
An empirical study of pre-release software faults in an industrial product line

Thomas R. Devine1, Katerina Goseva-Popstajanova1, Sandeep Krishnan2, Robyn R. Lutz2,3 and J. Jenny Li4

1Lane Department of Computer Science and Electrical Engineering, West Virginia University
2Department of Computer Science, Iowa State University

3Jet Propulsion Laboratory, California Institute of Technology
4Avaya Labs, US

Abstract—There is a lack of published studies providing
empirical support for the assumption at the heart of product
line development, namely, that through structured reuse later
products will be less fault-prone. This paper presents results
from an empirical study of pre-release fault and change
proneness from four products in an industrial software product
line. The objectives of the study are (1) to determine the
association between various software metrics, as well as their
correlation with the number of faults at the component level;
(2) to characterize the fault and change proneness at various
degrees of reuse; and (3) to determine how existing products
in the software product line affect the quality of subsequently
developed products and our ability to make predictions. The
research results confirm, in a software product line setting,
the findings of others that faults are more highly correlated
to change metrics than to static code metrics. Further, the
results show that variation components unique to individual
products have the highest fault density and are the most prone
to change. The longitudinal aspect of our research indicates
that new products in this software product line benefit from
the development and testing of previous products. For this case
study, the number of faults in variation components of new
products is predicted accurately using a linear model built on
data from the previous products.

I. INTRODUCTION

There have been several studies in the software engineer-

ing community showing the benefits of systematic reuse.

These studies put to the test the intuitive claims that struc-

tured reuse will increase productivity, lower fault density,

lower modification rates of modules, reduce development

and maintenance effort, and reduce the complexity of the

source code [6], [12], [14], [20], [21]. Nowhere is systematic

reuse more prevalent than in a Software Product Line (SPL).

However, there is a lack of empirical data supporting reuse

benefits in SPLs.

The reuse in SPL is not ad hoc; it is deliberately and

systematically planned from the inception of the SPL. Weiss

and Lai define a SPL as “a family of products designed

to take advantage of [their] common aspects and predicted

variabilities” [22]. A commonality is a software component

that is shared, or reused, among all the products in a product

line. Components that are not present in all members of the

SPL are called variabilities [22]. It is these differences that

define the individual members of the SPL.

In this paper we present an empirical study of fault-

and change-proneness trends in an industrial SPL during its

development and testing phases. Specifically, we examine

pre-release software faults and changes made in the code

of four members of the PolyFlow product line family of

software testing tools developed by Avaya [23]. To evaluate

this SPL, we extracted data from the source code repository

and the modification request tracking system. Based on the

nature of the measures taken and their method of acquisition,

we break the metrics gathered into three general categories:

code metrics, change metrics, and fault metrics.

The work presented here concerns the following three

main areas, each with its own research questions: (1) associ-

ation of software faults with other metrics at the component

level, (2) characteristics of fault and change proneness

depending on the degree of reuse, and (3) longitudinal study

of software faults over the period of development and testing

of the SPL.

We first study the correlation between each possible pair

of metrics gathered at the component level. Specific attention

is given to the correlations between the number of software

faults and collected static code and change metrics. In par-

ticular, we address the following set of research questions:

RQ1: Are faults correlated with any of the gathered

metrics?

RQ2: Are any of the gathered metrics correlated to each

other?

RQ3: Does a small set of components contain the major-

ity of faults?

Secondly, we study the fault-proneness and change-

proneness of components with different degrees of reuse and

thus address issues central to SPLs and their structured reuse

in the form of commonalities and variabilities. Specifically,

we explore the following research questions:

RQ4: Do the number of faults and/or fault density vary

in components by degree of reuse?

RQ5: Do the number of New Features and Improvements

vary in components by degree of reuse?

RQ6: Does the change-proneness of the code vary by

degree of reuse?

The research questions in areas (1) and (2) assume a cross-

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.30

182

2012 IEEE Fifth International Conference on Software Testing, Verification and Validation

978-0-7695-4670-4/12 $26.00 © 2012 IEEE

DOI 10.1109/ICST.2012.30

181

sectional analysis, i.e., the data was gathered at the end of

the SPL’s development. Our third set of research questions

address data over the entire period of development and

testing, that is, form a longitudinal study. These questions

take into account the genesis of new products in the SPL,

as well as the changes occurring in existing products. In

particular, we explore the following questions:

RQ7: Do products developed later benefit from the reuse

inherent in the product line?

RQ8: Can the number of faults in a new product be

predicted from previously existing products’ data?

The main contributions of this paper are as follows. Our

results related to the association of the number of faults

and other collected metrics support the findings of [11],

[15], [17] that change metrics are more highly correlated

to the number of faults in software components than static

code metrics. We also found, in agreement with [2], [5],

[7], [19], [25] that most faults are found in about 20%

of the components. Furthermore, we found that complexity

metrics were poor predictors of pre-release faults, which is

consistent with [5]. This part of our work can be considered

as a literal replication [2] (i.e., is aimed at producing

similar results as the previous studies) carried out on a

different type of system, within a different development

context (i.e., SPLs), which has been argued to increase the

external validity [2]. Unlike more mature scientific areas,

such as medicine, which rely on replication, in software

engineering replicated studies are often disregarded. We

believe that more replicated studies need to be published to

establish trends that are valid across multiple case studies,

thus addressing the external validity of results.

