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Abstract—Many systems, including Web and Software as a
Service (SaaS) are best characterized with session-based work-
loads. Empirical studies have shown that Web session arrivals
exhibit long range dependence and that the number of request
in a session is well modeled with skewed or heavy-tailed dis-
tributions. However, models that account for session workloads
characterized by empirically observed phenomena and studies of
their impact on performance metrics are lacking. In this paper,
we use partly-open queue to account for session-based workloads
in a physically meaningful way and use simulation to analyze the
behavior of the Web system under Long Range Dependent (LRD)
session arrival process and skewed distribution for the number
of requests in a session. OQur results show that the percentage
of dropped sessions, mean queue length, mean waiting time, and
the useful server utilization are all affected by the LRD session
arrivals and the statistics of the number of requests within a
session. The impact is higher in the case of more prominent long-
range dependence. Interestingly, both request arrival process and
request departure process are long-range dependent, even in the
case when session arrivals are Poisson.

I. INTRODUCTION

Many businesses are using Web technologies to build new
communication channels with customers around the globe.
Therefore, it is of crucial importance to be able to assess
Web system performance realistically and assure the quality of
service. Traditionally, evaluation of Web server performance
accounted for request-based workloads and it was focused
on assessment and prediction of request-based metrics (e.g.,
throughput in number of completed requests, percentage of
dropped requests, and so on). Web workload, however, is
in a form of sessions, each consisting of multiple individual
requests originated from the same user. For example, placing
an order on an e-commerce Web site involves requests relat-
ing to selecting a product, providing payment and shipping
information, and receiving a confirmation. So, for a customer
trying to place an order or a retailer trying to make a sale,
the real measure of a Web server performance is its ability to
complete the entire sequence of requests within a session [4].

Using either closed or open queuing system with request-
based workload does not account for session characteristics
and therefore does not result in a realistic model of a Web
system. Instead, in this paper we use so called partly-open
queue which accounts for session-based workloads (see Fig-
ure 1). In this queue sessions arrive as in open queue, but for
each request within a session the user sends a new request
only after receiving a response on the previous request. In
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Fig. 1. Partly-open queueing system

other words, partly-open queue allows us to model a varying
number of users at the site over time as in open system (rather
than a fixed number of users NV as in closed system). On the
other side, it behaves as a closed system for the requests within
each session. Upon completing all requests in a session, the
user leaves the system, again as in open system.

In addition, we consider a queue with a finite size, since our
interest is the throughput in successfully completed sessions,
that is, the percentage of sessions being dropped due to the
queue being full. When a server works under high utilization
the queue length tends to grow to the point when the queue
becomes full, resulting in dropping the incoming request. For
a server that runs session-based workloads a dropped request
could be anywhere in the session, and will lead to aborted,
incomplete session. Obviously, the quality of service of a
Web system or SaaS system, from both user’s and provider’s
perspective, is best assessed by the number of successfully
completed sessions. Considering only request-based workload
does not allow for assessment of the percentage of dropped
sessions (i.e., unsatisfied users) or the amount of server uti-
lization wasted on completing requests from aborted sessions.

The realism of the assessment of performance metrics is not
based only on the type of the queuing model (i.e., open, closed
or partly-open), but also on the models and distributions used
for the associated random variables and the values of the corre-
sponding parameters. In choosing these models, distributions,
and parameters our work is motivated by recent empirical
results. For example, recent studies on session Web workloads
have shown that the arrival of Web sessions, for systems under
moderate to high load, is a Long Range Dependent (LRD)
process (i.e., asymptotically second order self-similar process)
[23], which means that sessions arrive in bursts over many
time scales. In addition, the number of requests in a session
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follows a skewed or heavy-tail distribution [9], [16]. Motivated
by these empirical results, in our partly-open queueing system
we use LRD process for session arrivals and then distributions
with different coefficients of variation for the number of
requests in each session.

In what follows we briefly discuss the related work on
performance assessment of Web systems. We first address
the closed queueing models. In [17] the authors showed that
having an autocorrelated service time in a closed queueing
network propagates the autocorrelation to all tiers. An Approx-
imate Mean Value Analysis (AMVA) algorithm for analysis
of closed queueing networks with service time modeled as a
MAP process was proposed in [2]. Modeling mean response
time and throughput in a closed queueing network model of
multi-tier Web system was done in [21]. All these models
assumed fixed number of users (typical for closed queueing
systems), request-based workloads, and infinite queues.

