The Effect on Network Flows-based Features and
Training Set Size on Malware Detection

Jarilyn M. Herndndez Jiménez, Katerina Goseva-Popstojanova

Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506

jhernan7 @mix.wvu.edu, katerina.goseva@mail.wvu.edu

Abstract—Although network flows have been used in areas
such as network traffic analysis and botnet detection, not many
works have used network flows-based features for malware
detection. This paper is focused on malware detection based on
using features extracted from the network traffic and system
logs. We evaluated the performance of four supervised machine
learning algorithms (i.e., J48, Random Forest, Naive Bayes, and
PART) for malware detection and identified the best learner.
Furthermore, we used feature selection based on information
gain to identify the smallest number of features needed for
classification. In addition, we experimented with training sets
of different sizes. The main findings include: (1) Adding network
flows-based features improved significantly the performance of
malware detection. (2) J48 and PART were the best performing
learners, with the highest F-score and G-score values. (3) Using
J48, the top five features ranked by information gain attained
the same performance as when using all 88 features. In the case
of PART, the top fourteen features ranked by information gain
led to the same performance as when all 88 features were used.
None of the system logs-based features were included in these
two models. (4) The classification performance when training on
75% of the data was comparable to training on 90% of the
data. As little as 25% of the data can be used for training at an
expense of somewhat higher, but not very significant performance
degradation (i.e., less than 7% for F-score and 6% for G-score
compared to when 90% of the data were used for training).

Index Terms—malware detection, network traffic-based fea-
tures, network flows, system logs-based features, supervised
machine learning.

I. INTRODUCTION

Polymorphic malware can bypass signature-based detection
methods by slightly changing the instructions of the existing
malware. These new malware variants appear to be different
programs from the viewpoint of signature-based anti-virus
scanners, and cannot be identified until their signatures are
incorporated into the detection software [1].

Previous works have attempted to address this problem by
using other methods that are more powerful than signature-
based detection, such as byte frequency [2], byte random-
ness [3], and behavioral analysis [4]-[6]. The byte frequency
of software refers to the frequency of the different unsigned
bytes in the corresponding file, while byte randomness refers
to the bytes distribution value of the instruction sequences that
are obtained from randomness tests. The behavioral analysis
is based on the identification of the actions performed by the
malware examples rather than on their binary code patterns.
The behavior of a software application, including a malicious

978-1-5386-7659-2/18/$31.00 (©2018 IEEE

application, can be characterized by its system and network
activities. Extracting behavioral features is more expensive
in comparison to code-based features, since the behavioral
analysis of the binary is required. However, the behavioral
properties are more resilient against evasion attacks in com-
parison to code-based characteristics.

Network flows have been used in areas such as network
traffic analysis [7]-[20]. However, most of these works were
focused on network traffic classification for botnet detec-
tion [7]-[11], [19], [20], malware detection on Android de-
vices [12], [13], worms detection [14], [15], and for detection
of other types of malware (i.e., trojans and viruses) [16],
[17]. Additionally, using both network traffic and system logs
data was explored in [15], [18]. It should be emphasized
that these works have done classification of the network
traffic to malicious and non-malicious [7]-[20], while we are
classifying software binaries as malware and non-malicious
software. Specifically, we use the behavioral characteristics,
both network traffic-based and system logs-based, for malware
detection.

For our experiments, we selected examples of recent mal-
ware, including viruses, worms, trojans, backdoors, rootkits,
and ransomware. In the case of the non-malicious software,
we used some applications that are network intensive and other
that are CPU and memory usage intensive. We used our own
testbed to collect both the network traffic data and system
logs while the malware and non-malicious software ran on
the experimental machine. Both the network traffic data and
system logs were pre-processed and seventy eight network
traffic related features (i.e., 18 commonly used network traffic-
based features and 60 network flows-based features) and ten
system logs-based features were extracted.

Our machine learning experiments for malware detection
were based on using four supervised machine learning algo-
rithms (i.e., J48, Random Forest, Naive Bayes, and PART) and
comparing their performance. We used ten-fold cross valida-
tion for the these experiments. In addition, we used feature
selection based on information gain to identify the smallest
number of features needed for successful classification. We
also experimented with training sets of different sizes.

This work explores the following research questions:
RQ1: Does the network flows-based features improve the

performance of malware detection? What is (are) the best
performing learner(s)?

RQ2: What is the smallest number of features sufficient
to successfully distinguish malware from non-malicious
software? What are the types of the best predictor fea-
tures?

RQ3: How much data must be set aside for training in order
to attain acceptable detection results?

The contributions of this paper are as follows:

e Most of the previous works that have used network
flows-based features [7]-[20] have done classification
of the network traffic, while our study is focused on
classifying the software running in a machine as malware
and non-malicious software using the extracted dynamic
behavioral features (i.e., network traffic-based features
and system logs-based features).

« Feature selection methods were not commonly used by
previous works on malware detection, with an exception
of [16]. Determining a small subset of features that can
provide predictions as good as when all features are
used has a practical usefulness and importance because
it allows building more efficient models.

« We experimented with different sizes of the training set
(i.e., 90%, 75%, 50%, and 25% of the data) and found that
smaller training sets produced very good classification
results. Specifically, using 75% of the data for training
has only slightly worse performance compared to when
using 90% of the data for training (which is the standard
ten-fold cross validation approach). Somewhat worse, but
still very good classification performance was achieved
with as little as 25% of the data used for training. This
aspect of our work has a practical value because the
manual labeling of the training set is a tedious and time
consuming process.

The main findings of our work include:

¢ Adding network flows-based features provided better per-
formance than using the baseline feature vector consisting
of a combination of commonly used network traffic-based
features and system logs-based features.

o J48 and PART were the best performing learners, with
the highest F-score and G-score values.

