
HIERARCHICAL DECOMPOSITION FOR ESTIMATING RELIABILITY
OF THE FAULT – TOLERANT SOFTWARE IN MISSION – CRITICAL SYSTEMS

KATERINA GOŠEVA – POPSTOJANOVA, AKSENTI GRNAROV

Department of Computer Science, Faculty of Electrical Engineering
PO Box 574, 91000 Skopje, Macedonia

ABSTRACT

This paper presents a hierarchical modeling approach
aimed at reliability assessment over a mission period of
the software fault tolerance technique based on N version
programming. The model is constructed in three layers
wherein submodels represent different parts of an object
system and time scale distinctions. Our modeling approach
is systematic as opposed to the ad hoc methods used in
related works. Moreover, it permits modifications to be
flexibly made at a specific level or in a specific submodel.
Thus, the work presented here generalizes our previous
work as it allows to consider general distributions of the
versions time to failure and execution time at the first level.
Also, at the third level, instead of the performability model
in our previous work, we develop a new model aimed at
reliability assessment over a mission period which supports
the evaluation of a reliability over mission period in terms
of the functional and timeliness requirements.

Keywords: Software fault tolerance, operational environ-
ment, failures of functionality, failures of performance, cor-
relation, mission reliability.

1. INTRODUCTION

In this paper we analyze the software fault tolerance tech-
nique based on N version programming, first proposed in
[1]. It relies on the application of design diversity: program
versions are independently designed to meet the same sys-
tem requirements. A consistent set of inputs is supplied to
all versions and all N versions are executed in parallel. A
decision mechanism must gather the available results from
the N versions and determine the result to be delivered to
the user.

A number of papers devoted to experimental and mod-
eling based analysis of the software fault tolerance have
appeared in literature. In the experimental studies diversity
has been introduced in the form of different specifications
[2], [3], [4], different programming languages [3], and for
different distributions of test values over the input space
[3]. All versions were developed independently by differ-
ent teams, in some studies even by geographically distinct
participants [3], [5], [6], [7]. Examining the results ob-

tained by these experiments reveals several characteristics
of NVP. First, the assumption of independence of failures
between independently developed programs does not hold.
Next, the coincident failures were observed in every ex-
periment conducted thus far. At last, the failure behavior
is very sensitive to the distribution of test values over the
input space.

The papers devoted to the dependability modeling of
software fault tolerance may be conveniently grouped into
two classes. On one side, the major goal for the first class
is the modeling of the dependability measures of the par-
ticular fault tolerant structure. Methods of specifying the
system structure include combinational [8], [9], discrete
time Markov chain [10], continuous time Markov process
[11], [12], [13], fault trees and Markov reward models [14],
extended stochastic Petri net [15], and generalized stochas-
tic Petri nets [16] model types. On the other side, the major
goal of models that belong to the second class is the pre-
cise meaning of the independence referred to the failure
behavior of the diverse program versions [17], [18], [19].

The recently proposed performability models of the
NVP in [20] and [21] place certain constraints on how
properties affecting performance interact with those affect-
ing dependability.

The fault tolerant software system investigated here
is for the real – time mission – critical applications. We
consider the systems for which it is not possible to perform
a repair during their mission. These systems are charac-
terized by high reliability requirements and stringent dead-
lines. The success of such a system depends not only on its
logical correctness, but also on its timing correctness. In
the mission – critical applications a software periodically
gets the inputs from the environment, updates its internal
states based on those inputs, and generates control output.
It means that a mission is composed of a series of runs of
fault tolerant software. The control stimulii are generated
either by completing the execution or by timers when the
run lasts beyond a pre – set maximum duration.

The model presented in this paper keeps the solution
efficient by using hierarchical decomposition. It is con-
structed in three layers as shown in Fig. 1. The arrows
indicate the interaction between submodels and the flow of
information. Our modeling approach is systematic, more

Figure 1: HIERARCHICAL MODEL

general and much more realistic then earlier models as it
allows:� to overcome the main modeling difficulty that arises

from the correlation between version failures and ex-
ecution times by distinguishing the NVP structure
from its operational environment at the first layer� to develop user – oriented model of the operational
environment based on the concept of operational pro-
file already used in software testing� to integrate information on the software structure and
on the system usage in its environment thus integrat-
ing the two disjoint modeling approaches from the
previous models� to derive reliability over a mission period in terms of
the functional and timeliness requirements which is
particularly relevant for real – time applications be-
cause failing to meet deadline have an adverse effect
on system reliability.

