probabilities must be spec-
ified. Further details on the use of Monte Carlo simulation in software
reliability are given in [9].

during the experiment were the real faults discovered dur-
ing integration testing and operational use of the program.
The original application which has been extensively used
after the last fault removal without failures was used as an
oracle. Each faulty version of the program and the oracle
were executed on the same test cases generated randomly
on the basis of the operational profile. Component traces
obtained during testing were used for estimating transition
probabilities pij . When the outputs of the faulty version
and the oracle disagreed, the fault responsible for the fail-
ure was identified in order to determine which component
has failed and estimate component reliabilities Ri. Faults
have not been removed and the number of failures includes
recurrences due to the same fault.

DTMC presented in Figure 2 is the architecture–based
software reliability model of the ESA software. The ex-
pression for system reliability obtained using the model de-
scribed in Section 2 is given by

R = (1 − p12)R1 + p12(1 − p23)R1R2 + p12p23R1R2R3.
(14)

p    R 23      2

R3

1-R

1-R

1-R

1

E

F

2

1

(1-p   )R

(1-p    ) R

C

3

 12  1

 2

 3

  23         2

 1

p   R
 12      1

Figure 2. Architecture–based software relia-
bility model for the ESA case study

In [8] we have compared the point estimate of the re-
liability obtained using equation (14) with the actual relia-
bility of the software. It was shown that the architecture–
based software reliability model gives reasonably accurate
estimates compared to the actual reliability for each of the
faulty versions (i.e., 2.1% error for version A and 0% error
for version B), which validates the model appropriateness
for this case study.

In addition to the original application, we also consider a
hypothetical example of software architecture given in Fig-
ure 3 which has an additional transition from component 2
to component 1. This example is meant to illustrate how the
components executed within a loop affect the uncertainty of
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software reliability. For the example in Figure 3 the system
reliability obtained using the model described in section 2
is given by

R =
(1−p12)R1+p12(1−p21−p23)R1R2+p12p23R1R2R3

1 − p12p21R1R2
.

(15)

p 12

 p23

2

1

3

E

  12

1

p 21

 1-p   -p

1-p

 21  23

Figure 3. Software architecture for the hypo-
thetical example

Next, we apply the method of moments on the ESA case
study. The means and the variances of the transition proba-
bilities and component reliabilities for versions A and B are
given in Tables 1 and 2, respectively. In addition to the mean
E[R] and the variance Var[R] of the system reliability, we
estimate the coefficient of variation CR =

√
Var[R]/E[R]

which is a relative measure of the spread of the distribution
and allows us to compare different distributions.

p12 p23

Version A Mean 0.5933 0.7704
Variance 0.02974 0.02579

Version B Mean 0.7364 0.6866
Variance 0.02452 0.02556

Table 1. Transition probabilities for versions
A and B

R1 R2 R3

Version A Mean 0.8428 0.8346 0.9995
Variance 0.00571 0.00568 0.00001

Version B Mean 0.9995 0.8346 0.9995
Variance 0.00001 0.00568 0.00001

Table 2. Component reliabilities for versions
A and B

Table 3 compares the values obtained for the mean, vari-
ance, and coefficient of variation of the system reliability
for versions A and B using first and second order Taylor

First order Second order
Taylor series Taylor series

Mean 0.7599 0.7599
Version A Variance 0.0067 0.0067

CR 0.1073 0.1073

Mean 0.8776 0.8776
Version B Variance 0.0038 0.0038

CR 0.0698 0.0698

Table 3. The mean and variance of the system
reliability for the ESA case study

series expansion. As we already knew from the point esti-
mates, version B has higher mean reliability then version A.
The uncertainty analysis provides an additional information
about the variance of the system reliability estimate. Thus,
the reliability of version B has a smaller variance, that is,
the distribution is less spread than the distribution for ver-
sion A. The smaller value of the variance means that we
have a higher confidence in the reliability estimate of ver-
sion B. As it can be seen from Table 3, the second order
approximation does not improve the accuracy for this ex-
ample. This is due to the fact that all second and higher
order partial derivates are zero since the system reliability
given by equation (14) is a linear function of components
reliabilities and transition probabilities.

Next we consider the uncertainty analysis for the hy-
pothetical example. In this case we choose two versions,
C and D, with different values for the transition probabil-
ity p21 associated with the arc forming a loop in the model
(E[p21] = 0.25 and Var[p21] = 0.01831 for version C and
E[p21] = 0.75 and Var[p21] = 0.01831 for version D) and
same values for the other transition probabilities given in
Table 4. Component reliabilities for versions C and D are
the same as for version A given in Table 2.

p12 p23

Mean 0.8 0.25
Variance 0.01164 0.01831

Table 4. Transition probabilities for versions
C and D

In general, higher order Taylor series expansion in-
creases the accuracy, as it can be seen form Table 5 which
presents the results obtained for the hypothetical example.
In view of Table 5 we further observe that the mean system
reliability decreases for higher values of transition probabil-
ity p21. In addition, we see that for higher values of p21 the
coefficient of variation (i.e., the spread of the distribution)
is increasing.