« Relatively small number of features was sufficient to
distinguish malware from non-malicious software. Specif-
ically, for J48 the top five features ranked by information
gain provided same performance as using all 88 features,
while for PART the top fourteen features ranked by
information gain led to same performance as using all
88 features. None of the system logs-based features were
included in these two models.

o The performance of training with 75% of the data was
comparable to using 90% of the data for training. As
little as 25% of the data can be used for training if one
is willing to sacrifice some of the performance (i.e., less
than 7% for F-score and 6% for G-score compared to
when 90% of the data were used for training).

The rest of this paper is organized as follows. Related
work is summarized in Section II and our experimental set-
up and data collection process are described in Section III.
The feature extraction process is presented in Section IV. Our
machine leaning approach for malware detection is presented
in Section V. Results are discussed in Section VI. Finally, the
conclusion is presented in Section VII.

II. RELATED WORK

Various works have explored malware detection using ma-
chine learning techniques [21], [22]. Here, we present a
literature review of those approaches that used network traffic
classification [7]-[20] and system logs [23]-[27] for malware
detection.

Network flows-based features have been mainly used for
detection of botnets [7]-[11], [19], [20]. In the case of mal-
ware detection, network flows-based features have not been
extensively explored, except for a few works that focused on
network traffic classification for malware detection in Android
devices [12], [13], detection of worms [14], [15], and detection
of other types of malware such as trojans and viruses [16],
[17]. From these approaches the methods used by Dubendorfer
et al. [14], Dressler et al. [15], Bekerman et al. [16], and Yeo et
al. [17] are the most relevant to our work as they used similar
network flows-based features and malware types that are used
in our work.

Dubendorfer et al. [14] proposed an approach that used net-
work flows from high speed Internet backbones demonstrating
worms can be detected by tracking the cardinality of sudden
changes in the network traffic. Dressler et al. [15] developed
a pattern based on the correlation of flow-based features with
system logs data for worms detection. Bekerman et al. [16]
presented a malware detection approach that classified mali-
cious and non-malicious network traffic recorded in sandbox
environments and in real networks, while Yeo et al. [17] used a
convolution neural network to detect network flows generated
by botnets, trojans, and viruses.

System logs monitoring has also been used for malware
detection [23]-[27]. From these works, the approaches pro-
posed by Arpan et al. [26] and Ozsoy et al. [27] are the most
relevant to our work as they used similar system changes
triggered by malware as those used in this paper. Arpan et
al. [26] compared the lookup table from the experiment and
raw log files based on common attributes like event ID, event
source, and event description. They focused on changes caused
by the Service Control Manager (SCM) and in those system
services that were stopped and/or installed. Similarly, Ozsoy
et al. [27] proposed a malware detection approach that used
features based on machine code, memory address patterns, and
architectural events such as the frequency of memory reads
and/or writes.

Combining system logs with network traffic data has been
explored by Masud et al. [18] for detection of botnets and by
Dressler et al. [15] for detection of worms. In both works,
network flows-based features were extracted by aggregating
the packet level features.

There are several main differences that distinguish our work
from previous approaches:

e Several methods [14]-[17] used network flows-based
features for detection of worms, trojans, and viruses. For
the work in this paper, we used recent malware samples
from 2011-2017. Most of them, particularly ransomware
samples, communicated with a command and control
server.

« For the system logs features, previous approaches focused
on which services were triggered by malware [26] and
on the analysis of features extracted from machine code
and/or memory [27]. In this paper, our system logs-based
features are focused on changes that occur in the file
system, the registry, and the system processes.

« Feature selection methods were not commonly used by
previous works, with an exception of [16]. Our results
showed that using a small subset of features is sufficient
to provide as good predictions as if all features were
used, thus leading to more efficient prediction models.
Furthermore, network traffic-based features were better
predictors than the system logs-based features.

« It appears that none of related works have experimented
with different sizes of training sets. Our results showed
that using 75% of the data for training had comparable
performance to using 90% of the data for training (which
is the standard ten-fold cross validation approach). Using
as little as 25% of the data for training led to somewhat
worse, but still very good classification performance
with less than 7% degradation of the F-score and 6%
degradation of the G-score compared to when 90% of
the data were used for training.

III. EXPERIMENTAL SET-UP AND DATA COLLECTION

The objective of our experiments was to collect the network
traffic data and system logs while running different malware
and non-malicious applications on a general-purpose com-
puter. The experiments were conducted on a Dell OptiPlex
755 computer with a clean installation of 32-bit Windows 7
Ultimate. The experimental machine had unfiltered Internet ac-
cess, which is crucial for the malware samples to perform their
full functionality, as most malware initiates network traffic
(e.g., contacts the command and control servers). We designed
a segregated network, which consisted of the experimental
machine, the data collection repository machine, a switch, and
a cellular data connection, as shown in Figure 1. The data
collection repository was connected to the personal hotspot,
and then through a network switch the wireless connection
was shared with the experimental machine. The advantages
from the use of a segregated network are: (1) allowing the
malware to behave normally, while avoiding the possibility
of infecting other machines on the network, and (2) allowing
us to monitor and record the experimental machine’s network
traffic.

Several software tools were used for the experimental de-
sign. We used ClockSynchro [28] to synchronize the clocks

Network switch

@

Experimental
machine

Personal
hotspot

Data collection
repository

Figure 1: Experimental set-up

of the experimental machine and the data collection repository
machine. We also used Wireshark [29], which ran on the data
repository machine to collect the network traffic data. We used
CaptureBAT [30] to collect the system logs (i.e., changes in
the Windows operating system when either malware or non-
malicious software was running on the experimental machine).
Finally, we used the Clonezilla application [31] to ensure that
the hard drive of the experimental machine contained a clean
(i.e., uninfected) copy of the Windows operating system. Note
that running malware and non-malicious software separately
is a standard experimental set-up used by many malware
detection approaches (e.g., [21], [22], [32]).