2. NVP MODEL

We have developed the particular submodels that rep-
resent different parts of an object system and make time
scale distinctions.

2.1. NVP STRUCTURE SUBMODEL

The NVP structure submodel considers NVP failure
and execution behavior for a given input state. The time is
treated locally measured from the beginning of a run. This
NVP submodel is based on the following assumptions:� The versions behave conditionally independent given

a particular input state.

� Times to failure of program versions for given input
state are identically distributed random variables with
pdf

�������
; �
	 depending on � dimensional parameter

vector �� � � 1 ��������� ����	 .� Execution times of program versions for given input
state are identically distributed random variables with
pdf

�������
; ��	 depending on � dimensional parameter

vector ��� � � 1 ��������� ����	 .� Due to the real – time constraint the system must
make correct responses within a specified time inter-
val �� 0.

The first assumption allows NVP failure and execution
behavior for given input to be modeled from the single
versions behavior. If the version produces output within
specified time � with its contents corrupted then a functional
failure occurs. If the output (either correct or incorrect) is
produced later than specified deadline � then the version
is said to have suffered a performance (timing) failure. In
other words, a potential failure of functionality could be
masked by a performance failure.

The distribution function � � ��� ; �
	 gives the probabil-
ity that a single version will fail before

�
and it considers the

failures of functionality. Since the duration of the execution
time

�
is a random variable with density

� � ���
; ��	 we use

the method described as randomized time [22] in order to
derive distributions that take into account failures of perfor-
mance as well. Thus, the probability that a single version
produces functionally incorrect result before � becomes "!$# � � ; � � ��	%� &('

0
� � ��� ; �)	 � � ��� ; ��	*� � (1)

and the probability that a single version produces correct
result before � is given by # � � ; � � ��	%� &+'

0 , 1 -.� �/��� ; �
	10 ������� ; ��	*� � � (2)

The failure of performance (timing failure) occurs if a single
version do not complete the execution until deadline � "2 # � � ; ��	�� 1 - &('

0

�������
; ��	�� � � 1 -3� ��� � ; �%	 � (3)

Next, we consider the probabilities which characterize
NVP failure and execution behavior for given input state.
Thus, we define timing failure of N version system (4+�
2 56- 1) for given input state to be the event that majority
of versions do not produce output in time 78� "9 ! � � ; �%	:� 2;2

3 <>=@? 44 3A 2 32 # � � ; ��	CB 1- D2 # � � ; ��	FE 2
G>2 3 � (4)

If the majority of versions have completed the execution
before � it is possible that there is:
a majority of incorrect results (functional failure) !�! � � ; � � ��	H� 2;2

2 <>=@? 44 2A 2 2!$# � � ; � � ��	IB 1- !$# � � ; � � ��	FE 2
G>2 2 (5)

a majority of correct results (success)JLK�MON1P
; QSRUT�VHWYXZX 1 [>\@]S^^ 1_ J X 1` N1P ; QSRUT�VCa 1b J ` N1P ; QcR T%Ved X)fgX 1 (6)

or there is no majority of either correct or incorrect resultsJ X \ NeP ; QSRUT�VhW 1 b JDi�j
NeP ; T�V�b J K*M N1P ; QcR T%V�b J"j�jSNeP ; QSRUT�Vlk
To the best of our knowledge our approach is the

only one allowing analytical modeling of reliability that
depends both on failures of functionality and on failures of
performance. So far, this issue has been addressed only in
the simulation based method presented in [15].