Our research related to fault and change-proneness within

different degrees of reuse is specific to product lines, an area

with few empirical studies to date. The only other work

on this topic seems to be our previous study [10], which

was based on analysis of post-release failures of an open-

source SPL. Unlike [10], in this paper we study pre-release

faults and change proneness of an industrial SPL. Results

show that variation components used only in individual

products have the highest fault density, and are the most

change prone. As in [10], common components reused in

all four products had similar fault densities to the high-reuse

variation components, but higher average code churn.

The last set of research questions, which are focused

on longitudinal analysis of the SPL, are investigated for

the first time in this paper. Our results show that newer

members of the software product line benefit significantly

from the development and prior testing of the more mature

members. We also found that, in this SPL, the number of

faults in variable components of subsequent products can be

successfully predicted by a linear model developed using the

metrics extracted from previously developed, more mature

products. We believe that numerical prediction of the number

of faults would be more useful for developing SPLs than

binary classification of components into fault-prone and not

fault-prone, as it would allow for more efficient allocation

of testing effort and planning of release time.

The remainder of this paper is organized as follows.

Related work is presented in Section II. Section III describes

the SPL used as a case study. Section IV defines our

metrics and discusses the process of their extraction. The

main results, as they pertain to the research questions, are

presented in Section V. Section VI describes the threats to

validity and Section VII provides our concluding remarks.

II. RELATED WORK

Our first set of research questions addresses the correlation

of various static code and change metrics to the number

of faults in a component. This type of analysis has been

performed before on software products that may or may not

utilize reuse. Nagappan and Ball [17] performed a correla-

tion analysis between change metrics gathered from code of

Windows Server 2003 and the associated fault database. In

[2], Andersson and Runeson presented an empirical study

including correlational analysis of static code metrics and

fault densities for three projects from a large telecommuni-

cations company. Zimmerman et al. computed the Spearman

correlations between faults and fourteen different static code

metrics collected from the Eclipse project [25].

Prediction of fault-proneness is another active area of

research in this field. Complexity metrics were used in a

discriminant analysis in [16], which successfully created

models to classify program modules into broad, fault-prone

groups. Also, in [8], Taghi and Munson used regression

models based on developmental complexity metrics to pre-

dict fault densities. Ostrand et al. used a negative binomial

regression model to predict the number of faults at a file level

from one release to the next [19]. Although the individual

predictions were often inaccurate, the models could accu-

rately identify the 20% of files containing around 80% of the

total faults. In [18], Nagappan et al. used static code metrics

from five diverse Microsoft products to create regression

models for estimation of post-release faults. They found

that using Principle Component Analysis allowed them to

obtain a good set of predictor variables, but that no single

set of predictors worked well across all products, that is,

predictors were accurate across products only when those

products were similar.

Several empirical studies have been conducted on the

general benefits of systematic reuse. Frakes and Succi’s

analysis of four different sets of industrial data [6] indicated

that more reuse results in fewer faults, higher perceptions

of quality, and lower fault density. The reuse in their study

was ad-hoc, black box, code reuse. In a study of twenty-five

different software systems developed by NASA [20], Selby

found that modules reused verbatim had on average 98% less

faults, while reused modules that were modified showed 55%

183182

less faults than non-reused modules. Seven medium-scale

projects with reused components, also developed for NASA,

were analyzed by Thomas et al. [21]. They determined that

verbatim reuse resulted in over a 90% reduction in fault

density when compared to new code, while modified reuse

resulted in a 59% decrease. Lim studied two products from

HP that utilized reusable code [12] and found in both cases a

reduction in fault density of around four times for the reused

code over the newly developed code.

Case studies of reuse in SPLs are less common, due in

part to the limited availability of subjects. Bypassing this,

Zhang and Jarzebek concurrently developed four members

of the mobile gaming product line family by using a product

line architecture and by developing each game individually

[24]. In their experiment, the product line approach led to

improvements in development and maintenance, as well as

to an increase in the actual performance of the applications.

Mohaghegi et al. performed empirical studies on three large

telecom product lines [13], [14] by mining trouble report

repositories. Their results indicated that reused components

had a fault density of 44 to 61% of the non-reused com-

ponents. Furthermore, reused components required fewer

modifications than non-reused components.

In earlier work [10], we analyzed post-release fault data

from four recent releases of the Eclipse project, viewed

as a SPL. In that work, as in this paper, components

were grouped based on the degree of reuse across the

product family. The examination showed that commonalities

exhibited fewer post-release faults than any other degree

of reuse and followed a decreasing trend in file churn

through subsequent releases. We also found that as the

SPL evolved through releases, the amount of change in

the variable components remained high. More recently, in

[11] we performed a further study of Eclipse as a SPL.

In that work we used the J48 decision tree algorithm to

analyze the effectiveness of change metrics at classifying

Eclipse components as fault-prone or not. The classification

results were very good (probability of detection 79 to 85%,

probability of false alarm 2 to 4%), with the particular subset

of change metrics performing well throughout all releases of

the SPL. In addition, the results showed that the learner’s

performance increased as the product line matured.

The work presented in this paper is set apart from this

body of research by some key differences. In contrast to

papers that examine reuse in general, we take a SPL as

our subject. PolyFlow is an industrial SPL from design

to implementation. Our work examines pre-release faults

detected during development and testing. While others [25]

have examined correlations between static code metrics

and pre-release faults, we also consider change metrics. In

several of the related works [11], [15], [17], change metrics

were found to be better predictors of fault-proneness than

static code metrics, which is consistent with our findings.

