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Abstract—This paper presents an experimental design and
algorithm for power-based malware detection on general-purpose
computers. Our design allows programmatic collection of CPU
power profiles for a fixed set of non-malicious benchmarks, first
running in an uninfected state and then in an infected state with
malware running along with non-malicious software. To charac-
terize power consumption profiles, we use both simple statistical
and novel, sophisticated features. We propose an unsupervised,
one-class anomaly detection ensemble and compare its perfor-
mance with several supervised, kernel-based SVM classifiers
(trained on clean and infected profiles) in detecting previously
unseen malware. The anomaly detection system exhibits perfect
detection when using all features across all benchmarks, with
smaller false detection rate than the supervised classifiers. This
paper provides a proof of concept that power-based malware
detection is feasible for general-purpose computers and presents
several future research steps toward that goal.

I. INTRODUCTION & BACKGROUND

Protection of networked assets from malicious software

(malware) is proving insufficient, as cyber attacks regularly

result in significant system failures, financial losses, or unwar-

ranted disclosures. Signature-based malware detection meth-

ods while generally the first line of defense, are ineffective

against unknown attack patterns and are unable to keep pace

with the rate and sophistication of modern malware. To

complement signature-based methods, previous works have

explored behavior analysis by monitoring physical properties

(e.g. time and power) of a device (e.g. embedded devices

and mobile devices) [2–7]. The research question addressed

by these works is “Can malicious software be accurately

identified by monitoring some physically observable feature?”.

Previous work explored power consumption acquisition aimed

at studying power efficiency of servers [8, 9] and mobile
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devices [10]. Related works exploring power consumption

for malware detection have focused on embedded medical

devices [2], mobile devices [11, 12], software-defined radio,

PLCs, and smart grid systems [3–6].

In this paper we present an experimental setup consisting

of a general-purpose computer running Windows operating

system (OS) with out-of-band power monitoring hardware. We

use this experimental setup to monitor and record the CPU

power consumption while running non-malicious applications

(only the OS, Internet Explorer (IE), and Windows Registry

Editor (Regedit) [13]) both in a clean state and post mal-

ware infection. Furthermore, we propose a novel unsupervised

learning approach that treats malware detection as a one-class

problem based on power consumption. The proposed unsu-

pervised detection method uses an ensemble of single-feature

anomaly detectors to establish an anomaly detection method

that decreases the false detection rate without sacrificing recall

(true-positive rate). We compare the performance of this newly

proposed anomaly detection approach with the performance

of supervised detection algorithms, namely, several kernel-

based support vector machines (SVMs) equipped with the

same features as the anomaly detector.

This is the first research effort to attempt malware detection

on a general-purpose computer via CPU power consumption

monitoring. Our testbed and experimental setup are designed

to collect power profiles programmatically with the computer

running only non-malicious software, only malware, and the

combination of both. The design and unique solutions to the

data collection are research contributions.

While the use of ensembles of detectors to increase detec-

tion accuracy is not uncommon [14–16], our ensemble detector

and results contribute to the anomaly detection research in a

variety of ways. Specific novel contributions include: a data-

driven technique to learn canonical shapes in the power curves

(which permits analysis by sequential learning algorithms);

application of Data Smashing [17] on two separate symbol

representations of power data; formulation of a z-score, single-

feature detector from permutation entropy (Cao et al. [18])

and information variance with application to power-based

detection; finally, we introduce a simple “z-score of z-score”

anomaly detection ensemble, and exhibit results showing it

outperforms the single-feature detectors lowering false posi-

tives but raising recall.

Our results confirm, at least in this experimental setting,

that (1) malware does leave a noticeable trace in the power
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profile, and (2) sophisticated malware can be detected using

anomaly detection, without prior behavioral analysis.

II. TEST BED DESIGN & DATA COLLECTION

Our conjecture is that malware’s actions produce sufficient

deviation in the power profile to admit detection. Anticipating

that the effects of malware execution on power signals are

subtle, significant effort was spent sensing and recording

the power use data. Our experiments were run on a Dell

OptiPlex 755 machine running 32-bit Windows 7. For the

power data acquisition, we used a Measurement Computing

Data Acquisition (DAQ) system (model USB-1608G Series

with 16 channels, www.mccdaq.com). Separate channels on

the DAQ were connected through a printed circuit board

(PCB) sensor to separate voltage sources on the computer’s

motherboard power connector. The voltage and current were

collected on each of the eight DC power channels. In this

paper, however, we only utilized the CPU rail’s data.