2.2. OPERATIONAL ENVIRONMENT SUBMODEL

The operational environment submodel considers the
influence of the operational environment on versions fail-
ures and execution times. The concept of the operational
environment, already used in software testing [23], is re-
viewed next. The operation of a software is broken down
into series of runs and each run performs mapping between
a set of input variables and a set of output variables and
consumes a certain amount of execution time. Runs that
are identical repetitions of each other are said to form a run
type. Because the probabilities of occurrence of input states
are the natural way of representing the program usage in its
operational environment the operational profile is defined
as a set of relative frequencies of occurrence of the run
types.

We make the following additional assumptions:m The environment is homogeneous or time invariant.m The operational period is sufficiently long so the input
state selection probabilities can be characterized by a
steady state.m The input states occur randomly and independently
according to the operational profile.

Since the failure and execution behavior are quite sen-
sitive to just how a system is utilized we need to take
into consideration the change of the parameter vectors Q
and T for different run types (input states). Therefore,
the parameter vectors Q and T appear as random vec-
tors ϒand Ψ respectively. The pair of random vectorsN
ϒR Ψ VnW N

ϒ 1 R�k�k�k�R ϒ o$R Ψ1 R�k�k�k�R Ψ p*V may be thought of as
an event defined on a sample space q o�rSp with s�tvu dimen-
sional distribution functionw

ϒΨ
N QSR�T�VHW Jyx ϒ1 z Q 1 R�k�k�k�R ϒ o z Q o R Ψ1 z T 1 R�k�k�k�R Ψ p z T p|{

while u variate distributionw
Ψ
N T�V�W Jyx Ψ1 z T 1 R�k�k�k*R Ψ p z T p}{

is marginal distribution of the distribution
w

ϒΨ
N QSR�T�V .

In order to obtain numerical results it is possible to
make assumptions and to use some theoretical distribu-
tion functions for

w
ϒΨ
N QSR~T%V . Instead we choose to de-

velop the user – oriented model of operational environ-
ment. Therefore, we partition the input space Ω by grouping

run types that exhibit as nearly as possible homogeneous
failure and execution behavior into run categories. Sup-
pose that input space Ω is partitioned into run categories� M�� R 1 z8��z�� 1 R 1 z(��z8� 2 such that � M � � � M�� W Ω.
In this case the operational profile � gives the probabilitiesJyx

ϒW�Q M R Ψ W�T � { W�� M*� W�� N � M*� V that successive
input states are chosen at random in a run category

� M��
.

2.3. PER RUN RELIABILITY SUBMODEL

The per run reliability submodel treats the time lo-
cally measured from the beginning of a run. This submodel
integrates the NVP structure submodel and operational en-
vironment submodel, thus accounting for the correlation
between version due to the common input. We use the ap-
proach called stratification, which can also be described as
randomization [22]. Therefore, we model parameter vec-
tors Q and T as random vectors ϒand Ψ, so the probabil-
ities

J�K�MON1P
; QSR�T�V , J j�j N1P ; QSR�T�V , and

J i�j NeP
; T�V signify the

conditional probabilities
J�K*MON1PD�

ϒR Ψ V , J j�j NeP"�
ϒR Ψ V , andJ"i�j
N1PD�

Ψ V . It follows that the unconditional per run proba-
bilities for randomly chosen input state are given by:JLK�MON1P V%W��I���e�h� J�K*MCN1P"�ϒW�QSR Ψ W�T�VDs w ϒΨ

N QSR�T�V (7)J i�j N1P VLW � ��� J i�j N1P"�Ψ W�T%VSs w Ψ
N T�V (8)J"j�j>N1P V�W �I� �e�h� JDj�j)N1P"�ϒW�QSR Ψ W8T�VDs w ϒΨ

N QSR~T%V (9)

where
J�K*MINeP"�

ϒW�QSR Ψ W�T�V , J i�j N1P"�
Ψ W�T�V , J j�j N1P"�ϒWQSR Ψ W�T�V are given in (6), (4), (5).