Open queueing models have also been used for modeling
Web systems performance. One of the earliest papers that
considered the request loss probability [13] used single open
queue with Poisson arrivals and exponentially distributed
service time. In [12] authors presented approximate analytical
results for the queue length, request loss, and waiting time, for
an open queue with fractional Brownian motion (fBm) request
arrival process and long-tailed service time. Even though some
of the open queue models considered finite queues and/or
LRD arrival process, all of them accounted for request-based
workloads only.

It appears that the only studies that took into account
session-based workload are [3], [4], and [20]. In [3], au-
thors proposed an overload control mechanism for closed
queues with geometrically distributed numbers of requests in
a session. Session-based admission control mechanism was
proposed in [4], where the number of requests in a session was
modeled with an exponential distribution, while the session
arrival process was not explicitly specified. The goal of [20]
was to study the difference between open and closed queueing
models and to explore the use of a partly-open queue as a
model for systems with session workloads. The session arrivals
in [20] were modeled with a Poisson process, the number
of requests per session was assumed to follow a geometric
distribution, and the queue size was infinite.

The main contributions of our work are as follows:

o We use a partly-open queue to account for session-based
workloads. So far, the only paper in the literature that
used partly-open queues is [20]. However, [20] consid-
ered infinite queue size, Poisson session arrivals, and
geometric distribution for the number of requests in a
session. Furthermore, the mean response time was the
only output metric explored in [20].

o Based on the empirical findings in [23], we model session
arrivals with a long-range dependent (LRD) process. In
addition, we use Poisson session arrival process, which
is obtained by reshuffling the LRD process to have
independent arrivals, allowing for a fair comparison with
models that assume Poisson session arrivals, such as [20].

e The number of requests within a session is modeled
with discrete lognormal distribution with different means
and coefficients of variation to explore the impact of
these statistics on several performance metrics. In the
related work which considered session-based workloads,
the number of requests in a session was modeled with an
exponential [4] or geometric distribution [20]. Both of
these distributions have a tail that decays exponentially
which is not the case with real Web workloads [9], [16].

e« We use several performance metrics, such as the per-
centage of dropped sessions, mean queue length, mean
waiting time, and useful utilization. In addition, we ex-
plore the nature of the request arrival process and request
departure process, both of which are dependent not only
on the session arrival process and the distribution of the
number of requests per session, but also on the service
and think time. These processes have not been studied in
the related work on session-based workloads.

Our results show that the percentage of dropped sessions,
mean queue length, mean waiting time, and the useful server
utilization are all affected by the LRD session arrivals and
the statistics of the number of requests within a session. The
impact is higher in the case of more prominent long-range
dependence. Interestingly, both request arrival process and
request departure process are long-range dependent, even in
the case when session arrivals are Poisson. Our findings have
strong practical implications on the performance assessment
of Web systems, as well as on developing scheduling policies
and admission control policies.

II. APPROACH

Not much work exists on analytical solution of partly open
queues. Even more, using LRD session arrival process, with
skewed distributions for the number of request per session, and
finite queue size impose using simulations to solve the partly-
open queuing system. The models/ distributions and corre-
sponding parameters used for the random variables associated
with the partly-open queue are given in Table I and are briefly
described next.

Motivated by the empirical findings for Web servers work-
ing under moderate and heavy workloads [23], we use LRD
process to model session arrivals. Web traffic has dual nature
[15], that is, both the number of sessions per second (i.e.,
the count) and the inter-arrival time can be LRD. In order
to achieve the dual nature of the session arrivals, we use
the method of inverse transformation proposed in [11]. A
LRD process, {Y)}, with a marginal cumulative distribution
function (CDF), Fy (y), can be generated from another LRD
process, { X}, with CDF Fx(x) using the transformation:

{Vi} = Fy ' (Fx(Xy)), k=12,.. ()
where, Fy ! is the inverse CDF of {Y}. This transformation
actually first transforms the sequence {X}} into a uniformly
distributed random variable (Fx(Xj) ~ U(0,1)) and then
generates the sequence {Y}} using the inverse CDF, F} ', of
the desired marginal CDF, Fy- [19]. In addition to generating
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TABLE I
MODELS/ DISTRIBUTIONS AND THE CORRESPONDING PARAMETERS

Random variable Model Parameters
Session arrivals LRD process Hsessions = {0.6,0.8}
Poisson reshuffled LRD process