We developed a program that directly accesses the DAQ to

gather power data. Using custom software has two advantages:

(1) power data has 16 bits of precision and (2) we were able to

better control the sample recording rates and vary the sample

timings. As a part of the data preprocessing, the values of the

voltage channel and current channel were multiplied to obtain

the power consumption for each sample time. The sampling

rate, computed as the median difference in power samples,

was 0.0170s, with a variance in the order of 10−6s.

As most malware initiates malicious traffic (e.g., click fraud,

beaconing, spamming, etc.), unfiltered Internet access for the

experimental machine is necessary so malware can operate

with full functionality. For our experiments, an unfiltered, seg-

regated network was created using a cellular data connection

to the Internet that passed through another computer, the data

repository, that was used to monitor and store the power data.

More details about the hardware and software configuration

can be found in our technical reports [1, 19].

Our data collection experiments consist of power profiles

collection, running three benchmarks, first in a clean state and

next when the machine was infected with malware. In a clean

state, we first collected power data when the experimental

machine was idle (with only OS and background processes but

no additional software) and when two non-malicious software

applications—Internet Explorer (IE) and Regedit used for

dumping the Registry—were running on the system. IE was

chosen because it has been proven that some malware affect

the performance of browsers [20]. The Registry was chosen

because malware often make modifications to it and then use

a driver to hide the modified Registry keys [21].

The idle benchmark simply let the experimental machine sit

idle for three minutes. In the case of the IE benchmark, 15

windows were open with a five-second delay between each,

and then each window was closed. For the final benchmark,

we used Regedit to print the Windows Registry to a .reg
file. This sequence, three minutes in idle and each non-

malicious software benchmark individually, was automated

using a custom Python script for repeatability, and power data

was collected for the three clean power profiles. Next, the

experimental machine was infected with a particular malware.

The Python script was executed again, collecting the power

profiles of only malware running on the experimental machine

(i.e., Idle benchmark), IE running in the presence of malware,

and Regedit running in the presence of malware. These three

power profiles were labeled infected.

In this research work we targeted rootkits, which are small

malware programs that allow permanent or consistent, un-

detectable presence on a computer [21]. Typically, a rootkit

locates and modifies software on the computer system with

the purpose of masking its behavior; for example, patching,

a technique that modifies the data bytes encoded in an exe-

cutable code, is a type of modification that can be made [21].

Specifically, the following five rootkits were used in our

experiments: Alureon [22], Pihar [23], Sirefef [24], Xpaj [25],

and MaxRootkit [26]. To understand the rootkits’ behaviors,

we analyzed each of them using the web-based application

called VxStream Sandbox [27].

The hypothesis under investigation is if malware executions

(when the machine is idle or running together with selected

non-malicious benchmark software) produce enough change

in the power usage to admit accurate detection in the presence

of the ambient noise from the OS background processes.

To account for the randomness of different OS background

processes running on the machine, we executed the Python

script (both in clean and infected states) three times for each

malware sample (3 runs × 5 rootkits), resulting in fifteen

datasets, each consisting of three clean and three infected

power profiles described above. Note that our approach is

designed to work in a controlled environment, with pre-

selected non-malicious benchmark applications whose power

consumption profiles have been baselined in clean state.

III. DATA ANALYSIS APPROACH & RESULTS

Exploring the hypothesis that malware execution necessarily

changes the power profile, we formulate and test an unsu-

pervised detector, viewing the detection task as a one-class

anomaly detection problem. This has the obvious advantage

that no prior observations of data collected under the presence

of malware is necessary. We compare the performance of our

proposed detector against several kernel SVMs, a stereotypical

supervised approach, which assumes knowledge of previously

observed clean and infected data. More specifically, we train

and test each SVM on an equal number of clean and infected

profiles, but the testing profiles are those clean and rootkit-

infected profiles never seen in training. Hence, both scenarios

are designed to test detection capabilities against never-seen-

before malware. Both use the same set of features.