In the case of the user – oriented model of the oper-
ational environment ϒand Ψ take finite number of values,
that is

w
ϒΨ
N QSR~T%V and

w
Ψ
N T�V are discrete distribution func-

tion and the relations (7), (8), and (9) signify the followingJ K*M N1P V�W Z M Z � J K�M N1P"�ϒW�Q M R Ψ W�T � VI� M*� (10)J i�j N1P V�W Z � J i�j N1PD�Ψ W�T � VI� � (11)J"j�j>N1P V�W Z M Z � JDj�j
NeP"�ϒW�Q M R Ψ W�T � V
� M*� (12)

where � � W Jyx Ψ W�T � { W � M � M*� is a marginal distribu-
tion of a distribution � M�� W Jyx ϒW�Q M R Ψ W�T � { .

Distribution functions of form (10), (11), and (12) are
called mixtures or compound distributions. Many methods
that have been derived for estimating finite mixture param-
eters could be found in [24].

The formal analysis of the correlation between ver-
sions could be found in our earlier works [20], [25]. Here
we emphasize that there is a correlation between versions
behavior for a single input whenever ϒand Ψ vary for dif-
ferent run categories. Note that, our modeling approach is
more general and much more realistic then previous ones
since it considers the correlation between versions failure
and execution behavior.

2.4. PERFORMANCE SUBMODEL

The performance submodel considers the execution
behavior of the NVP and the events are distinguished only
by their occurrences in time, independent of outcome re-
sult. This submodel treats time globally and represents the
iterative nature of software’s execution, that is the series of
runs during the mission duration. At each run, the software
accepts an input and produces an output that is a function
only of the most recently accepted input.

For the performance submodel it suffices to consider
a renewal process �$�����~�} e�¢¡ 0 £ where each run is repre-
sented by a renewal cycle. Let the time between successive
renewals be such that ¤>¥ is elapsed time from �1¦c§ 1 � st run
until the occurrence of ¦ th run. We derive the distribution
of ¤ ¥ integrating the information contributed by the NVP
structure submodel and operational environment submodel.
First, we derive the conditional distribution for a given in-
put state using the order statistics. The probability that at
least ¨ of the versions execution times for a particular input
state lie in the interval � 0 F�e© isª ��� ; «���¬ ®¯U°>±�²´³ µS¶ ª ¯· �1¸ ; «��}¹ 1 § ª · �1¸ ; «��1©
º ¯H» (13)

Next, we obtain the unconditional probability distribution
function of the time between successive renewals for ran-
dom input state using the randomization procedure called
stratification. As in the per run reliability submodel we
treat the parameter vector « as random vector Ψ, so (13)
signifies the conditional probability distribution

ª ���½¼Ψ � . It
follows thatª ���~��¬�¾I¿´À ª ���½¼Ψ ¬8«��DÁIÂ Ψ �1«�� » (14)

For the user oriented model of the operational environment
(14) becomesª ���~��¬ ®�Ã ª ���½¼Ψ ¬�« Ã �
Ä Ã » (15)

Finally, due to the real – time constraint, ¤g¥ is the time upon
the completion of the NVP execution or upon reaching ¸ ,
whichever occurs first, that isªLÅ ���~��¬6Æ ª ���~�l for �/Ç�¸

1 for �/¡�¸ (16)

with mean recurrence time ¨ Å ¬ ¾ Å
0
¹ 1 § ª ���~�1©:Á$� » (17)

We emphasize that the versions execution times are
correlated for a single input whenever the parameter vector
Ψ is not identical for all run categories. In other words, we
consider the correlation between execution times which is
much more realistic than the assumption of independence
made in [21] and [26].

2.5. RELIABILITY MODEL

The third layer supports the assessment of the NVP reli-
ability over a mission. We derive the distribution of the
time to failure as a function of global time using the de-

composition of a renewal process. Therefore, we use a
binary – valued random variable that distinguishes whether
or not a specified service (in value and time) is performed
properly for each run during a mission period. Consider
a renewal process with distribution

ª Å ���~� defined by per-
formance submodel (16), and suppose that each event is
erased with probability Ä.¬ÉÈ�Ê*ËO�e¸
� computed by the per
run reliability submodel (10). The resulting sequence of
events constitutes a renewal process � ˆ�����~�} e�Ì¡ 0 £ that
registers only the successive occurrences of NVP failures.
Its interval distribution is given by