Finally, throughout the literature most predictions are aimed

at binary classification, i.e., classifying components as faulty

or not. We use numerical prediction to gain more infor-

mation from the data on the degree of fault-proneness of

components. In particular, based on the data collected from

more mature products we build and test a linear model to

predict the number of pre-release faults in subsequent prod-

ucts. While [18] used regression models to make numerical

estimations, they used only static code metrics and models

created from independent, stand-alone products that did not

share code as the PolyFlow SPL does.

III. CASE STUDY DESCRIPTION

PolyFlow, formerly known as eXVantage, is a suite of

software testing tools developed by Avaya Corporation that

allows developers to generate and execute test cases and

calculate associated coverage metrics [23], in addition to

other tasks. Variabilities across the product line include

support for various operating systems, target programming

languages, and user interfaces. The entire suite was devel-

oped in Java, with a modular architecture (i.e., related classes

were grouped into packages that serve as components).

The PolyFlow product line currently has eleven defined

products in different stages of development. The results

presented in this paper are based on the first four fully

implemented products, which are also the only products

that have sufficient number of entries in the Modification

Request (MR) database to allow statistical analysis. Each of

these four products, P1, P2, P3, and P4, is a different subset

of 42 components totaling approximately 65,000 LoC. The

number of components and LoC that comprise each product

are shown in Table I. (The total number of components in

Table I is greater than 42 due to components being used

in more than one product.) Figure 1 shows the distribution

of the components in a Venn diagram, to help visualize

their organization by degree of reuse. In the diagram, the

13 components in the central region, which are reused in all

products, are common components. The four regions directly

adjacent to the center contain components that are common

to three of the four products. We label them high-reuse vari-
ation components. Low-reuse variation components are in

the regions where only two products overlap. The perimeter

regions contain the single-use variation components, i.e.,

components currently used in only one product. Of these

products, the members of the sets {P1, P3} and {P2, P4}
are similar to each other in composition and function, and

share many common components.

Table I. NUMBER OF COMPONENTS AND LOC FOR THE FOUR

PRODUCTS FROM THE POLYFLOW SPL EXAMINED IN THIS PAPER

Product Components LoC
P1 23 47,138
P2 29 35,238
P3 37 49,676
P4 22 36,852

184183

Figure 1. The distribution of components among four products

Figure 2. Timeline of products development

Figure 2 presents a Gantt chart depicting the development

effort in the PolyFlow product line chronologically, with

a horizontal axis interval of four months. As the chart

shows, development of P1 and P2 began simultaneously

and continued concurrently throughout the completion of

the development of P1. Development of P3 began upon

the completion of P1, and was concurrent with the final

months of P2’s development. The completion of P3 marked

the beginning of an eight month period during which other

products not covered by this study were the main focus of

development efforts. Following this time, development of P4

began and covered the final span of seven months.

The MR database from which some of our metrics were

mined consists of three MR types. We performed the classi-

fication in consultation with the lead software developer who

had been with the project from the beginning. MRs of the

type Fixes were made to fix software faults. A fault is defined

as an accidental condition, which if encountered, may cause

the system or system component to fail to perform as

required [1]1. All faults analyzed in this paper are pre-release

faults detected during testing, as data from field usage had

not yet been collected. Improvements are any requests for

modifications to improve the quality, efficiency, or output of

existing code. An example of an improvement is refactoring

the code in a component. New Features represent requests

for entirely new code to produce previously unimplemented

functionality. These are commonly associated with the in-

troduction of new products, but sometimes refer to new

functionalities being implemented in existing products.

The data from the MR database had to be preprocessed

1Bug is often used as a synonym to software fault. We avoid using the
term defect because in the past it has been used to refer to both software
faults and failures, as well as anomalies.

before they could be used in our analysis. We found that

individual MRs were mapped to multiple components. In

particular, 10.3% of the MRs labeled Fixes were mapped to

two or three components, which is consistent with our earlier

results [7]. In these cases the fix was associated with two

or three faults, one for each affected component. Similarly,

11.5% of Improvements and 20% of New Features resulted

in changes to two or three components. Again, we replicated

the Improvements/New Features that affected more than

one component so that one entry exists for each affected

component.

The MR database, post-processing, consists of 258 indi-

vidual entries, distributed by type as shown in Table II. The

third column shows how many of the overall MRs were

code-related, and the last column shows how many of those

code-related MRs were closed. 70 out of 258 MRs were

excluded from consideration because they were either related

to other products currently under development or were not

related to changes in the code of products P1, P2, P3, and

P4. Of the remaining 188 MRs, five Improvements and 20

New Features are still open and unresolved, which means

that the additional functionality requested by these MRs

has not yet been implemented in code. Since our study

is directed toward the analysis of implemented code, we

removed those MRs from our consideration.

Table II. DISTRIBUTION OF MRS BY TYPE

MR Type Overall Code Related Closed
Faults 117 92 92

Improvements 52 35 30
NewFeatures 83 61 41

Other 6 0 0
Total 258 188 163

IV. METRIC DEFINITION AND EXTRACTION

We had access to several different sources of data from the

PolyFlow product family. The gathered metrics are divided

into three categories: source code metrics, change metrics,

and fault metrics. First, we considered the following static

source code metrics at the component level:

• Lines of Code (LoC) - the number of non-comment

lines of Java code in a component.