Number of requests in a session
Service time
Think time

Pareto distribution
Pareto distribution

Discrete lognormal distribution

mean = {2,6,11},C = {0.5,1.5}
ps = 5Tms,as = 1.6
pt = 5000ms, oy = 1.6

a sequence with desired marginal distribution, the LRD is also
preserved [11]. For our simulation {X} is the Fractional
Gaussian Noise (FGN), which we simulated using the FFT
method proposed by Paxson [18] because it provides fast way
to simulate FGN and still preserves all the relevant statistical
properties [8]. For Fx(x) we use normal distribution because
FGN has a normal marginal distribution. Finally, for Fy (y) we
use the exponential distribution. As a result, {Y}} defined with
equation (1) is a LRD process with exponentially distributed
inter-arrival times. This enables us to obtain Poisson process
for session arrivals by reshuffling of Y), and thus carry on a
fair comparison with the LRD arrival process.

A predominant way to quantify the long-range dependence
is through the Hurst exponent, H, which is also a parameter
of the FGN. For a LRD process 0.5 < H < 1.0. We use two
values {0.6,0.8} for the Hurst exponent H,ssion Of the LRD
session arrival process. Thus, Hession = 0.6 represents low
level of LRD. Considering values of Hessi0n, higher than 0.8
is not of practical interest because such values have not been
observed in the empirical research.

For the number of requests in a session we use the discrete
lognormal distribution [6] whose probability mass function

P(X =r) is given by
o] 1 _ 2
/ e M\ Lexp (_W)d/\
0 20

2

where p is the location parameter and o is the shape parameter.
(For the relationship between these parameters and the mean
and standard deviation see [6].)

The discrete lognormal distribution is flexible; it can de-
cay slower than the geometric distribution and have higher
variance, or it can decay faster and have lower variance. This
allows us to examine the impact that the coefficient of variation
has on the performance metrics of interest. For the mean of
the discrete lognormal distribution, based on the findings in
[9] and [20], we use three values: {2,6,11} requests. For
the coefficient of variation C, defined as the ratio of the
standard deviation to the mean, we use the values {0.5,1.5}.
Thus, discrete lognormal distribution with C' = 0.5 has lower
variance then the geometric (or exponential) distribution, while
for C = 1.5 it has higher variance.

For the service time, motivated by [5], we use Pareto
distribution. For the mean value of the service time, us, we
use 57ms which is in the range of values reported in [20],
while, for the tail of the Pareto distribution we use, oy = 1.6,
because for this value the distribution is heavy-tailed and also
the simulations are stable [5]. For the think time we also use
Pareto distribution which is in agreement with empirical and

1 1

Py(p,0) = ——==
(w,0) o]

theoretical research [1]. The mean value p; = 5000ms was
chosen as in [4] and oy 1.6. For the analysis presented
in this paper the distributions and parameters of the service
time and think time are kept fixed because our focus is on the
impact of the LRD session arrival process and characteristics
of the number of request within a session distribution on the
performance metrics.

Finally, for the queue size (i.e., the maximum number of
requests in the queue) we use 511 requests, which is the default
value for Apache [14]. The scheduling policy used is FCFS.

In the simulation, sessions arrive as in open system. If
the session has more than one request, the next request is
generated after the first request was served and an amount of
think time has passed. In other words, requests belonging to
a same session are processed as in closed system. Of course,
at any point of time there may be multiple active sessions in
the partly-open queue. If a request arrives but the queue is full
then that request and the session it belongs to are dropped.

We wrote a program in R language to run the simulations.
The removal of the transient warm-up and cool-down periods
from the simulations was done by visual inspections of the
request arrival process. The validation of the simulation was
done by checking the limiting cases, i.e., for the number
of requests in a session equal to one the partly-open queue
becomes an open queue, while for a very high number of
requests in a session it becomes closed queue [20].

IIT. ANALYSIS OF THE MAIN FINDINGS

We study the impact of the session workload characteristics
(i.e., session arrival process and the number of requests within
a session) on several performance metrics: percentage of
dropped sessions, mean queue length, mean waiting time,
and useful server utilization. We also study the characteristics
of the request arrival process and request departure process,
which in case of partly-open queue are dependent on session
arrivals, the number of request per session, as well as on
the service and think time. The time series of the number
of session arrivals, number of request arrivals, queue length,
and number of dropped sessions (for Hessi0n = 0.8,C' = 1.5
and utilization of 92%) are shown in Figure 2.