ˆª ���~��¬ÎÍ® ° 1

Ä
º 1 � 1 §ÌÄg� ª IÏÅ ���~� (18)

where
ª �ÏÅ denotes the n-fold convolution of

ª Å
. If the

Laplace transform of
ª Å ���~� is denoted by Φ �eÐ�� then the

Laplace transform of the distribution of the time to failure
ˆª ���~� becomes

Φ̂ �eÐ��%¬ÑÍ® ° 1

Ä
º 1 � 1 §ÒÄg� Φ �eÐ��%¬ � 1 §ÒÄg� Φ �1Ð��
1 §ÒÄ Φ �eÐ�� » (19)

The expression (19) in s – domain can be inverted numeri-
cally to obtain the solution in time domain, which leads to
non trivial conservative estimates.

Another measure of interest is the mean time to failure
(MTTF), that is the expected amount of time that software
operates before failure. If only the value of MTTF is a
desired solution, procedure is typically less complex due to
the well known property of Laplace transform:Ó ¤�¤ ª ¬�Ô¹ ˆª ���~�H©S¬�§ Á Φ̂ �1Ð��Á�ÐÖÕÕÕÕ × ° 0

¬ ¨ Å
1 §ÒÄ » (20)

3. NUMERICAL EXAMPLES

The objective of this section is to demonstrate the fea-
sibility of the presented theoretical basis for the reliability
analysis in the context of fault tolerant software in mission –
critical systems. Due to the space limitations we restrict our
attention only to the mean time to failure MTTF.

First, we use the exponential distributions for the time
to failure and the execution time (Fig. 2) which are the
usual assumptions in most software reliability models. In
this case the parameter vectors consists of one component
each ϒ¬Ø�eÙg� and Ψ ¬Ú�HÛ"� . We assume the following
values:Ù 1 ¬ 10 º 8 Ù 2 ¬ 10 º 6 Ù 3 ¬ 10 º 4 Ù 4 ¬ 10 º 2Û 1 ¬ 0

»
5 Û 2 ¬ 0

»
2 Û 3 ¬ 0

»
125

As a result, there are Ü�¬ 12 different run categories.
The operational profile is defined by two variate pmfÄgË Ã ¬�Èy� ϒ¬�ÙYË) Ψ ¬�Û Ã £ that gives the probability that
a successive input states are chosen at random in the run
category defined by failure rate Ù>Ë and execution rate Û Ã .
Different operational profiles (shown in Table 1) select dif-
ferent run categories ÝÞË Ã with probabilities ÄgË Ã ¬�ßy�:ÝnË Ã � .
The assumed timing constraint is ¸¬ 30 msec.

The operational profile È 1 encounters inputs that re-

à
1

à
2

à
3

à
4

à
5áââã 1 0 0

0 0 0
0 0 0
0 0 0

äæååç áââã 0 è 999 0 0
0 0 è 001 0
0 0 0
0 0 0

äæååç áââã 0 è 98 0 0
0 0 è 02 0
0 0 0
0 0 0

äæååç áââã 0 è 999 0 0
0 0 0
0 0 0 è 001
0 0 0

äæååç áââã 0 è 999 0 0
0 0 0
0 0 0
0 0 0 è 001

äæååç
Table 1: DIFFERENT OPERATIONAL PROFILES

Figure 2: MTTF FOR EXPONENTIAL DISTRIBUTION

sult in the small versions execution period compared to the
time to failure (é3êìë). The versions failures and execu-
tion times are uncorrelated since there is no variation of the
failure and execution rates over the input space. It is evi-
dent that in this case NVP substantially increases the MTTF.
For example, three version system increases the MTTF by
approximately six orders of magnitude relative to that of a
single version. The operational profile

à
2 also encounters

inputs that result in é8êíë , but in this case the versions
failures and execution times are correlated. It can be seen
that seven versions would be required to achieve the same
level of MTTF as in the case of three version system under
the assumptions of independence. A slight modification
of the operational profile for the same program character-
istics (

à
3) leads to further reduction of the MTTF. The

operational profile
à

4 assigns the same probability 0 è 001
as
à

2 to the worse program characteristics (higher failure
rate and smaller execution rate). As a result, there is a
further decrease in the estimated MTTF over that exhibited
for operational profile

à
2. Although it is highly unlikely,

we choose the operational profile
à

5 that selects inputs as-
sociated with even worse program characteristics (é�î�ë)
which implies an exceedingly low MTTF.