• Number of Files - the number of files comprising the

component.

• Maximum Complexity - the maximum complexity ex-

hibited by any method in a given component.

• Average Complexity - the average complexity of the

methods in a given component.

These metrics were gathered at the class level using the free-

ware code analysis tool SourceMonitor and then aggregated

into component level metrics.

Change metrics were gathered from two places, the MR

database and the logs in the subversion (SVN) repository

in which the code was maintained. The following metrics

185184

quantify the amount of modification to a component during

development and testing:

• Improvements - the number of MRs requesting changes

for improvements of the code.

• New Features - the number of MRs requesting new code

to be written to implement new features.

• CodeChurn - the sum of the LoC added to and deleted

from a component over the course of its existence in

the repository.

• Average CodeChurn - the CodeChurn of a component

divided by the total LoC for that component.

• FileChurn - the number of times a component’s files

were added to or deleted from the repository.

• Average FileChurn - the FileChurn of a component

divided by the number of files in that component.

The data for Improvements and New Features were collected

from the MR database and mapped to the components they

affected as described in Section III. The four churn metrics,

which reflect changes made to fix faults and implement

improvements and new features, were extracted in two

stages. First, we used the freeware application StatSVN

to analyze the SVN logs kept by the code repository and

acquire general folder level metrics in an html format. Then,

we wrote code to extract individual metrics for each file

in the repository, which were subsequently aggregated to

compute the churn metrics at component level.

Finally, the number of faults per component metric was

computed based on the data from the MR database, as

explained in Section III.

V. CASE STUDY OBSERVATIONS

This Section is organized into three subsections, each

addressing one set of research questions.

A. Association of software faults with other metrics

Table III shows the results of the correlation analysis

between pairs of metrics. In this study we used the Spearman

correlation, because the data did not conform to the normal

distribution necessary to apply the Pearson correlation. The

cells of the table contain the value of the Spearman correla-

tion coefficient ρ, with the p-value below in parenthesis, for

all non-trivial combinations which resulted in statistically

significant results at the α = 0.05 significance level. The

blank cells in the upper triangle represent either statistically

not significant correlations (e.g., Faults and Average Com-

plexity) or high correlations by definition, which therefore

are trivial (e.g., Maximum Complexity and Average Com-

plexity). Since the number of faults per component is of

special interest, Figure 3 presents the scatter plots for each

metric versus the number of faults in a component.

RQ1: Are faults correlated with any of the gath-
ered metrics?

The table clearly shows that the number of faults is

positively correlated with almost every metric gathered in

this study. The only change metric that showed no correla-

tion was Average FileChurn, whereas the only static code

metric not correlated to the number of faults was Average

Complexity. We make the following observation based on

the correlation coefficients presented in the first row in Table

III: The correlation of the number of faults at the component
level with each of the change metrics except FileChurn is
higher than the correlation with any static code metric.
Specifically, the strongest correlation is with New Features

and CodeChurn (0.760 and 0.702, respectively), followed by

the correlation with the Average CodeChurn, Improvements,

and FileChurn (0.612, 0.597, and 0.435 respectively). On

the other side, the highest correlation among the static code

metrics is with LoC, followed by Number of Files and Max-

imum Complexity (with values of 0.490, 0.469, and 0.321

respectively). These results are in agreement with Nagappan

and Ball, who found in [17] that Average CodeChurn had

statistically significant, very high positive correlation to fault

density (p-value < 0.01, ρ = 0.883). We are led by these

results to agree with their general conclusion, which, in the

terms of this study, is that an increase in change metrics in

a component is often accompanied by an increase in faults

in that component.

We also compared our results to the works of Andersson

et al. [2] and Zimmerman et al. [25] regarding the use of

size metrics as predictors for the number of faults in a

component. When considering LoC versus number of faults,

Andersson et al.’s results showed correlation coefficient val-

ues (they used the Pearson test, as opposed to the Spearman)

of 0.37 and 0.6 in the most closely correlated projects and

0.05 in the least correlated. Zimmerman et al. calculated

ρ = 0.487, significant at the 0.01 level. Our values for LoC

versus number of faults are consistent with these results, as

the components in our study showed a positive correlation

ρ = 0.490 with a p-value = 0.0015. Further, we found

that the number of files in a component was also positively

correlated with the number of faults with ρ = 0.469 and p-

value = 0.0026. This result is also supported by Zimmerman

et al., who computed a ρ value of 0.406, significant at the

0.01 level, for the same relation.

In [5], Fenton and Ohlssen determined that cyclomatic

complexity was not a good predictor of pre-release faults.

Our results for the average cyclomatic complexity are in

agreement. However, we did note a positive correlation

between Maximum Complexity and number of faults. The

higher correlation of Maximum Complexity to number of

faults than Average Complexity was indicated in [25], with

ρ = 0.475 for Maximum Complexity and ρ = 0.300 for

Average Complexity, both significant at the 0.01 level. Com-

pared to our results Zimmerman et al.’s results for Maximum

Complexity show a slightly higher level of correlation, while

we are unable to support the correlation between the Average

Complexity and number of faults.