Each malware used in our experiments was executed in
a virtual machine (on the experimental machine) to ensure
that it was not corrupted and that it was functional for the
Windows operating system. Also, we used the behavioral
reports generated by a malware analysis service [33] to ensure
the malware chosen for our experiments was entirely removed
from the hard disk drive after formatting the machine using
the Clonezilla tool. Malware was executed manually to infect
the experimental machine. We used great care to allow mal-
ware to behave as intended. For each malware example, we
ensured that it was active by monitoring the network traffic
and by observing events such as files being encrypted, pop-
ups with adult content, etc. The malware selected for our
experiments have traits of viruses (e.g., Dexter [34]), worms
(e.g., Gamarue [35]), trojans (e.g., Tofsee [36]), backdoors
(e.g., Greencat [37]), rootkits (e.g., Alureon [38]), and ran-
somware (e.g., Locky [39]). Note that we used different types
of malware to have a representative, diverse malware sample.
Distinguishing among different malware types and/or malware
families are beyond the scope of this paper.

In the case of the non-malicious software, we used ap-
plications such as Chrome [40], VLC [41], Windows Media
Player [42] and benchmark tools such as IntelBurnTest [43],
HeavyLoad [44], and XtremeMark [45]. Note that we used
different types of non-malicious applications (some network
intensive, other CPU and memory usage intensive). Further-
more, we ensured that each non-malicious application was
provided with adequate inputs/workloads. For example, we
used Chrome to navigate the Internet which generated network
traffic, while IntelBurnTest was used to stress the CPU of the
experimental machine.

Considering the randomness of different Windows oper-
ating system background processes, each malware and non-
malicious software application was executed three times. Each
ran lasted for thirty minutes. For each run, one .pcap and one
system log file were collected. Note that other works that used
behavioral characteristics for malware detection have executed
the malware for five minutes in a controlled environment [46].

IV. FEATURE EXTRACTION

After the data collection, both the system logs and the
network traffic data were pre-processed and subsequently
features were extracted.

A. System Logs

System logs (also known as syslogs) contain events that are
logged by components of the operating system (OS). Syslogs
are useful because they contain information about the software,
hardware, system processes, and system components, as well
as information on errors and warning events related to the OS.

We used CaptureBAT [30] to collect the system logs from
the Windows OS. CaptureBAT monitors the file system, the
registry, and the system processes. The file system monitor
captures information such as the timestamp when the event
occurred and the event type (e.g., read and/or write). The
registry monitor focuses on the Windows Registry and captures
events such as when a registry key is opened, modified, and/or
deleted. The process monitor observes the creation and/or
termination of processes. Note that the events recorded during
our experiments are from the application-level (i.e., Ring 3).
This means that we recorded all the system changes related to
the code that ran outside the operating system’s kernel [47].
We selected CaptureBAT because it has an exclusion list
mechanism that allows to omit noise that occurs naturally
in the system. Moreover, this tool has been recommended
for conducting dynamic malware analysis [48]. CaptureBAT
generated a text file for each run, which was then converted
to a CSV file, pre-processed, and subsequently used to extract
the system logs-based features listed in Table I.

TABLE I: System logs-based features extracted for each thirty
minutes run of malware and non-malicious software

Feature name Description

Changes # of changes that occurred in the system

FileChgs # of changes in the file system

RegistryChgs # of changes in the registry

ProcessesChgs # of changes in the process manager

FlsWrite # of written files

FlsDelete # of deleted files

CreatedPrcs # of created processes

TerminatedPrcs # of terminated processes

SetValueKeyChgs # of times a method replaced or created a value
entry under the open key

DelValueKeyChgs # of times a method deleted a value entry under
the open key

B. Network Traffic

The .pcap file of each run (collected using Wireshark [29])
was first exported as a CSV file. Subsequently, we extracted
the commonly used network traffic-based features listed in

Table II. Another important aspect of the data pre-processing
concerns the flow decomposition of traces. Network flows can
be defined as a summary of a connection between two hosts.
Specifically, a network flow is defined using the following 5-
tuple:
(ip_src, ip_dest, port_src, port_dst, and proto),

where ip_src refers to the source IP address, ip_dest refers to
the destination IP address, port_src refers to the source port
number, port_dst refers to the destination port number, and
proto refers to the used protocol.

There are many tools that can be used to extract network
flows from a .pcap file. For our work, we used Tranalyzer [49],
a lightweight unidirectional flow exporter that collects packet
information with common characteristics such as IP addresses
and port numbers. This tool was chosen over the others for
three reasons: (i) It is an extension of Netflow [50] which has
been widely used by the research community as a flow exporter
(aggregates packets into flows and export flow records) and as
a flow collector (storage and pre-processing of flow data); (ii)
It supports features that can be categorized into time, inter-
arrival, packets and bytes, and flags groups; (iii) It has been
used by previous works [19], [20] for detection of botnets.

Since multiple flows (typically over 100) were generated
for each individual .pcap file, we performed aggregation of
the network flows-based features to achieve our final network
flows-based features. The list of the network flows-based
features and the corresponding aggregation levels are given
in Table III.