The assumption that the distribution of the time to
failure is exponential is far more realistic than the exponen-
tial distribution of the execution time. So, we choose to
illustrate the influence of different distributions using the
truncated normal distribution (ïñð 0) for versions execu-
tion time and the exponential distribution for the time to
failure. In this case the parameter vectors are ϒò�óeëgô and

Ψ ò�ó1õ÷ö~øSô with the following values:ë 1 ò 10 ù 8 ë 2 ò 10 ù 6 ë 3 ò 10 ù 4 ë 4 ò 10 ù 2õ 1 ò 2 ø 1 ò�ú 2õ 2 ò 5 ø 2 ò�ú 5õ 3 ò 8 ø 3 ò�ú 8

The operational profiles select with the same probability the
inputs states associated with the same means ë and õ as in
the case of the previous example in order to make meaning-
ful comparisons. It can be seen in Fig. 3 that the truncated
normal distribution results in the higher MTTF compared
to exponential distribution. As in the case of exponential
distribution MTTF is improved with number of versions.
In fact, increasing the number of versions offers higher im-
provement of the MTTF. Even the operational profile

à
5

results in a substantially higher MTTF over exponential
distribution.

Figure 3: MTTF FOR TRUNCATED NORMAL DISTRI-
BUTION

There are some general remarks for all distribution
functions. It is clear that redundancy alone does not guar-
antee fault tolerance. The degree of improvement depends
both on the program characteristics (distribution functions
and parameters values) and on the operational profile. The
operational profiles that encounter inputs associated with
comparatively high per run failure probabilities imply dra-
matic reduction of the MTTF which can not be significantly
improved by any degree of fault tolerance. This is due to
the fact that although for this choice of parameters there is
no significant performance reduction, the increased failure
probability results in greater chance to encounter unsuc-
cessful run over a mission.

4. CONCLUSIONS

This paper presents the modeling based study of the soft-
ware fault tolerance technique based on N version program-
ming. The model addresses and resolves a number of basic
issues and provides considerable insight into the NVP ef-
fectiveness and limitations. We keep the solution efficient
by employing a hierarchical decomposition wherein sub-
models represent different parts of an object system and
time scale distinctions. Our modeling approach is system-
atic as opposed to the ad hoc methods used in related works.
Moreover, it is more general and much more realistic than
earlier models since itû considers general distributions of the time to failure

and execution timeû integrates the NVP structure and system usage in its
operational environmentû considers the correlation between versions failure and
execution behavior for a single inputû results in the mission reliability that accounts for per-
formance requirements.

Anticipating the future work, it would be useful to
consider several possible extensions, such as the correlation
of successive input states in order to model the phenomena
of failure clustering.

References

[1] A.Avižienis, L.Chen, On the Implementation of N Version
Programming for Software Fault Tolerance during Program
Execution, Proc. COMPSAC 77, 1977, 149 – 155.

[2] A.Avižienis, J.Kelly, Fault Tolerance by Design Diversity:
Concepts and Experiments, IEEE Computers, Aug 1984,
67 – 80.

[3] P.Bishop et al. Project on Diverse Software - An Experiment
in Software Reliability, Proc. 4th IFAC Workshop SAFE-
COMP, 1985, 153 – 158.

[4] J. Kelly, T. McVittie, W. Yamamoto, Implementing Design
Diversity to Achieve Fault Tolerance, IEEE Software, Jul
1991, 61 – 71.

[5] D.E.Eckhardt et al, An Experimental Evaluation of Software
Redundancy as a Strategy For Improving Reliability, IEEE
Trans. on Software Engineering, 17(7), 1991, 692 – 702.

[6] J.C.Knight, N.G.Leveson, An Experimental Evaluation of
the Assumption of Independence in Multiversion Program-
ming, IEEE Trans. on Software Engineering, SE-12(1),
1986, 96 – 109.