A. Features

Modeling diverse qualities of the data gives more avenues

of detection; hence, we craft a variety of features modeling

statistical properties of the power data sample as well as many

time-varying characteristics. Each power profile (IE, Registry,

idle) of a given run is transformed into a feature vector. For
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Fig. 1: (Watts vs. Seconds) Canonical profiles (baselines for L2 error) for IE,
Registry, and Idle benchmarks found by clustering unsupervised training data
(ten clean profiles) with k-means clustering with L2 distance. Gap statistic
used to find the no. of clusters, k, and k = 1 (as expected) is found in each
case. Centroids (means of each cluster) depicted.

time-dependent features, all observations in a run are shifted

by their initial time, so time uniformly begins at t = 0. We

sub-sample the power curve at intervals of 10ms to ensure

uniformly spaced data. Features are described below, and see

the extended version of this paper for math details [1].

1) Statistical Moments: The first four features are (empiri-

cal estimates of) the mean (first moment), variance, skewness,

and kurtosis (second-fourth normalized central moments).

Kurtosis :=
∑N

i=1(xi − μ)4/(Nσ4) − 3 following Fisher’s

definition, with 3 subtracted so normally distributed data yields

0. The moments encode characteristics of the power data

regarded as a set of independent and identically distributed

(IID) samples of a distribution.

2) L2-Norm Error: Regarding each power profile as a

function p(t), the L2 norm (defined as [
∫ |p|2dt]1/2) furnishes

a natural (Euclidean) distance for pairwise comparison. To

construct a single baseline profile, we cluster the clean training

data using k-means clustering, with k determined by the

gap statistic method [28]. This provides a litmus check—we

hypothesize that our clean training profiles should be similar;

hence, we expect a single cluster with the centroid a canon-

ical “baseline” function. Indeed, for all benchmarks a single

canonical baseline was found by the gap statistic method, as

shown in Fig. 1. For the supervised approach, the baseline is

created from the 12 clean training profiles. Finally, the feature

for a given profile is the L2 distance to the baseline.

3) Permutation Entropy: Permutation Entropy, is a method

of time-series analysis that detects deviations in the short-term

wiggliness (roughly speaking) and has been used in various

time-series detection applications including epilepsy [18] and

motor bearing fault detection [29]. Our formulation follows

Cao et al. [18]. From a power profile, (x1, . . . , xN ), we extract

every m-length contiguous sub-vector, (xi+1, ..., xi+m), and

sort the values to obtain the resulting permutation of the

indices (1, ...,m). Each profile is represented as counts of the

number of m-length permutations observed. Our goal is to

learn how rare/likely the profile is by understanding the likeli-

hood of its permutations. To do this, we require a probability

distribution over the sample space of m! permutations.

For a fixed benchmark let O be the observations (multiset)

of permutations across all clean training profiles. For each

permutation γ let #(γ,O) denote the number of times γ is

observed in O. Then we use the maximum a posteriori (MAP)

estimation with uniform prior to estimate γ’s probability,

P (γ) := (#(γ,O)+1)/(|O|+m!). This allows permutations

never observed in training to have positive likelihood, albeit

very small. It is clear from the MAP estimate that m must

be chosen carefully, as for moderate values of m, m! will

easily dominate |O|, washing out the contribution of our

observations. We chose m = 6, which gives m! = 720,

while |O| = 61,680 for IE, 6,240 for Registry, and 53,980 for

Idle benchmarks. Finally, for a given profile we compute the

entropy of the observed permutations as IID samples from the

distribution above. After converting an observed power profile

to a bag of permutations, (γi : i = i, ..., n), we compute the

permutation entropy, that is, the expected information of the

permutation, Ĥ = (1/n)
∑

i− log(P (γi))P (γi).
4) Data Smashing Distances: Data Smashing distance

(DSD) is a computationally efficient algorithm for quanti-

fying the distance between two sequences of symbols [17].

Fig. 2: (Watts vs. Seconds) Canoni-
cal shapes found by clustering three-
second intervals of training data. Note
that the four shapes characterize high
power, low power, falling power, and
rising power.

To apply DSD, we trans-

form time-varying power

data into a sequence of

symbols that is sufficiently

long. We employ DSD on

two symbol representations

of the power data, sepa-

rately. The first transforms

power samples into symbols

“high” and “low” (a stereo-

typical application of Data

Smashing), referred to here-

after as “DSD Data Dis-

tance.” Given a pair of pro-

files, the threshold is chosen

so the number of high/low

values is equal to help en-

sure the sequences are sufficiently long.

The second application seeks to model sequences of shapes

in the power curves and is referred to as “DSD Shape

Distance.” To produce the shapes, the training profiles are cut

into three-second intervals with 1.5-second overlap. Then the

bag of all three-second snippets are clustered using k-means

and L2 distance as in Sec. III-A2. We manually investigated

the centroids as k varied, choosing k = 4 as is maximal for

which the centroids are not very similar curves. See Fig. 2

depicting the four canonical shapes learned from the data.