TABLE II: Commonly used network traffic-based features
extracted for each thirty minutes run of malware and non-
malicious software

Feature name Description

Packets # of received packets

BytesTransferred Packets length in bytes

UniqueSourcelP IP address of the device sending the packet
UniqueDestIP IP address of the device receiving the packet
LLMNR # of packets related to LLMNR

UDP # of packets related to UDP

ARP # of packets related to ARP

BROWSER # of packets related to BROWSER

NBNS # of packets related to NBNS

DHCP # of packets related to DHCP

DHCPV6 # of packets related to DHCPV6

DNS # of packets related to DNS

HTTP # of packets related to HTTP

ICMP # of packets related to ICMP

ICMPV6 # of packets related to ICMPV6

IGMPV3 # of packets related to IGMPV3

SSDP # of packets related to SSDP

TCP # of packets related to TCP

V. MACHINE LEARNING APPROACH

Common way of doing malware detection is based on using
the feature vectors extracted from malware and non-malicious
software as inputs to different classification techniques (such
as machine learning and statistical analysis techniques). In this
paper, we conducted a series of machine learning experiments
for malware detection. The objective of our machine learn-
ing experiments was to classify between malware and non-
malicious software.

TABLE III: Network flows-based features extracted for each
thirty minutes run of malware and non-malicious software

Feature name Description Aggregation levels
Flows # of flows None
Duration Time communication lasted Max, Avg
L4ProtoUDP # of flows related to UDP None
L4ProtoIGMP # of flows related to IGMP None
L4ProtoTCP # of flows related to TCP None
L4ProtoICMP # of flows related to ICMP None
PktsSent # of transmitted packets Sum, Max, Avg
PktsRevd # of received packets Sum, Max, Avg
BytesSnt # of transmitted bytes Sum, Min, Max, Avg
BytesRevd # of received bytes Sum, Max, Avg
MinPktSize Min layer 3 packet size Min
MaxPktSize Max layer 3 packet size Max
AvgPktSize Avg packet load ratio Avg, Median
StdPktSz Std packet load ratio Std
Pktps Packets sent per second Max, Avg
Bytps Bytes sent per second Max, Avg
PktAsm Packet stream asymmetry Min, Avg
BytAsm Byte stream asymmetry Min, Avg
TcpPSeqCnt TCP packet sequence count Max, Avg
TcpSeqSntBytes | TCP sent sequence diff bytes Max, Avg
TcpSeqFaultCnt | # of TCP sequence fault count | Max, Avg
TcpPAckCnt TCP packet ack count Max, Avg
TcpFILAcRcByt | TCP flawless ack received | Max, Avg
bytes
TcpAckFaultCnt | # of TCP ack fault count Max, Avg
TcplnitWinSz TCP initial window size Max, Avg
TcpAveWinSz TCP avg window size Avg, Median
TcpWinSzDwCn | TCP window size change | Max, Avg
down count
TcepWiSzUpCnt | TCP window size change up | Max, Avg
count
TcpWiSzChDiCn| TCP window size direction | Max, Avg
change count
FlowDirA Flows direction is clnt to srvr | None
FlowDirB Flows direction is srvr to clnt None
AvgIAT Average of IAT Avg, Median
StdIAT Standard deviation of IAT Std

The baseline feature vector was created by combining the
system logs-based features (given in Table I) and the com-
monly used network traffic-based features (given in Table II).
Then, we added the network flows-based features (given in
Table III) to the baseline feature vector to study their effect
on the malware detection. Note that any feature (regardless of
the type) which had all instances equal to 0 was removed from
the learning process.

For classification, we used four supervised machine learning
algorithms (i.e., J48, Random Forest, Naive Bayes, and PART)
of different types, with a goal to identify the best performing
learner(s). Table IV lists the names and types the four learners
used in this work.

TABLE IV: Name and type of each learner used for this work

Learner
J48 [51]
Random Forest (RF) [52]
Naive Bayes (NB) [53]
PART [54]

Type
Tree
Ensemble Tree
Bayes Theorem
Rule + Tree

The J48 learner is an open source Java implementation of
the C4.5 decision tree algorithm developed by Ross Quin-
lan [51]. Random Forest is an ensemble learning method that
operates by constructing a multitude of decision trees and

outputs the average prediction of the individual trees [52].
Naive Bayes is an algorithm based on the Bayesian theorem
in which numeric estimator precision values are chosen based
on analysis of the training data [53]. PART is a hybrid rule-
and-tree algorithm that builds a partial C4.5 decision tree in
each iteration and makes the “best” leaf into a rule [54]. We
used the implementations of these four learners provided in
Weka [55].

For malware detection experiments, we used ten-fold cross
validation, which consists of using nine folds of the labeled
malware and non-malicious software instances for training
(i.e., 90% of the data) and the tenth fold (of unseen) malware
and non-malicious instances for testing. We also experimented
with smaller training set sizes (i.e., 75%, 50%, and 25% of
the data).

To evaluate the learners performance, we used several
metrics computed from the confusion matrix:

Actual: Actual:
Non-malicious | Malware
Predlct'efi: N FN
Non-malicious
Predicted:
Malware FP v

where TN, FN, FP, and TP refer to the numbers of true
negatives, false negatives, false positives, and true positives,
respectively. We compute the following performance metrics
that assess different aspects of the classification:

Accuracy = (TP +TN)/(TP+TN+FP+FN) (1)
Recall=TP/(TP + FN) (2)
Precision = TP/(TP + FP) 3)
FPR = FP/(FP + TN) (4)

2 - Precision - Recall
Foscore = Precision + Recall)

2- -(1-FP

G-score = Recall - R) (6)

Recall + (1 — FPR)

The accuracy (see Equation (1)) provides the percentage
of instances that were detected correctly. The Recall, defined
by Equation (2), is the ratio of detected malware to all
malware instances. Precision (see Equation (3)) determines
the fraction of instances correctly classified as malware out of
all instances classified as malware. False Positive Rate (FPR),
defined by Equation (4), is the ratio of non-malicious software
applications misclassified as malware to the number of all non-
malicious applications. Values of all metrics are in the interval
[0,1]. Ideally, a good classifier would have Accuracy, Recall,
and Precision of 1 and FPR of 0.