186185

Table III. SPEARMAN CORRELATION ρ VALUES FOR NON-TRIVIAL ASSOCIATIONS, ACCOMPANIED BY THE P-VALUE IN PARENTHESES

Fa
ul

ts

Im
pr

ov
em

en
ts

N
ew

Fe
at

ur
es

C
od

eC
hu

rn

Av
gC

od
eC

hu
rn

Fi
le

C
hu

rn

Av
gF

ile
C

hu
rn

Lo
C

N
um

Fi
le

s

M
ax

C
om

pl
ex

ity

Av
gC

om
pl

ex
ity

Faults 0.597 0.760 0.702 0.612 0.435 0.490 0.469 0.321
(0.0001) (0.0000) (0.0000) (0.0000) (0.0056) (0.0015) (0.0026) (0.0461)

Improvements 0.676 0.586 0.597 -0.388 0.418 0.359 0.299 0.352
(0.0000) (0.0001) (0.0001) (0.0146) (0.0082) (0.0247) (0.0645) (0.0281)

NewFeatures 0.734 0.674 0.359 0.398
(0.0000) (0.0000) (0.0247) (0.0122)

CodeChurn 0.548 0.497
(0.0003) (0.0013)

AvgCodeChurn 0.398 0.417
(0.0121) (0.0083)

FileChurn 0.344
(0.0320)

AvgFileChurn -0.343 -0.344
(0.0327) (0.0319)

LoC 0.599
(0.0001)

NumFiles 0.374
(0.0192)

Max Complexity
Avg. Complexity

Figure 3. Scatter plots of the number of faults and each metric for which the correlation was statistically significant

RQ2: Are any of the gathered metrics correlated
to each other?

Based on the results given in Table III the following

observations are made. Improvements and New Features are

highly correlated to each other, and both are moderately to

highly correlated to CodeChurn and Average CodeChurn.

This is expected, as both Improvements and New Features

lead to changes in the code. Similarly, New Features are

correlated to FileChurn because New Features often result

in the addition of new files. Improvements, however, are not

correlated with FileChurn.

Improvements have small to moderate correlations with

all static code metrics, which indicates that larger and more

complex components tend to undergo more Improvements.

Of the static code metrics, New Features is only correlated

with Maximum Complexity. Maximum Complexity is actu-

ally correlated with all metrics except Average FileChurn.

However, Average Complexity is correlated with only Aver-

age FileChurn and Improvements. These observations indi-

cate that a higher Maximum Complexity (i.e., having at least

187186

one complex method in a component) has much more impact

on change and fault metrics than the Average Complexity

of all methods in that component.

RQ3: Does a small set of components contain the
majority of faults?

Our results show that approximately 85% of the faults

detected across all of the products are located in approxi-

mately 20% of the components. This result agrees with other

works [2], [3], [5], [7], [19], which have consistently found

that between 60 and 90% of faults normally reside in around

20% of the components. However, when we examined the

data from a LoC perspective, we found that 80% of the

faults were in 50% of the code. This still shows a skewed

distribution of the number of faults across code, but with a

greater spread.

B. Fault and change proneness for different degrees of reuse

This section studies the effects and benefits of the sys-

tematic code reuse in the PolyFlow SPL. To account for

different degrees of reuse, we organized the component data

into four groups: (1) Common component shared by all

four products (2) High-reuse variation components reused in

three products (3) Low-reuse variation components reused

in two products and (4) Single-use variation components

used in only one product. The organizational structure and

accompanying data are shown in Table IV. Some of the

metrics shown in Table IV are plotted on bar graphs in

Figure 4 for ease of visual comparison.

RQ4: Do the number of faults and/or fault density
vary in components by degree of reuse?

The groups of low-reuse variation components and single-

use variation components share the fewest number of total

faults (see Figure 4a). However, the low-reuse variation

components have the lowest fault density after normalization

by LoC (see Figure 4b). Due to the considerably smaller LoC

in the single-use variation components (nearly one-third the

size of the next smallest), they have the highest fault density

even though they have the least number of total faults. If we

consider single-use variation cox mponents as non-reused

components to conform to the context of [14], then this

result is in agreement with their finding that components

that are reused have lower fault densities than those that are

not. This may be due to the fact that single-use variation

components have high Maximum Complexities. The most

complex component in the product family also resides in

this area. The high fault density for the single-use variation

components can then, at least partially, be explained by

the correlation between faults and maximum complexity

(ρ = 0.321, p < 0.05) expressed in section V-A.

RQ5: Do the number of New Features and Im-
provements vary in components by degree of
reuse?

Table IV. COMPONENT LEVEL DATA ORGANIZED BY DEGREE OF REUSE

Common High-reuse Low-reuse Single-use
comp variation comp variation comp variation comp

NumComps 13 8 12 5
Faults 26 22 15 15

Faults/KLoC 1.201 1.295 0.799 2.555
Improvements 7 3 11 7
NewFeatures 5 6 12 10
CodeChurn 300,293 62,154 139,783 93,096

AvgCodeChurn 13.873 3.660 7.442 15.857
FileChurn 1229 1016 971 241

AvgFileChurn 8.361 8.397 7.301 6.025
LoC 21,646 16,984 18,783 5,871

NumFiles 147 121 133 40
MaxComplex 33 25 25 35
AvgComplex 1.761 2.278 2.550 3.492

As shown in Figure 4a, the low-reuse variation com-

ponents exhibit the greatest number of New Features and

Improvements. This is due to the fact that some low-reuse

variation components, which are reused in two products were

not originally designed to be reused. Instead, when a new

product was added, it was concluded that some components

could be reused, which in turn resulted in the increased

number of New Feature and Improvement MRs in these

components. This result agrees with our earlier finding in

[10] that variation components evolve rapidly.