Next, we study the parameters contribution to the vari-
ance of system reliability. As it can be seen from the Fig-
ure 4, in the case of version A 91.28% of the variance is
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First order Second order
Taylor series Taylor series

Mean 0.6872 0.6861
Version C Variance 0.0095 0.0094

CR 0.1417 0.1411

Mean 0.5349 0.5290
Version D Variance 0.0191 0.0167

CR 0.2582 0.2441

Table 5. The mean and variance of the system
reliability for the hypothetical example

Figure 4. Parameters contribution to the vari-
ance of the system reliability for ESA

due to component reliabilities and only 8.72% to transition
probabilities. In case of version B the system reliability is
still more sensitive to the variation of the component relia-
bilities, although with smaller contribution to the variance
(82.12%). Further, it is obvious that the parameter p21 af-
fects significantly the parameters contribution to the vari-
ance of system reliability. Thus, in case of version C com-
ponent reliabilities contribute 84.72% to the variance of sys-
tem reliability, while in case of version D they contribute
55.09%. These results clearly illustrate the usefulness of
the uncertainty analysis and motivate its systematic use for
software reliability prediction.

4.2 Case study 2

In this section, we illustrate the method of moments on
the example adopted from [3]. The application has 10 com-
ponents and its architecture is described by the DTMC pre-
sented in Figure 5. The mean and variance of non–zero tran-
sition probabilities pij and the mean and variance of compo-
nent reliabilities Ri are given in Table 6. The architecture–
based reliability model for this application is presented in
Figure 6.

Table 7 presents the values of the mean E[R] and the
variance Var[R] of the system reliability for the case study 2.

Figure 5. Software architecture for the case
study 2

Figure 6. Architecture–based reliability model
for the case study 2
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E[p12] = 0.60 E[p13] = 0.20 E[p14] = 0.20 E[R1] = 0.999
Var[p12] = 0.038003 Var[p13] = 0.025336 Var[p14] = 0.025336 Var[R1] = 0.000069

E[p23] = 0.70 E[p25] = 0.30 E[R2] = 0.980
Var[p23] = 0.030849 Var[p25] = 0.030849 Var[R2] = 0.012078

E[p35] = 1.00 E[R3] = 0.990
Var[p35] = 0 Var[R3] = 0.003850

E[p45] = 0.40 E[p46] = 0.60 E[R4] = 0.970
Var[p45] = 0.032968 Var[p46] = 0.032968 Var[R4] = 0.022535

E[p57] = 0.40 E[p58] = 0.60 E[R5] = 0.950
Var[p57] = 0.031784 Var[p58] = 0.031784 Var[R5] = 0.000451

E[p63] = 0.30 E[p67] = 0.30 E[p68] = 0.10 E[p69] = 0.30 E[R6] = 0.995
Var[p63] = 0.041874 Var[p67] = 0.0041874 Var[p68] = 0.017946 Var[p69] = 0.041874 Var[R6] = 0.001122

E[p72] = 0.50 E[p79] = 0.50 E[R7] = 0.985
Var[p72] = 0.038519 Var[p79] = 0.038519 Var[R7] = 0.007605

E[p84] = 0.25 E[p8,10] = 0.75 E[R8] = 0.950
Var[p84] = 0.020327 Var[p8,10] = 0.020327 Var[R8] = 0.000451

E[p98] = 0.10 E[p9,10] = 0.90 E[R9] = 0.975
Var[p98] = 0.004088 Var[p9,10] = 0.004088 Var[R9] = 0.017091

E[R10] = 0.985
Var[R10] = 0.007605

Table 6. Parameter values for the case study 2

First order Second order
Taylor series Taylor series

Mean 0.8299 0.8323
Variance 0.0213 0.0173

CR 0.1760 0.1578

Table 7. The mean and variance of the system
reliability for the case study 2

We also study the contribution of the parameters to the vari-
ance of system reliability. As it can be seen from Figure 7,
53.67% of the variance is due to only two parameters R10

and R2. In this case, transition probabilities contribute only
4.47% to the variance of system reliability, that is, 95.53%
of the variance is due to component reliabilities.

Figure 7. Parameters contribution to the vari-
ance of system reliability

5 Conclusion

In this paper we have focused on uncertainty analysis in
software reliability and provided generalization of our ear-
lier work on method of moments. In particular, we have
derived expressions for the mean and the variance of the
system reliability that consider the uncertainty due to oper-
ational profile, in addition to the uncertainty due to compo-
nent reliabilities considered in our earlier work. It is obvi-
ous that the estimated values of the system reliability mo-
ments provide more information than the traditional point
estimate. Thus, we have higher confidence in the reliability
estimates for the systems that have reliability with smaller
variance. This information is especially useful if we want
to make predictions early in the life cycle, keep track of
software evolution, and certify the reliability of component–
based systems. Another important contribution of this paper
is that, instead of the point estimate of the reliability equal
to 1, it enables us to quantify the mean and the variance of
the reliability of component–based systems that do not fail
during the testing. This result is particularly important for
high assurance systems.
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