In addition to these metrics, we used two composite metrics:
F-score and G-score. The F-score, defined by Equation (5),
is the harmonic mean of the Recall and Precision. Similarly,
G-score, given by Equation (6), is the harmonic mean of
Recall and (1 — F'PR). Larger values of F-score and G-score
correspond to better learner performance. An ideal learner
would have both F-score and G-score of 1.

VI. RESULTS

In this section we present the main findings as they pertain
to the research questions given in Section I.

A. RQI: Does the network flows-based features improve the
performance of malware detection? What is (are) the best
performing learner(s)?

To answer this research question, we compared the learn-
ers performance when the baseline features were used (see
Figure 2) and when the network flows-based features were
added to the baseline feature vector (see Figure 3). Because
low FPR indicates better performance, 1 — F'PR is shown
in these Figures. The range of performance metrics for both
Figures 2 and 3 is from 0.5 to 1.

and F-score (shown in Table VI). Note that IQR is a measure
of statistical dispersion, being equal to the difference between
75" and 25" percentiles.

In case of G-score, when network flows-based features were
added to the baseline feature vector, J48, Random Forest, and
PART showed a significant improvement of the mean and
median G-score, as well as smaller variance and IQR. On the
other side, the Naive Bayes algorithm experienced degradation
of the G-score when all features were used. This was due to the
increased F'P R, which likely was a result of the fact that this
learner assumes that features are conditionally independent
from one another.

In the case of F-score, the performance of all learners
was improved when using all features compared to when the
baseline feature vector was used, that is, they had significantly

10 & . higher mean and median F-scores and smaller variance and
0.95 1 @ & f % . B & . IQR. Note that the F-score of the Naive Bayes algorithm had
0.90 4 é i + é@@ @ | significantly smaller mean and median values than the other
% % three algorithms.
0.85 . . .
i In summary, when all features were used for classification,
8 080+ 1 J48 and PART were the best performing learners. PART had
5075_ g | sightly higher median G-score than J48 (0.950 compared to
e 0.941), while they had similar median F-score values (0.973
O 070 = - .
and 0.972, respectively).
0.65 . . .
& TABLE V: Basics Statistics of G-score
0.60 4 7 Baseline All Features
055 4 | Learners||Mean|Median| Variance | IQR |[Mean|Median| Variance | IQR
J48 0.886] 0.888 [3.12 - 10— %[0.014[]0.941] 0.941 [1.21 - 10— %|0.013
0.50 N RandomForast Navve Baves SART RF 0.888] 0.889 (3.94 - 10—4|0.019(|0.908| 0.911 [5.25 - 10—2|0.008
=A Recal Precioi p FPRy 5 S] NB 0.738] 0.740 |5.23 - 10—2|0.019(|0.545| 0.550 [2.17 - 10—*|0.029
couracy il Recall gl Precision il 1-FPR [l F-score) G-score PART |[0.866| 0.872 |5.70 - 10~4(0.037]{0.947| 0.950 |1.83 - 10~|0.016

Figure 2: Box plots of the learners’ performance metrics for
the baseline feature vector

TABLE VI: Basic Statistics of F-score

Baseline All Features
1.00 % = Learners||Mean|Median| Variance | IQR |[Mean|Median| Variance | IQR
% & & s Y k3 %@@ 2] J48 0.939] 0.942 [1.25 - 10~%[0.015[[0.973] 0.972 [3.69 - 10‘? 0.005
0957 & F3 81 |re 0.951| 0.951 |6.10 - 10~5|0.008|0.965| 0.965 |7.40 - 10~6|0.002
090 i &] |nB 0.747| 0.748 [4.11-1075/0.011[0.871| 0.871 [6.21 - 10~5]0.002
- PART]/0.923] 0.924 |1.97 - 10*]|0.018]/0.972] 0.973 |5.78 - 10-°|0.011
0.85 + -

8 040 T 1 B. RQ2: What is the smallest number of features sufficient

g, to successfully distinguish malware from non-malicious soft-

£ 0.75 4 4 .

8 ware? What are the types of the best predictor features?

[0 4 = . . .

a 070 To answer this research question we used feature selection
0.65 8 method on all features (i.e., the combined set of baseline
0.60 4] features and network flows-based features). Specifically, we

used a feature selection method called information gain [56],

0.55 4 - . ..
f which ranks the features from the most descriptive to the least
0.50 T RandomForest Narve Bayes SART descriptive using the information gain as a measure. Table VII

shows all features by their ranking order.

To determine the smallest number of features that can be
used for malware detection without performance degradation
we used the following approach. We started building the model
with the highest ranked feature and included one feature at a
time until reaching less than or equal to 1% difference of the
Recall compared to when all 88 features were used.

For J48, the top five features ranked by information gain
provided similar performance as when using all 88 features.

E Accuracy [IT]] Recall EE Precision [1-FPR [III] F-score [EEH G—score\

Figure 3: Box plots of the learners’ performance metrics for
all features (i.e., baseline feature vector + network flows-based
features). Note that since 1 — F' PR for Naive Bayes was below
0.5, it is not shown in this figure.

In addition to box plots shown in Figures 2 and 3, we
used the basic statistics (i.e, mean, median, variance, and
interquartile range (IQR)) for the G-score (given in Table V)

Four out of the five features were network flows-based fea-
tures. In the case of PART, the first fourteen features ranked
by information gain led to similar performance as when using
all 88 features. Six out of the fourteen features were network
flows-based features. In general, network traffic-based features
were better predictors than the system logs-based features,
which were not included in any of these two models. (The
top most system logs-based feature was ranked the forty first,
as shown in Table VII.)