When values for the low-reuse variation components are

combined with the values for the single-use variation com-

ponents, these numbers far surpass the combined amounts

contained by the high-reuse variation components and com-

mon components (1.8 times more Improvements and exactly

twice the New Features). This is consistent with the fact

that New Features introduce new components. Since the

high-reuse variation components and common components

are designed to be used in almost all products in a SPL,

the introduction of new components into this area after the

creation of several products is unlikely. Furthermore, the

fact that the newly introduced variation components are less

mature than the highly reused components may contribute to

the higher number of improvements they require. Lending

support to this claim, the high-reuse variation components,

which exist in three of the four products, show the least

number of Improvements. This could be interpreted as

showing the benefit of their planned reuse.

RQ6: Does the change-proneness of the code vary
by degree of reuse?

Before normalization, the common components show the

highest amount of CodeChurn. However, when considering

the amount of code contained in each reuse group (see

Figure 4b), the single-use variation components have the

most change-prone code (i.e., have the highest Average

CodeChurn). This finding lends support to the results of

Mohaghehi et al. in [14] that non-reused components have

higher code modification rates.

Interestingly, the most reused components, i.e., the group

of common components, still exhibit a relatively high Av-

erage CodeChurn. One reason for this is that this study

looks at code as it is being developed. As the development

188187

Figure 4. Comparisons of multiple metrics by degree of reuse (Units for the x-axes are given in the legends below figures.)

of the SPL progressed, and new products were introduced,

common components had to be changed to accommodate

unanticipated requirements from new products. Another

reason for the large change proneness was the known

phenomenon of evolving requirements (not always related

to reuse) throughout the development of some components.

In particular, 67% of the CodeChurn in the group of common

components was due to a single component which had only

4.57% of the code, but was responsible for 67% of the New

Features, 57% of Improvements, and 50% of the Faults. It

would be interesting to explore, once the data is available,

whether this particular component continues to be faulty and

change-prone post release. We note that in an earlier study of

post-release failures of an open source product line, common

components also experienced more churn than expected [10].

C. Longitudinal study of software faults over the whole span
of development and testing of the SPL

RQ7 and RQ8 investigate the evolution of the SPL

through its development. As depicted in Figure 2, P1 and P2

were the first two products to exist, followed by subsequently

developed products P3 and P4.

RQ7: Do products developed later benefit from the
reuse inherent in the product line?

To explore this question we considered the frequency

of faults occurring in each of the newer products P3 and

P4. We distinguished between those faults that occurred in

relevant components before a product’s creation and those

that occurred afterward, when later products reusing those

components were created. We examined the MR data in

this light and found that of the 37 faults that affected

components in P3, eight were found and fixed before P3 was

created. These eight faults were all located in the common

components, which illustrates how P3 benefited from the

structured, planned reuse across all products. Each of the

remaining 29 faults was located in a component that was

shared between P3 and another previously or concurrently

developed product (i.e., 11 faults were in low-reuse variation

components shared between P1 and P3 and 18 in high-reuse

variation components shared across P1, P2, and P3). That

is, not a single fault was unique to P3. There are two main

reasons for these faults in low-reuse and high-reuse variation

components: (1) new faults were introduced or existing faults

were detected in the process of accommodating requirements

due to the introduction of the new product P3 and (2) the

concurrent development of P3 and P2 (see Figure 2).
The benefit of reuse is more prominent in the case of P4,

which was developed after the completion of the other three

products in the SPL. Of the 69 faults affecting components

included in P4, 67 were detected and fixed before P4 existed

(out of which 26 were in the common components, 21 were

in the high-reuse variation components, and 20 were in the

low-reuse variation components). That is, only two faults

were detected during the actual development of P4, one

in a single-use variation component and another in a high-

reuse variation component shared with P1 and P2. Since P4

was under development for the least amount of time, and

therefore had less time for testing to expose faults within

the scope of our study, it is possible that future testing and

field usage may expose additional faults. Clearly, however,

the fact that 67 faults were fixed in code subsequently reused

in P4 shows that P4 benefited from the development and

testing of earlier products.

RQ8: Can the number of faults in a new product be
predicted from previously existing products’ data?

In addition to common components, P3 and P4 share high-

reuse and low-reuse variation components with products P1

and P2, and as a result each one has only one single-use

variation component. These variation components, however,

are non-trivial, and together they contain over 2,000 lines of

code. The fact that there are only two new components made

the traditional classification into fault-prone and not fault-

prone components infeasible. Instead, we used the data from

P1 and P2 to create a linear model via stepwise regression

[9], which we then used to predict the number of faults in

the components introduced by P3 and P4.
Stepwise regression is an iterative feature selection

method that builds a linear model by selecting predictors

from the feature set having high correlations with the depen-

dent variable. Each step in the creation of the model elimi-

nates the least significant feature, resulting in a smaller, more

highly correlated feature set. Our final model consisted of

the following static code and change metrics: LoC, Number

of Files, New Features, CodeChurn, Average CodeChurn,

189188

FileChurn, and Average FileChurn. We used this model to

predict the number of faults in the two components new

to P3 and P4, which resulted in absolute errors of 0.18

for P3 and 0.08 for P4 (i.e., the model predicted 0.18 and

1.08 faults for components which had zero and one fault,

respectively). These results indicate that, in this SPL, a linear

model of code and change metrics gathered from previously

developed products can be used to accurately predict the

number of faults in variation components of subsequently

developed products. Testing the external validity of this

result on another, preferably larger, case study is a topic

of our future research.