The percentage of dropped sessions, as shown in Figure 3,
is highest for LRD session arrivals with high value of the Hurst
exponent Hessi0n = 0.8. The percentage of dropped sessions
for less self-similar arrivals (i.e., Hgessi0n = 0.6) is very close
to the case with Poisson session arrivals. In particular, for a
high utilization values, the 10-15% more sessions are dropped
for highly self-similar process (i.e., Hsession = 0.8) then when
session arrivals follow the Poisson distribution obtained by
reshuffling the LRD process.
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Fig. 2. Time series of performance metrics

Moreover, the percentage of dropped sessions is larger for
higher mean number of requests per session (see Figures 3 (b)
and (¢)), with a more noticeable impact of the LRD, observable
for lower utilization values than in case of mean number of
requests per session equal to two requests (Figures 3 (a)).

When the number of requests per session has higher coeffi-
cient of variation (i.e., C' = 1.5) the percentage of dropped
sessions is smaller then for lower coefficient of variation
(C = 0.5), for each value of Hgcsgi0n (i-€., 0.8 and 0.6), as
well as for Poisson session arrivals. This counterintuitive result
is explained by the fact that for C' = 1.5 a significant number
of longer sessions are generated compared to the case when
C = 0.5. A closer inspection of the number of requests in the
dropped sessions shows that these longer session are dropped,
which decreases the load in number of requests (i.e., frees
the queue for new arrivals). This also shows that the server
discriminates against longer sessions which typically will have
less chance to complete all requests. Having in mind that in
e-commerce sites sessions that include purchase are typically
much longer than sessions in which users only browse the site
[4], this result means that although the overall percentage of
dropped sessions is smaller for higher coefficients of variation
(C = 1.5), the e-commerce business may experience loss
of revenue. In addition, the server wastes its resources on
completing requests that belong to long sessions that may be
dropped under high utilization.

The mean queue length, shown in Figures 4 (a), (b)
and (c), is also affected by the LRD of the session arrival
process, with the highest mean queue length for the high self-

similar session arrivals (Hgession = 0.8), and less significant
difference between (Hessi0n = 0.6) and Poisson arrivals. The
reason for this behavior is the fact that under the LRD model
sessions arrive in bursts and tend to fill in the queue fast,
resulting in larger mean queue length.

Comparing Figure 4 (a) to Figures 4 (b) and (c) we
observe that smaller mean number of requests per session
(i.e., 2 requests) results in larger mean queue length, especially
noticeable for high values of Hurst exponent (Hgession = 0.8).
This is due to the fact that less sessions are dropped when the
mean number of requests per session is smaller (see Figure 3),
which actually increases the number of requests in the queue.

As in case of the percentage of dropped sessions, higher
coefficient of variation C' = 1.5 of the number of requests
per session results in lower mean queue length then when
C = 0.5, which again is due to the fact that for C' = 1.5
longer sessions are generated, which tend to be dropped from
the queue more often then short sessions. The coefficient of
variation C, however, has smaller impact on the queue length
than on percentage of dropped sessions.

The observations for the Mean waiting time are similar to
the observations made for the mean queue length. The reason
being, the mean waiting time depends on the mean queue
length; the higher the mean queue length the higher the mean
waiting time of requests in the queue. (The figures for the
mean waiting time are not shown due to space limitations.)

The useful request utilization is defined as the ratio of
the completed requests that belong to successfully completed
sessions and the total number of completed requests (including
those requests that have been completed, but belong to dropped
sessions). As seen in Figures 5 (a)—(c) highly LRD session
arrivals can have 5 — 8% lower useful request utilization then
in case of Poisson session arrivals. Also, the higher the mean
number of requests in a session the lower the useful request
utilization. Note that although for higher C' the percentage
of dropped sessions is lower, the useful request utilization is
significantly affected because the server wastes resources on
completing requests in longer sessions that are dropped.

Request arrival process in the case of partly-open queue
depends not only on the session arrivals and the number of
requests per session, but also on the service time and think
time, as in closed queueing system. Therefore, we study the
long-range dependence of the request arrival process. We use
the Abry-Veitech method [22] to estimate the Hurst exponent
of the request arrival process. (Figures plotting the values of
the Hurst exponent are not shown due to space limitations.)
The results show that the request arrival process in the partly-
open queue is also LRD, with somewhat higher values of
the Hurst exponent than the session arrival process, which is
expected, having in mind that there are more request arrivals
than session arrivals (see Figure 2). Similarly, the request
departure process from the partly-open queue, which sums
all the request departing from the server, is also LRD process,
but it has lower value of the Hurst exponent than the request
arrival process.