TABLE VII: All features ranked using information gain. Fea-
tures in gray are network flows-based features, bold features
are system logs-based features and the remaining features are
the commonly used network traffic-based features.

Rank | Feature Rank|Feature

1 BytesSntMax 45 |TcpWinSzDwnCntMax
2 PktsSentSum 46 | TcpPAckCntMax

3 PktsSentMax 47 |FlowDirB

4 Packets 48 | TcpFILAcRcBytMax
5 BytesSntSum 49 |TcpAveWinSzAvg

6 L4ProtolGMP 50 [MinPktSizeMin

7 SSDP 51 |DNS

8 NBNS 52 |PktpsMax

9 ARP 53 [BytAsmAvg

10 UDP 54 |TcpWinSzUpCntMax
11 BytesSntAvg 55 |FileChgs

12 IGMPV3 56 |FlsWrite

13 ICMPV6 57 |TcpSeqFaultCntMax
14 TCP 58 |PktpsAvg

15 PktsRevdSum 59 |L4ProtoUDP

16 DurationAvg 60 |TcpPSeqCntAvg

17 BytesTransferred 61 |TcpWnSzChgDiCnMax
18 AvgPktSizeAvg 62 [TcpPAckCntAvg

19 TcpAckFaultCntMax 63 |Changes

20 PktsSentAvg 64 |L4ProtolCMP

21 LLMNR 65 |AvglATAvg

22 BytesRcvdSum 66 |AvglATMedian

23 ICMP 67 |TerminatedPrcs

24 UniqueSourcelP 68 |ProcessesChgs

25 TcpAckFaultCntAvg 69 |CreatedPrcs

26 PktsRevdMax 70 |DHCPV6

27 FlowDirA 71 DHCP

28 BytesRcvdMax 72 [StdIATStd

29 BROWSER 73 |FlsDelete

30 TeplnitWinSzAvg 74 |HTTP

31 L4ProtoTCP 75 |MaxPktSizeMax

32 Flows 76 |TcpWnSzChDiCnAvg
33 AvgPktSizeMedian 77 | TcpSeqSntBytesMax
34 TeplnitWinSzMax 78 |PktAsmAvg

35 BytpsAvg 79 |PktAsmMin

36 BytesRcvdAvg 80 |BytpsMax

37 BytesSntMin 81 BytAsmMin

38 PktsRevdAvg 82 |TcpSeqSntBytesAvg
39 StdPktSzStd 83 [TcpWinSzUpCntAvg
40 TcpFILAcRcBytAvg 84 | TcpSeqFaultCntAvg
41 RegistryChgs 85 [TcpWnSzDwCnAvg
42 SetValueKeyChgs 86 |DurationMax

43 UniqueDestIP 87 |TcpAveWinSzMedian
44 TcpPSeqCntMax 88 |DelValueKeyChgs

C. RQ3: How much data must be set aside for training in

order to attain acceptable detection results?

Next, we focus on determining the amount of data that must
be set aside for training in order to produce good malware

detection results. For this part of our study, we restricted the
experiments to the best performing learners J48 and PART,
using all features. Table VIII shows the performance of J48
and PART using training sets with different sizes (i.e., 90%,
75%, 50%, and 25% of the data).

The results showed that the learners were able to produce
similar performance with 75% of the data used for training
as in the case when 90% of data were used for training,
which is the commonly used 10-fold cross validation machine
learning approach. The performance of the learners was more
significantly affected when 50% of the data were used for
training, with less than 3% degradation of the F-score and 5%
degradation of the G-score compared to when 90% of the data
were used for training. Even when only 25% of the data were
used for training the malware detection performance was still
satisfactory, with Accuracy, Precision, Recall, F-score, and G-
score all around or above 90% and less than 7% degradation
of the F-score and 6% degradation of the G-score compared
to when 90% of the data were used for training. It should
be noted that the FPR was significantly more affected by the
smaller sizes of the training set than any other performance
metric.

It appears that the amount of data used for training is
a trade-off between somewhat better results at an expense
of significantly more effort invested in labeling more data.
The fact that smaller training sizes led to successful malware
detection is an important result of our study, with a significant
practical value.

TABLE VIII: J48 and PART performance on training sets with
different sizes

Learner | Performance Metrics % of data used for training
90% 75% 50% 25%
Accuracy 96.11% | 94.74% | 92.56% | 92.13%
Precision 95.94% | 94.91% | 93.82% | 91.25%
J48 Recall 98.67% | 97.82% | 95.88% | 90.15%
FPR 10.00% | 12.61% | 15.36% | 10.23%
F-score 97.28% | 96.32% | 94.80% | 90.63%
G-score 94.13% | 92.26% | 89.69% | 89.43%
Accuracy 96.03% | 94.15% | 92.74% | 91.90%
Precision 96.72% | 94.35% | 93.98% | 91.85%
PART Recall 97.70% | 97.58% | 95.88% | 89.55%
FPR 8.00% | 14.06% | 14.78% | 9.93%
F-score 97.20% | 95.92% | 94.90% | 90.60%
G-score 94.75% | 91.33% | 90.15% | 89.20%

VII. CONCLUSION

In this paper we presented a malware detection approach
based on using dynamic features extracted from the network
traffic data and system logs, which were collected while
running malware samples and non-malicious software appli-
cations on our experimental testbed. For the machine learning
experiments we used two feature vectors: a baseline feature
vector consisting of the system logs-based features and the
commonly used network traffic-based features and another fea-
ture vector that integrated the baseline feature vector with the
network flows-based features (that is, consisted of all features).
Four supervised machine learning algorithms were used for
classification, using both the baseline feature vector and the

feature vector with all features. The main findings include: (1)
Adding network flows-based features improved significantly
the performance of malware detection. (2) J48 and PART were
the best performing learners, with the highest F-score and G-
score values. (3) Using J48, the first five features ranked by
information gain attained the same performance as when using
the all 88 features, while in the case of PART the first fourteen
features ranked by information led to same performance as
when the all 88 features were used. None of the system logs-
based features were included in these two models. (4) The
classification performance when training on 75% of the data
was comparable to training on 90% of the data. Using as
little as 25% of the data for training led to somewhat worse,
but still very good classification performance, with Accuracy,
Precision, Recall, F-score, and G-score all around or above
90% and less than 7% degradation of the F-score and and 6%
degradation of the G-score compared to when 90% of the data
were used for training.