VI. THREATS TO VALIDITY

In this section, we describe several threats to the validity

of this study and what measures were taken to mitigate them.

Construct validity addresses whether we are testing what

we intended to test. One obvious threat to construct validity

is having insufficiently defined constructs before their trans-

lation to metrics. Using inconsistent and/or insufficiently

precise terminology in the area of software quality assurance

is a serious threat to validity, often making meaningful

comparisons of results difficult. Therefore, we provided the

definitions of the terms and metrics used in this paper and

avoided using terms, such as defects, that lack rigorous

definitions or are used inconsistently across related works.

So called mono-operation bias to construct validity is

related to under-representation of the cause-construct. Many

empirical studies experience lack of some types of data

that, if available, may improve the interpretation of the

results or help explain the cause-effect relationships. Unlike

many earlier studies on prediction of fault-proneness that

considered only static code metrics, we also use change

metrics, which, as our results and some of the related work

results show, are more correlated with the number of faults

than the static code metrics.

Internal validity threats are concerned with influences

that can affect the independent variables and measurements

without researchers’ knowledge. Data quality is one of the

biggest threats to internal validity. To ensure the quality of

the MR data, we studied each individual record with the lead

developer. MRs related to New Features and Improvements

which were not closed were excluded from the analysis,

as well as MRs which were not related to the actual code.

Furthermore, as described in Section III, the remaining MRs

were preprocessed to reflect that around 10% of all MRs

were mapped to more than one component. The missing

information in some MRs (e.g., whether the MR is directly

related to implemented code) was acquired through an

iterative and painstaking process of review with each step

receiving validation from the lead developer of the products,

who is also a co-author of this paper.

In cases where the components in the source code were

organized differently than the original design documents,

preference was given to the source code over design docu-

mentation. As a result, each component consists of files that

belong to only one of the defined degrees of reuse.

Conclusion validity is concerned with the ability to draw

correct conclusions. The most obvious threat to conclu-

sion validity is using statistical tests in cases where their

underlaying assumptions are violated. Since none of our

data conformed to the normal distribution we used the less

powerful Spearman correlation test to avoid violating the

normality assumption of the Pearson test. Additionally, the

similarity of product pairs {P1, P3} and {P2, P4} in this

SPL could play a role in the prediction of number of faults

in variation components of P3 and P4. This threat to the

conclusion validity is based on the nature of our case study

and cannot be lessened in this paper.

External validity is related to the ability to generalize

the results. Obviously, research based on one case study

cannot claim that the results would be valid across other

studies. The external validity of our study is, to some

extent, supported by the fact that whenever possible we

compared our results with related works. Dissemination

of our results and results based on other SPLs in time

will provide support for identifying observations that apply

across multiple studies.

VII. CONCLUDING REMARKS

This paper described an empirical study of pre-release

software faults in an industrial software product line. The

main research goals and findings are summarized as follows:

(1) Are there any correlations between the number of
faults at the component level and code and change metrics?
We found that change metrics have higher correlations to

the number of pre-release faults than static code metrics.

Furthermore, our data revealed that Maximum Complexity

was correlated with pre-release faults but the correlation was

low, while Average Complexity was not correlated at all. For

the products in this SPL, the majority of pre-release faults

were contained in around one-fifth of the components.

(2) Does the degree of reuse play a role in a component’s
fault-proneness or change-proneness? Our research indicates

that components used in only one SPL product are the most

likely to change and have the highest fault densities of any

degree of reuse. Common components reused in all four

products had fault densities close to those used in three

products and higher Average CodeChurn.

(3) Do products developed later benefit from the devel-
opment and testing of earlier, more mature members of
the SPL? Furthermore, can the number of faults in the
variation components of subsequent products be predicted
using data collected from earlier products? Our results

suggest that later products do benefit from the faults fixed in

the components they share with other concurrently or pre-

viously developed products. This provides some empirical

support for the assumption that is at the heart of product

190189

line development, namely, that through structured reuse of

core, common components, the subsequent products will be

less fault-prone and require less time and effort to develop

and test. However, reused components also experienced

an increased number of New Features and Improvements,

which were introduced to accommodate requirements due

to the introduction of new products. We also showed that,

in the SPL studied, the data from more mature products

could be used to build a model that predicts the number

of faults in subsequent products. Models developed in this

manner might provide developers with fault prediction tools

that are specialized for their specific SPL and could be useful

in pinpointing those components that will likely exhibit the

highest number of faults.

These results suggest three lessons learned that may affect

other product lines. First, the finding that change metrics are

more highly correlated to faults than are static code metrics

helps make the case that rigorous change control is central

to the quality of product line products. Second, the finding

that there is a spectrum of component reuse (ranging from

commonalities through high-reuse, low-reuse, and single-

use components, see Figure 1), with significant, measurable
differences among their fault profiles, tends to confirm that

the high degree of planned reuse in product line development

enhances the quality of products. Lastly, even in the context

of the systematic reuse in a software product line, existing

products are changed to accommodate new requirements,

sometimes due to products that are gradually introduced into

the product line. The sustainability of a product line over

time seems to depend on consistent, ongoing reuse with a

few, cohesive variations.

We conclude the paper with a remark that a centralized
repository with product-line data would help overcome the

notable lack of empirical data for product lines that hampers

product line research. It is encouraging that the plan for

the product line used here is to release at least some of its

products as open-source in the future, which could benefit

both product-line research and teaching.