Finally, given a power profile, we cut it into a sequence of

three-second intervals, overlapping by 1.5 seconds, and assign

to each interval the closest canonical shape. This transforms

a power profile into a sequence of four “shape” symbols. Our

conjecture is that profiles that exhibit a clear pattern when

clean (e.g., IE baseline, top Fig. 1), will give a pattern of
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shapes that may be disrupted by malware execution.

DSD uses a probabilistic algorithm to approximate the

distance, and will produce similar but, in general, not identical

values as the order is switched. For this reason, given two

strings s1 and s2, we compute d(s1, s2) and d(s2, s1) and store

the average of the two as the distance. If either distance is not

returned, it indicates our strings are not long enough, and this

feature is not used. In both transformations to a sequence of

symbols, every sequence is concatenated with itself 100 times

to ensure the strings are long enough to perform the algorithm.

This can be conceptualized as a simulation of running the same

benchmarks repeatedly 100 times. DSD Shape distance is not

applicable to the Idle benchmark because the strings are not

long enough. This is likely caused by the fact that the flat, low

power shape dominates the probabilities, making the product

of the four symbols’ probabilities very small. To obtain both

the DSD Data and DSD Shape values for a given profile, we

compute the distance between its symbol sequence and that of

all ten training profiles concatenated.

B. Unsupervised Approach: Anomaly Detection Ensemble

Our ensemble classifier is constructed from votes of many

single-feature anomaly detectors, all obeying a principled

threshold universally—any observation that is at least one

standard deviation from the mean is considered anomalous,

where the standard deviation and the mean are computed on

the training observations. Explicitly, for a given feature, let

V = (vi : i = 1, ..., n) be the training runs’ values, and let μ, σ
be the mean and standard deviation of V , respectively. Then

given an observation of this feature, v, from either a training

or testing run, we compute the z-score normalization, z =
|v−μ|/σ, and vote if z ≥ 1. Since computation of permutation

entropy features requires explicit estimation of a probability

distribution over the training data permutations, we compute

the mean information (permutation entropy of training data),

and the standard deviation of the information over the training

runs as follows, μ :=
∑m!

i=1− log(P (γi))P (γi) = H(P ) and

σ := [
∑m!

i=1[log
2(P (γi))P (γi)]−H(P )2]1/2. For permutation

entropy z-score computation, μ, and σ, as computed above

from the learned distribution are used.

For the ensemble detector, we follow the same one-sigma

rule using the number of single-feature votes per benchmark

as the lone feature. That is, the mean and standard deviation

of the training runs’ vote totals are computed; each run’s vote

count is converted to a z-score; those runs with z ≥ 1 are la-

beled infected. The proposed unsupervised detector classifies a

run based on the number of votes across all three benchmarks;

although we report results for each single-feature detector per

benchmark and ensemble detector per benchmark as well.

Table I presents the results along with each test profiles’ set

of z-scores and the vote thresholds.

Analyzing the unsupervised results reveals perfect detection

is obtained by the overall classifier. Delving into each bench-

mark shows perfect detection using IE profiles alone and the

Registry profiles alone, while the Idle profiles alone exhibit

perfect true positive rate (TPR) with only one false positive of

TABLE I: Unsupervised Detection Results

TPR FDR TPR FDR TPR FDR

Features Idle/Only IE/IE+ Registry/Reg-
Malware Malware istry+Malware

Mean 1.00 0.21 1.00 0.06 1.00 0.17
Variance 1.00 0.06 1.00 0.06 1.00 0.21
Skewness 1.00 0.06 1.00 0.06 1.00 0.21
Kurtosis 1.00 0.06 1.00 0.06 1.00 0.21

L2 Error 0.87 0.19 1.00 0.00 1.00 0.12
Perm. Entropy 0.00 0.00 0.00 0.00 0.00 0.00

DSD (Data) 0.87 0.24 0.67 0.09 0.87 0.24
DSD (Shape) N/A N/A 0.53 0.27 0.67 0.09

BM Votes 1.00 0.06 1.00 0.00 1.00 0.00

Total Votes TPR = 1.00 FDR = 0.00

True positive rate (TPR) and false detection rate (FDR) (1 -
Precision) reported for each single-feature anomaly detector, per
benchmark. BM Votes row gives results for the ensemble per
benchmark. Finally, Total Votes row reports the full ensemble
detector (all single-feature detectors across all three benchmarks)
results. Note that no single feature or ensemble for a single
benchmark achieves perfect detection, but the full ensemble does.