As part of our future work, we plan to extract additional
features from both the network traffic data and system logs,
as well as to explore if the results presented in this paper
would generalize in a more diverse execution environment
with multiple machines.

ACKNOWLEDGMENT

This work is funded by the National Science Foundation
under the grant CNS-1618629. The authors thank Dr. Jef-
frey A. Nichols and Dr. Stacy Prowell from the Cyber and
Information Security Research group at Oak Ridge National
Laboratory (ORNL) for their support with the initial hardware
and software configuration of the experimental testbed.

REFERENCES

[1] P. O’Kane, S. Sezer, and K. McLaughlin, “Obfuscation: The hidden
malware,” IEEE Security & Privacy, vol. 9, no. 5, pp. 41-47, 2011.

[2] S. Yu, S. Zhou, and R. Yang, “Detecting malware variants by byte
frequency,” Journal of Networks, vol. 6, no. 4, pp. 638—645, Apr. 2011.

[3] S. Qi, M. Xu, and N. Zheng, “A malware variant detection method
based on byte randomness test,” Journal of Computers, vol. 8, no. 10,
pp. 2469-2477, 2013.

[4] J. M. Hernandez, A. Ferber, S. Prowell, and L. Hively, “Phase-space
detection of cyber events,” in /0th ACM Cyber and Information Security
Research Conference (CISRC), 2015, p. 13.

[5] M. Ahmadi, A. Sami, H. Rahimi, and B. Yadegari, “Malware detection
by behavioural sequential patterns,” Computer Fraud & Security, vol.
2013, no. 8, pp. 11-19, 2013.

[6] A. M. Fawaz and W. H. Sanders, “Learning process behavioral base-
lines for anomaly detection,” in IEEE 22nd Pacific Rim International
Symposium on Dependable Computing (PRDC), 2017, pp. 145-154.

[7]1 R. E. M. Dollah, M. Faizal, F. Arif, M. Z. Mas’ud, and L. K. Xin, “Ma-
chine learning for HTTP botnet detection using classifier algorithms,”
Journal of Telecommunication, Electronic and Computer Engineering,
vol. 10, no. 1-7, pp. 27-30, 2018.

[8] S. Ding, “Machine learning for cybersecurity: Network-based botnet
detection using time-limited flows,” 2017, unpublished.

[91 Z. B. Celik, J. Raghuram, G. Kesidis, and D. J. Miller, “Salting

public traces with attack traffic to test flow classifiers,” in 4th USENIX

Workshop on Cyber Security Experimentation and Test (CSET), 2011,

pp. 3-3.

D. Acarali, M. Rajarajan, N. Komninos, and I. Herwono, “Event graphs

for the observation of botnet traffic,” in 8th IEEE Annual Information

Technology, Electronics and Mobile Communication Conference (IEM-

CON), 2017, pp. 628-634.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]
[30]

[31]
[32]

D. Zhao, I. Traore, A. Ghorbani, B. Sayed, S. Saad, and W. Lu, “Peer
to peer botnet detection based on flow intervals,” in IFIP International
Information Security Conference (SEC). Springer, 2012, pp. 87-102.

A. Arora, S. Garg, and S. K. Peddoju, “Malware detection using network
traffic analysis in Android based mobile devices,” in 8th IEEE Confer-
ence on Next Generation Mobile Applications, Security and Technologies
(NGMAST), 2014, pp. 66-71.

S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and M. Conti, “Detecting
Android malware leveraging text semantics of network flows,” IEEE
Transactions on Information Forensics and Security, vol. 13, pp. 1096—
1109, 2018.

T. Diibendorfer and B. Plattner, “Host behaviour based early detection
of worm outbreaks in Internet backbones,” in /4th IEEE International
Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE), 2005, pp. 166-171.

F. Dressler, W. Jaegers, and R. German, “Flow-based worm detection us-
ing correlated honeypot logs,” in ITG-GI Conference in Communication
in Distributed Systems, 2007, pp. 1-6.

D. Bekerman, B. Shapira, L. Rokach, and A. Bar, “Unknown malware
detection using network traffic classification,” in IEEE Conference on
Communications and Network Security (CNS), 2015, pp. 134-142.

M. Yeo, Y. Koo, Y. Yoon, T. Hwang, J. Ryu, J. Song, and C. Park, “Flow-
based malware detection using convolutional neural network,” in /EEE
International Conference on Information Networking (ICOIN), 2018, pp.
910-913.

M. M. Masud, T. Al-Khateeb, L. Khan, B. Thuraisingham, and K. W.
Hamlen, “Flow-based identification of botnet traffic by mining multiple
log files,” in IEEE International Distributed Framework and Applica-
tions Conference, 2008, pp. 200-206.

F. Haddadi, D. Le Cong, L. Porter, and A. N. Zincir-Heywood, “On the
effectiveness of different botnet detection approaches,” in Information
Security Practice and Experience (ISPEC). Springer, 2015, pp. 121-
135.