ACKNOWLEDGEMENTS

This work was supported by National Science Foundation

grants 0916275 and 0916284 with funds from the American

Recovery and Reinvestment Act of 2009. We thank David

Weiss for his help in accessing the PolyFlow data.

REFERENCES

[1] www.computer.org/portal/pages/seportal/subpages/sedefinitions.html
[2] C. Andersson and P. Runeson, “A replicated quantitative

analysis of fault distributions in complex software systems,”
IEEE Trans. on Softw. Eng., vol. 33, pp. 273–286, May 2007.

[3] B. Boehm and V. R. Basili, “Software defect reduction top
10 list,” Computer, vol. 34, pp. 135–137, January 2001.

[4] G. Chastek, J. McGregor, and L. Northrop, “Observations
from viewing Eclipse as a product line,” in 3rd Int’l Workshop
on Open Source Software and Product Lines, pp. 1–6, 2007.

[5] N. E. Fenton and N. Ohlsson, “Quantitative analysis of faults
and failures in a complex software system,” IEEE Trans. on
Softw. Eng., vol. 26, pp. 797–814, 2000.

[6] W. B. Frakes and G. Succi, “An industrial study of reuse,
quality, and productivity,” J. Syst. Softw., vol. 57, pp. 99–106,
2001.

[7] M. Hamill and K. Goseva-Popstojanova, “Common trends in
software fault and failure data,” IEEE Trans. on Softw. Eng.,
vol. 35, pp. 484–496, 2009.

[8] T. Khoshgoftaar and J. Munson, “Predicting software devel-
opment errors using software complexity metrics,” IEEE J.
Selected Areas in Communications, vol. 8, no. 2, pp. 253–
261, 1990.

[9] D. G. Kleinbaum, L. L. Kupper, and K. E. Muller, Eds.,
Applied regression analysis and other multivariable methods.
PWS Publishing Co., Boston, MA 1988.

[10] S. Krishnan, R. R. Lutz, and K. Goševa-Popstojanova, “Em-
pirical evaluation of reliability improvement in an evolving
software product line,” in 8th Working Conf. on Mining
Software Repositories (MSR’11), pp. 103–112, 2011.

[11] S. Krishnan, C. Strasburg, R. R. Lutz, and K. Goševa-
Popstojanova, “Are change metrics good predictors for an
evolving software product line?” in 7th Int’l Conf. on Pre-
dictive Models in Softw. Eng., pp. 7:1–7:10, 2011.

[12] W. Lim, “Effects of reuse on quality, productivity, and eco-
nomics,” IEEE Software, vol. 11, no. 5, pp. 23 –30, 1994.

[13] P. Mohagheghi, R. Conradi, O. Killi, and H. Schwarz, “An
empirical study of software reuse vs. defect-density and
stability,” in 26th Int’l Conf. on Softw. Eng. (ICSE ’04), pp.
282 – 291, May 2004.

[14] P. Mohagheghi and R. Conradi, “An empirical investigation
of software reuse benefits in a large telecom product,” ACM
Trans. Softw. Eng. Methodol., vol. 17, pp. 13:1–13:31, 2008.

[15] R. Moser, W. Pedrycz, and S. G., “A comparative analysis
of the efficiency of change metrics and static code attributes
for defect prediction,” in 30th Int’l Conf. on Softw. Eng.
(ICSE’08), pp. 181–190, May 2008.

[16] J. Munson and T. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Trans. on Soft. Eng., vol. 18, no. 5, pp. 423–
433, 1992.

[17] N. Nagappan and T. Ball, “Use of relative code churn
measures to predict system defect density,” in 27th Int’l Conf.
on Softw. Eng.(ICSE ’05), pp. 284–292, 2005.

[18] N. Nagappan, T. Ball and A. Zeller, “Mining metrics to
predict component failures,” in 28th Int’l Conf. on Softw. Eng.
(ICSE ’06), pp. 452–461, 2006.

[19] T. J. Ostrand, E. J. Weyuker and R. M. Bell, “Predicting
the location and number of faults in large software systems,”
IEEE Trans. on Soft. Eng., vol. 31, no. 4, pp. 340–355, 2005.

[20] R. Selby, “Enabling reuse-based software development of
large-scale systems,” IEEE Trans. Softw. Eng., vol. 31, no. 6,
pp. 495–510, 2005.

[21] W. M. Thomas, A. Delis, and V. R. Basili, “An analysis of
errors in a reuse-oriented development environment,” J. Syst.
Softw., vol. 38, pp. 211–224, 1997.

[22] D. M. Weiss and C. T. R. Lai, Software product-line engineer-
ing: a family-based software development process. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, 1999.

[23] D. M. Weiss, J. J. Li, H. Slye, T. Dinh-Trong, and H. Sun,
“Decision-model-based code generation for SPLE,” Int’l Soft-
ware Product Line Conf., pp. 129–138, 2008.

[24] W. Zhang and S. Jarzabek, “Reuse without compromising per-
formance: Industrial experience from RPG software product
line for mobile devices,” 9th Int’l Conf. Software Product
Lines, pp. 57–69, 2005.

[25] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting de-
fects for Eclipse,” in 3rd Int’l Workshop on Predictor Models
in Softw. Eng. (PROMISE’07), pp. 9–, 2007.

191190