sixteen alerts, i.e., a 0.0625 false detection rate (FDR, defines

as percentage of false alerts to alerts). Notice that the test set

class bias is 25/75% clean/infected; assigning labels blindly

according to this distribution produces an expected TPR of

75% and FDR of 25%. Even against this normalization, our

results are overwhelmingly positive and give strong empirical

evidence that the power profiles are changed sufficiently by

malware executions to admit detection.

The permutation entropy feature never deviated from the

training mean by more than a standard deviation. Qualitatively

this means that the patterns of variation of the profiles over 6×
.01s= .06s is not changed in a noticeable way by the rootkits

tested. Quantitatively, this means that inclusion of permutation

entropy does not affect the detection outcomes.

Notice that DSD distance, both for shape symbol sequences

and on the two-symbol representation of the power data,

struggle to beat the random baseline. Our observation is that

this method, while mathematically exciting, is not a good

detector for the detection task at hand. The distribution of the

power data, regardless of the time progression (encoded by the

moments), and the overall shape of the profiles (encoded by

L2-norm difference from the baseline profile) are the heavy

lifters contributing to the correct classification.

C. Supervised Approach: Kernel SVMs

We compare the results of the newly proposed anomaly

detection ensemble with supervised learning based on kernel

SVMs. For the supervised approach, we use hold-one-out val-

idation on the rootkits; i.e., in each fold training is performed
TABLE II: Supervised Learning Results

SVM Kernel TP FP TN FN TPR FDR

Linear 15 3 12 0 1.00 0.17
RBF γ = 0.001 15 3 12 0 1.00 0.17
RBF γ = 0.01 15 3 12 0 1.00 0.17
RBF γ = 0.1 14 3 12 1 0.93 0.18
Polynomial d = 3 15 3 12 0 1.00 0.17
Polynomial d = 2 15 3 12 0 1.00 0.17
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on 12 of 15 clean profiles plus 12 infected profiles (3 profiles

× 4 rootkits), and testing is performed on the 3 profiles from

the held-out rootikit combined with the remaining three clean

profiles. We used kernel SVMs as the kernels allow versatility

and non-linear decision boundaries. Our implementation used

SciKit-Learn [30] to test the following six kernels: linear,

radial basis function (RBF) with γ = 0.1, 0.01, 0.001, and

polynomial of degree two and three. The features for the

learner match those of the unsupervised approach, Sec. III-A.

Table II depicts micro-averaged results, showing perfect

or near perfect TPR, with 17-18% FDR. As the test sets

comprised of non-biased classes (50% clean/50% infected) a

random classification would expect 50% TPR and FDR. These

results give further empirical evidence that the power profiles

are changed in a detectable way by malware and favor the

one-class detector.

IV. CONCLUSION

Our work proves the concept that rootkits change the power

profile of the CPU in a detectable manner. By monitor-

ing CPU power consumption under a set of non-malicious

software, we programmatically gathered the power profiles

in a clean, uninfected state and then in an infected state,

with malware running on its own or together with the non-

malicious software. To characterize the power data, a novel

anomaly detection ensemble and many supervised kernel SVM

classifiers are tested using features comprised of statistical

moments and more sophisticated time-series-analytic features.

Our results allowed analysis of each single-feature detector

per benchmark, giving insight to novel applications of time-

series algorithms for power-based malware detection. The

overall result is that perfect detection is achievable in our

test environment by the proposed one-class method, which

outperformed the supervised learning with kernel SVMs that

have access to labeled infected data during training.

Next-step research involve testing robustness to expected

noise and variability in the applications, e.g., IE resolving

different URLs. Accurate results were possible with relatively

slow sampling rates (power sampled at O100Hz implies that

a 1GHz processor will exhibit ≈ 109/102 = 10M cycles

between each sample), indicating that the malware tested is not

subtle when executing. Research to increase the sampling rate

is necessary, especially for accurate baselining of very small,

fixed instructions sequences. We believe this work is a valuable

step towards a promising option for malware detection.
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[3] C. González et al., “Power fingerprinting in SDR & CR integrity
assessment,” in MILCOM. IEEE, 2009, pp. 1–7.
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