F. Haddadi and A. N. Zincir-Heywood, “Benchmarking the effect of

flow exporters and protocol filters on botnet traffic classification,” IEEE
Systems Journal, vol. 10, no. 4, pp. 1390-1401, 2016.

N. Idika and A. P. Mathur, “A survey of malware detection techniques,”
Purdue University, vol. 48, 2007.

A. Souri and R. Hosseini, “A state-of-the-art survey of malware detection
approaches using data mining techniques,” Human-centric Computing
and Information Sciences, vol. §, no. 1, p. 3, 2018.

E. N. Yolacan, J. G. Dy, and D. R. Kaeli, “System call anomaly detection
using multi-HMMS,” in 8th IEEE International Conference on Software
Quality, Reliability and Security - Companion (QRS-C), 2014, pp. 25—
30.

R. S. Pirscoveanu, S. S. Hansen, T. M. Larsen, M. Stevanovic, J. M.
Pedersen, and A. Czech, “Analysis of malware behavior: Type classifi-
cation using machine learning,” in IEEE Cyber Situational Awareness,
Data Analytics and Assessment (CyberSA), 2015, pp. 1-7.

R. Canzanese, S. Mancoridis, and M. Kam, “System call-based detection

of malicious processes,” in IEEE International Conference on Software
Quality, Reliability and Security, 2015, pp. 119-124.

A. M. Sainju and T. Atkison, “An experimental analysis of Windows
log events triggered by malware,” in ACM SouthEast Conference, 2017,
pp. 195-198.

M. Ozsoy, C. Donovick, 1. Gorelik, N. Abu-Ghazaleh, and D. Pono-
marev, “Malware-aware processors: A framework for efficient online
malware detection,” in 2/st IEEE International Symposium on High-
Performance Computer Architecture (HPCA), 2015, pp. 651-661.
(2017) Clocksynchro. [Online]. Available: http://clocksynchro.com/
(2016) Wireshark. [Online]. Available: https://www.wireshark.org/

C. Seifert et al., “Capture—a behavioral analysis tool for applications
and documents,” Digital Investigation, vol. 4, pp. 23-30, 2007.

(2016) Clonezilla. [Online]. Available: http://clonezilla.org/

R. Tian, R. Islam, L. Batten, and S. Versteeg, “Differentiating malware
from cleanware using behavioural analysis,” in 5th IEEE International
Conference on Malicious and Unwanted Software (MALWARE), 2010,
pp- 23-30.

[33]
[34]
[35]
[36]
[37]

[38]

[39]
[40]
[41]
[42]
[43]
[44]

[45]

(2016) Payload Available:
hybrid-analysis.com/

L. Constantin. (2016) Dexter malware infects point-of-sale systems
worldwide, researchers say. [Online]. Available: https://goo.gl/b3Tvjy
(2016) Win32/gamarue. [Online]. Available: https:/malwarefixes.com/
threats/win32gamarue/

E. Kovacs. (2016) Tofsee malware distribution switched from exploit
kit to spam. [Online]. Available: https://goo.gl/zonRmP

(2016) What is GREENCAT-2? [Online]. Available: https://www.
solvusoft.com/en/malware/trojans/greencat-2/

E. Wrenn. (2012) Warning from FBI: If you have ‘Alureon’ virus on
your PC, you WILL get kicked off Internet on Monday. [Online].
Available: https://goo.gl/JCDc3K

(2016) Locky. [Online]. Available: https://nakedsecurity.sophos.com/
2016/02/17/1ocky-ransomwa-re- what- you-need- to-know/
(2016) Welcome to Chromium. [Online]. Available:
chromium.org/2008/09/welcome-to-chromium_02.html
(2017) VLC Media Player. [Online]. Available: https://www.videolan.
org/vic/

(2017) Windows Media Player. [Online]. Available: https://www.
computerhope.com/jargon/w/windows-media-player.htm

(2017) IntelBurnTest. [Online]. Available: https://www.majorgeeks.
com/files/details/intelburntest.html

(2017) HeavyLoad. [Online]. Available: https://www.jam-software.com/
heavyload/

(2017) XtremeMark. [Online]. Available: http://www.xtreme-lab.net/en/
xmark.htm

Security. [Online]. https://www.

https://blog.

[46]

[47]
[48]
[49]
[50]
[51]
[52]

[53]

[54]

[55]

[56]

P. Burnap, R. French, F. Turner, and K. Jones, “Malware classification
using self organising feature maps and machine activity data,” Comput-
ers & Security, vol. 73, pp. 399-410, 2018.

(2018) User space. [Online]. Available: https://en.wikipedia.org/wiki/
User_space

E. Gandotra, D. Bansal, and S. Sofat, “Malware analysis and classifica-
tion: A survey,” Journal of Information Security, vol. 5, no. 02, p. 56,
2014.

(2018) Tranalyzer. [Online]. Available: https://tranalyzer.com/

B. Claise, “Cisco systems Netflow services export Version 9,” Tech.
Rep., 2004.

J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5-32, 2001.

G. H. John and P. Langley, “Estimating continuous distributions in

bayesian classifiers,” in 11th Conference on Uncertainty in Artificial
Intelligence (UAI), 1995, pp. 338-345.

E. Frank and I. H. Witten, “Generating accurate rule sets without global
optimization,” in /5th International Conference on Machine Learning,
1998, pp. 144-151.

M. Hall et al., “The weka data mining software: An update,” ACM
SIGKDD Explorations Newsletter, vol. 11, no. 1, pp. 10-18, 2009.

J. T. Kent, “Information gain and a general measure of correlation,”
Biometrika, vol. 70, no. 1, pp. 163-173, 1983.