[7] M.R.Lyu, Yu – Tao He, Improving the N Version Program-
ming Process through the Evaluation of a Design Paradigm,
IEEE Trans. on Reliability, 42(2), 1993, 179 –189.

[8] A.Grnarov, J.Arlat, A.Avižienis, On the performance of Soft-
ware Fault Tolerance Strategies, Proc. 10th IEEE Int’l Symp.
Fault Tolerant Computing, 1980, 251 – 253.

[9] R.Scott, J.Gault, D.McAllister, Fault Tolerant Software Re-
liability Modeling, IEEE Trans. on Software Engineering,
13(5), 1987, 582 – 592.

[10] J.Arlat, K.Kanoun, J.Laprie, Dependability Modeling and
Evaluation of Software Fault Tolerant Systems, IEEE Trans.
on Computers, 39(4), 1990, 504 – 513.

[11] K.Goševa – Popstojanova, A.Grnarov, A New Markov
Model of N Version Programming, Proc. 2nd IEEE Int’l
Symp. Software Reliability Engineering, 1991, 210 – 215.

[12] K.Goševa – Popstojanova, A.Grnarov, N Version Program-
ming with Majority Voting Decision: Dependability Model-
ing and Evaluation, Proc. Euromicro 93, 1993, 811 – 818.

[13] K.Goševa – Popstojanova, A.Grnarov, Dependability Mod-
eling and Evaluation of Recovery Block Systems, Proc. 4th
IEEE Int’l Symp. Software Reliability Engineering, 1993,
112 – 120.

[14] J.B.Dugan, M.R.Lyu, System Reliability Analysis of N Ver-
sion Programming Application, Proc. 4th IEEE Int’l Symp.
Software Reliability Engineering, 1993, 103 – 111.

[15] R.Geist, A.J.Offult, F.C. Harris Jr, Estimation and Enhance-
ment of Real Time Software Reliability through Mutation
Analysis, IEEE Trans. on Computers, 41(5), 1992, 550 –
558.

[16] K.Kanoun et al. Reliability Growth of Fault Tolerant Soft-
ware IEEE Trans. on Reliability, 42(2), 1993, 205 –219.

[17] D.E.Eckhardt, L.D.Lee, A Theoretical Basis for the Analysis
of Multiversion Software Subject to Coincident Errors, IEEE
Trans. on Software Engineering, SE-11(12), 1985, 1511 –
1517.

[18] V.F.Nicola, A.Goyal, Modeling of Correlated Failures and
Community Error Recovery in Multiversion Software, IEEE
Trans. on Software Engineering, 16(3), 1990, 350 – 359.

[19] L.A.Tomek, J.K.Muppala, K.S.Trivedi, Modeling Correla-
tion in Software Recovery Blocks IEEE Trans. on Software
Engineering, 19(11), 1993, 1071 – 1086.

[20] K.Goševa – Popstojanova, A.Grnarov, Performability Mod-
eling of N Version Programming Technique, Proc. 6th IEEE
Int’l Symp. Software Reliability Engineering, 1995, 209 –
218.

[21] A.T.Tai, J.F.Meyer, A.Avižienis, Performability Enhance-
ment of Fault Tolerant Software, IEEE Trans. on Reliability,
42(2), 1993, 227 –237.

[22] W. Feller, An Introduction to Probability and Its Applications
Volume II, John Wiley & Sons, 1971.

[23] J.D.Musa, Operational Profiles in Software Reliability En-
gineering, IEEE Software, Mar 1993, 14 – 32.

[24] B.S.Everitt, D.J.Hand, Finite Mixture Distributions, Chap-
man and Hall, 1981.

[25] K.Goševa – Popstojanova, A.Grnarov, N Version Pro-
gramming: An Unified Modeling Approach, Proc.
EUROMICRO-22, 1996, 363 – 370.

[26] M.Vouk, A.M.Paradkar, D.F.McAllister, Modeling Execu-
tion time of Multi – Stage N Version Fault Tolerant Software,
Proc. IEEE Computer Software and Applications Confer-
ence, 1990, 505 – 511.