More interesting observation is that both the request arrival
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process and request departure process are LRD even when
session arrival process is Poisson, for all considered values of
the mean and coefficient of variation of the number of requests
per session. It should be noted that, based on empirical
observations, we use heavy-tailed distributions to model both
the service time and think time. The fact that heavy-tail service
time is a reason for long range dependence of the output
(i.e., departure) process has been established as a theoretical
result for an open queue with infinite queue size in [7].
Our work generalizes this theoretical result having in mind
that we consider partly-open queue with a finite queue size.
Furthermore, in our case, in addition to the request departure

process, the request arrival process is also LRD, even when
session arrivals are Poisson.

Another work related to this result is the semi-experimental
methodology used for manipulation of IP level traffic pre-
sented in [10]. That work considers IP flow arrivals, which
similarly to HTTP session arrivals, were shown to be LRD. By
randomizing the arrival process of the flows to become Poisson
process, while maintaining the full integrity of the packet
arrivals patterns within each flow, the authors showed that the
LRD of the flow point process does not significantly affects
the LRD at packet level. Our result based on simulation of
partly-open queue is consistent with [10]. Our work, however,
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shows that in the context of performance assessment and
prediction, the LRD nature of the session arrival process has to
be considered, even though it does not significantly affect the
LRD of the request arrival process, because it significantly
affects (especially under high utilization) the queue length,
and thus the percentage of dropped sessions and the useful
utilization of the server.

IV. CONCLUSION

In this study we use a partly-open queue model to account
for session-based workload and study the impact of its char-
acteristics (i.e., the session arrival process and the number of
request per session) on performance metrics. In particular, we
first assume a point process for the session arrivals, and then
another model for intra-session characteristics (in this case a
distribution for the number of requests within a session). By
considering LRD session arrivals (instead of Poisson), skewed
distribution for the number of request within a session (instead
of geometrical distribution), and a finite queue size (instead of
infinite) our work generalizes the existing work on partly-open
queues and prior simulation study which considered session
workloads.

We explore several performance metrics: percentage of
dropped sessions, average queue length, waiting time, and use-
ful server utilization. In addition, we pay particular attention
on the nature of the request arrival and request departure point
processes, which has not been done in the related work.

To summarize, our results show that the LRD of the session
arrival process, especially for higher values of the Hurst expo-
nent, has bigger impact on all performance metrics (i.e., per-
centage of dropped sessions, mean queue length, mean waiting
time, and useful utilization) when compared to the statistics of
the number of requests per session. Performance metrics for
lower values of the Hurst exponent (e.g., Hsession = 0.6) are
close to the values for Poisson session arrivals.

More interestingly, for a higher variation of the number
of request per session the percentage of dropped sessions
is smaller, as well as the mean queue length and mean
waiting time. This is due to the fact that longer sessions have
greater chance to be dropped, which will affect less users.
However, this results in lower useful utilization of the server,
which has been busy serving requests of the dropped sessions.
Furthermore, it is likely to lead to loss of revenue in the case
of e-commerce sites which typically observe more purchasing
requests in the longer sessions.

When session arrivals are Poisson, performance metrics are
affected only at very high utilization and the impact is less
significant. More interesting observation is that in a partly-
open queue with heavy-tailed service time and think time
both the request arrival process and request departure process
are LRD, even when the session arrivals are Poisson. Our
future work is focused on further exploring the effect of the
service time and think time distributions and the values of their
parameters on the correlation structure of the request arrival
and request departure processes.

The results presented in this paper have several strong
implications for performance modeling. It is obvious that in
order to build a realistic model for systems with session-
based workloads, both inter-session characteristics (e.g., LRD
of session count and inter-arrivals) and intra-session char-
acteristics (e.g., distribution of the number of request per
session) have to be modeled accurately. The combination of
partly-open queue with finite queue size under LRD session
arrivals and skewed distribution of the number of requests
in a session, provides a model with physically meaningful
parameters, which preserves both the session and the request
characteristics. Furthermore, we show that although the session
arrival model is not affecting significantly the LRD of the
request arrival and request departure processes, it has to be
taken into account because the LRD at session level determines
the queueing delays and session losses, and thereby the quality
of delivered services.
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